Zeitschrift: Landtechnik Schweiz Herausgeber: Landtechnik Schweiz

Band: 44 (1982)

Heft: 11

Artikel: Ernte, Konservierung und Fütterung von Mais-Korn-Spindelgemisch

(CCM)

Autor: Jakob, R. / Spiess, E.

DOI: https://doi.org/10.5169/seals-1081513

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

11/82

Landtechnisches Mitteilungsblatt für die Praxis herausgegeben von der Eidg. Forschungsanstalt für Betriebswirtschaft und Landtechnik CH-8355 Tänikon

Verantwortliche Redaktion: Direktor Dr. W. Meier

13. Jahrgang, September 1982

Nachdruck der unveränderten Beiträge unter Quellenangabe gestattet.

Ernte, Konservierung und Fütterung von Mais-Korn-Spindelgemisch (CCM)

R. Jakob und E. Spiess

Die Entwicklung neuer Ernteverfahren hat der Verwertung von Maiskolben zu einer beachtlichen Vielfalt verholfen. Der Maiskolben kann in verschiedenen Formen an das Tier verfüttert werden:

- Lieschkolbenschrot = Körner und Spindel und Lieschen
- Kolbenschrot oder Corn-Cob-Mix (CCM)Körner und Spindel
- Körnerschrot = Körner

Vor allem in der Schweinehaltung erfreut sich der Maiskolben – insbesondere CCM – zunehmender Beliebtheit, da er finanziell als betriebseigenes Grundfutter recht interessant ist. Aus Konservierungsgründen und wegen des hohen Flächenbedarfs stellt seine Verwendung jedoch an die Bestandesgrösse und die Betriebsfläche gewisse Anforderungen. Für den erfolgreichen CCM-Einsatz in der Fütterung ist auch eine entsprechende Mechanisierung und Siliertechnik unerlässlich.

1. Fütterungstechnische Grundlagen

Der Maiskolben ist als alleiniges Futter bei Schweinen nicht einsetzbar, da sein Protein-, Mineralstoff-, Spurenelement- und Vitamingehalt nicht den Ansprüchen des Schweines entspricht. Zudem enthält das Maiskorn in der Trockensubstanz (TS) rund 5% Öl mit einem hohen Anteil an ungesättigten Fettsäuren. Diese Fettsäuren werden in das Körperfett der Schweine eingebaut, was bei zu hohen Anteilen dessen Haltbarkeit sowie die Eignung zur Herstellung von Dauerfleischwaren beeinträchtigt. Aus diesen Gründen werden in der Ration maximal 60% CCM eingesetzt.

Da die notwendigen Ergänzungsfutter in der Regel wenig Rohfaser enthalten, sollten möglichst alle Spindeln mitgeerntet werden, da sie als Rohfaserträger für den Landwirt gratis anfallen. Der ideale Rohfasergehalt für CCM beträgt daher 6–7% in der TS.

2. CCM-Mähdrescher- und Kolbenpflückschroter-Vergleichsversuche

Die ganze Mechanisierung der CCM-Gewinnung und die Art des Endproduktes wird hauptsächlich durch die Erntemaschine bestimmt. Im Vordergrund steht heute der Mähdrescher, da er sowohl für die Getreide- als auch die Maisernte eingesetzt werden kann. Dank der dadurch möglichen guten Maschinenausnutzung, aber auch infolge der vergleichsweise hohen Leistung und nicht zuletzt wegen des «Freischnittes» wird dieses rationelle Ernteverfahren zunehmend von Lohnunternehmern bevorzugt.

Wurde die CCM-Ernte noch vor Jahren

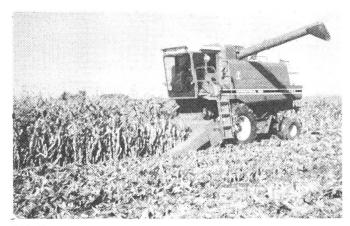


Abb. 1

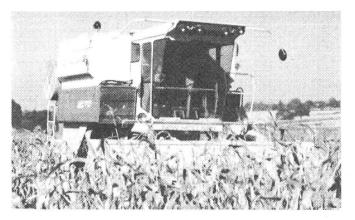


Abb. 2a

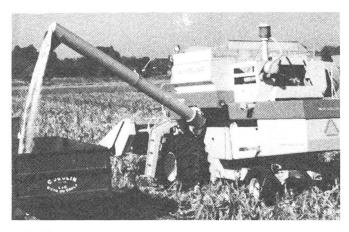


Abb. 2b

Abb. 1, 2a und 2b: Axialmähdrescher IH 1460 (1 Rotor) und NEW HOLLAND TR 85 (2 Rotoren). Diese neuartigen Dreschersysteme eignen sich besonders gut für die CCM-Ernte. Die Umstellung zwischen Getreide und Mais gestaltet sich relativ einfach.

hauptsächlich mit speziellen Maispflückdreschern (zum Beispiel Braud 108) bewältigt, so wird heute als Ersatz vermehrt auf die vielseitigen **Axialmähdrescher** tendiert (Abb. 1 und 2). Diese Maschinen zeichnen sich aus durch eine besonders gute Eignung für den Maisdrusch und ein verein-

Abb. 3: In die Vergleichsversuche miteinbezogen wurde auch ein Mähdrescher herkömmlicher Bauart aus einer neuen Typenreihe (FAHR M 2780 H). Die Einzelaggregate solcher Neuentwicklungen sind von Grund auf auch für die CCM-Ernte abgestimmt.

fachtes Umrüsten zwischen Getreide und Mais. (Näheres in FAT-Blätter für Landtechnik Nr. 167 und 184.)

Beträchtliche Fortschritte hinsichtlich der Körnermais- und CCM-Ernte sind aber auch bei **Mähdreschern mit herkömmlichen Dreschwerken** (Tangentialdreschtrommel und Hordenschüttler) erzielt worden. Dies betrifft insbesondere die neuen Mähdrescherreihen der mittleren bis oberen Leistungsklassen, in welchen diese Ernteverfahren in der Regel bereits bei der Entwicklung Berücksichtigung fanden (Abb. 3).

1981 untersuchten wir in Vergleichsversuchen an der FAT verschiedene aktuelle Erntemaschinen hinsichtlich Verluste, Arbeitsqualität und Leistung. Von den maschinenstellenden Firmen wurde dabei gefordert, dass möglichst alle Spindelbestandteile mitgeerntet werden.

Tabelle 1: Eingesetzte Maschinen

Fabrikat Typ	Dreschwerksystem	Motor kW (PS)	Pflück- vorsatz	Bereitstellung und Betreuung durch
FAHR M 2780 H	herkömmlich	118 (160)	Geringhoff GP 400	Fa. Deutz-Fahr D-Gottmadingen
International Harvester, IH 1460	Axialfluss 1 Rotor	127 (173)	IH 843	Fa. Rohrer Marti, Regensdorf und Fa. Hilzinger, Frauenfeld
New Holland TR 85	Axialfluss 2 Rotoren	123 (168)	Geringhoff GP 400	Fa. Grunder Aesch
New Idea (Geräteträger mit Kolbenpflück- schrotter-Prototyp)	Tangentialdresch- trommel, Lieschen- rotoren, Fallermühle	132 (180)	Geringhoff GP 400	Fa. Hiltpold Villnachern und Fa. Agro-Industrie-Projekt D-Schlaitdorf

Tabelle 2: Ausrüstung und Einstellung der Mähdrescher

Maschine		Trommel U/min.	Korböffnung 1)	Gebläse U/min.	Siebe (Reinigung)
FAHR M 2780 H		600	vorne: Stufe 4 hinten: Stufe 1	800	Nasensieb 80/40 mm Verlängerung mit Rechen
IH 1460	2) 3) 4)	850 850 880	Stufe 0,5 0,5 0,5	900 850 800	Rundlochsieb Ø 50 mm
NH TR 85	2+3) 4)	940 1050	Stufe 8 (konisch) 8 (konisch)	960 960	Rundlochsieb Ø 50 mm

1) Dreschkorbart = FAHR: Kombination von Leisten- und Rundstäben

(Schüttler im vorderen Teil mit grösseren Oeffnungen)

IH: vorne: Mais-Korb, hinten: CCM-Korb

NH: Maisdreschkörbe, am hinteren Dreschkorb jeder dritte Draht herausgezogen,

Trennkörbe normal

- 2) bei niedrigen
- 3) bei mittleren

Durchsätzen bzw. Arbeitsgeschwindigkeiten

4) bei hohen

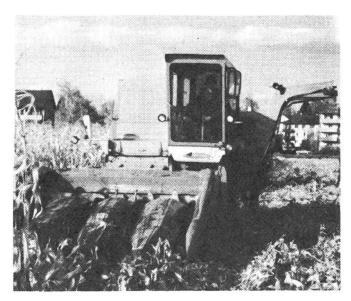
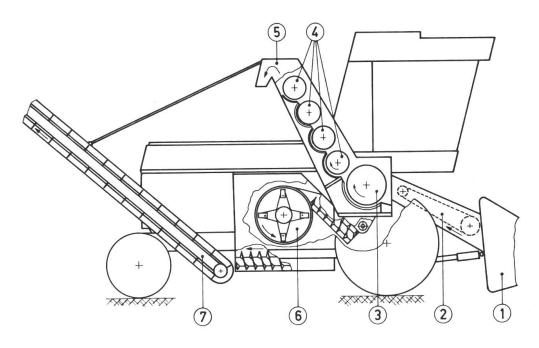


Abb. 4a: Vierreihiger Kolbenpflückschroter-Prototyp auf einen NEW-IDEA-Geräteträger aufgebaut. Das fertig geschrotete CCM kann ohne weitere Aufbereitung direkt eingelagert werden.

Eingesetzte Maschinen


Nebst einem herkömmlichen und zwei Mähdreschern mit Axialdreschwerk kam auch ein vierreihiger Kolbenpflückschroter von New-Idea zum Einsatz (Tab. 1 + 2). Diese Maschine besteht aus einem Geräteträger mit 132 kW (180 PS) Motor, zu dem in Europa ein entsprechender Adapter (Prototyp) entwickelt wurde (Abb. 4). Für das gleiche

Grundgerät können ferner weitere Adapter (Mähdrescher, Kolbenpflücker-Entliescher, Häcksler und Schneeschleuder) geliefert werden. Diesem Erntesystem liegen im wesentlichen folgende Überlegungen bzw. Zielsetzungen zugrunde:

- Kosteneinsparungen durch mehrfache Nutzung der teuren Grundaggregate (Motor, Fahrantrieb, Fahrwerk, Fahrerstand und Kabine).
- CCM-Ernte: Vierreihiger Selbstfahrer mit Frontpflücker und hoher Leistung; silierfertig geschrotetes Erntegut soll ohne aufwendige, leistungsbeschränkende Dosieranlagen und Mühlen eingelagert werden können; grosse Flexibilität besonders beim Einsatz auf kleineren Betrieben.

Versuchsbedingungen

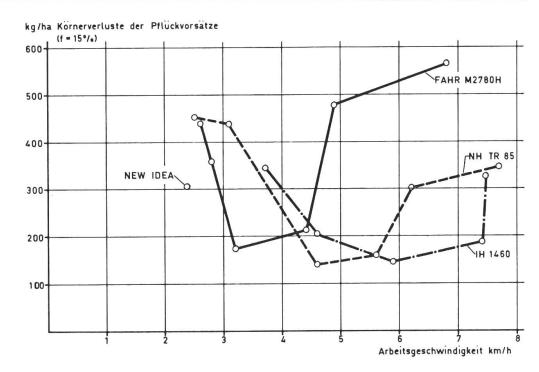

Aus organisatorischen Gründen musste der Einsatztermin relativ spät angesetzt werden. Dies hatte zur Folge, dass 1–2% der Pflanzen am Boden, meist quer zur Arbeitsrichtung, lagerten; der Bestand aber sehr gut ausreifen und abtrocknen konnte. Bei der Interpretation der Ergebnisse sind die eher überdurchschnittlich günstigen Voraussetzungen zu berücksichtigen:

Abb. 4b:

- Kolbenpflückvorsatz
- 2. Schrägförderer
- 3. Dreschtrommel
- 4. Lieschen-Abscheidetrommeln
- 5. Lieschenauswurf
- 6. FALLER-Mühle mit Schlitzsieben
- Schrotelevator zum Überladen auf einen angehängten Wagen oder für die Beschickung eines aufgebauten Bunkers

Abb. 5: Körnerverluste der Pflückvorsätze in Abhängigkeit von der Arbeitsgeschwindigkeit.

Erntedatum: 6. November 1981

Sorte: LG 11

Pflanzenhöhe: 220 cm

Verunkrautung: unbedeutend

Mittlerer CCM-Ertrag: 141,2 kg/a, 42,8%

Feuchtigkeit

Mittlerer Körnerertrag: 115,3 kg/a, 37,2%

Feuchtigkeit

Pflückverluste

Die Erhebung der Pflückverluste erfolgte auf der gleichen Strecke, auf welcher der Dreschwerkauswurf mit Planen aufgefangen wurde. Dadurch war es möglich, die von den Pflückvorsätzen zurückgelassenen losen Körner, Kolbenbruchstücke sowie beschädigte und unversehrte Kolben getrennt von den Dreschwerkverlusten zu erfassen. Alle Pflückvorsätze der Mähdrescher lassen hinsichtlich der Verluste einen bestimmten optimalen Arbeits- bzw. Geschwindigkeitsbereich erkennen (Abb. 5):

FAHR M 2780 H: 3-3,4 km/h

IH 1460: 4,5–7 km/h NH TR 85/: 4,5–5,5 km/h

NEW IDEA: *

* Infolge Undichtigkeit am Einzugskanal war

nur eine Erhebung der Pflückverluste möglich.

Innerhalb dieser Bereiche resultierten je nach Maschine Körnerverluste von 140–220 kg/ha (15% Feuchtigkeit). Höhere bzw. tiefere Arbeitsgeschwindigkeiten führen bei allen Pflückern zu einem starken Verlustanstieg. Dies lässt sich dadurch erklären, dass die Pflücker nur dann optimal arbeiten, wenn nebst anderem die Umlaufgeschwindigkeit der Einzugsketten in etwa mit der Arbeitsgeschwindigkeit übereinstimmt.

Durchsatzleistung, Dreschwerkverluste

Als Dreschwerkverluste werden die von den Reinigungssieben und Schüttlern bzw. Rotoren auf den Boden geförderten Körner bzw. Kornfeinteile bezeichnet. In Abbildung 6 ist der Zusammenhang zwischen der Durchsatzleistung (ohne Wenden und Entleeren) und dieser Verluste im ganzen möglichen Arbeitsbereich aufgezeigt:

FAHR M 2780 H

Im ganzen Durchsatzbereich lagen die Verluste um 0,5%. Bei der erreichten Höchstleistung von 31 t/h war die verfüg-

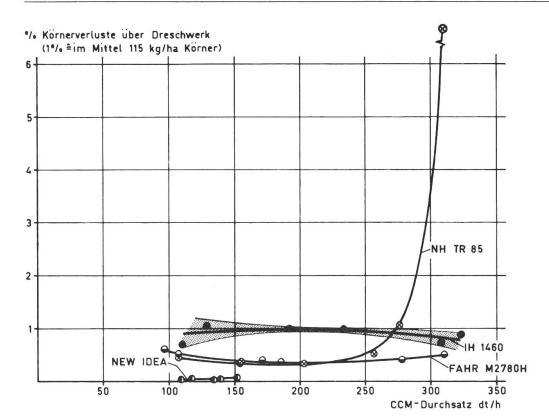


Abb. 6: Körnerverluste der Dreschwerke in Abhängigkeit vom CCM-Durchsatz.

bare Motorleistung noch nicht vollständig ausgeschöpft.

- IH 1460

Bei geringen bis mittleren Durchsätzen zeigten sich Verluste um 1%, mit weiter zunehmender Leistung leichte Verminderung. Die erreichte Höchstleistung von 32 t/h wurde durch die verfügbare Motorleistung bestimmt. Höhere Arbeitsgeschwindigkeiten hatten einen Drehzahlabfall zur Folge

- NH TR 85

Bis zu Durchsatzleistungen von zirka 25 t/h resultierten Verluste um 0,5%. Mit weiter zunehmenden Durchsätzen stiegen die Verluste stark (progressiv) an. Erreichte Durchsatzleistung bei 1% Körnerverluste = 27,5 t/h.

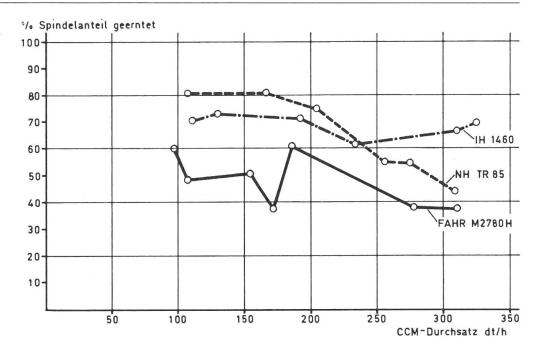
- NEW IDEA

Die Körnerverluste (0,03–0,07%) sind als unbedeutend gering zu bezeichnen. Die maximal erreichbare Durchsatzleistung von 15 t/h wurde durch die verfügbare Motorleistung bestimmt. (Um im Leistungsbereich der Mähdrescher arbeiten zu können, soll eine weitere Versuchsmaschine vorerst mit einem 243 kW (330 PS Motor ausgerüstet werden.)

Die im praktischen Einsatz möglichen **Stundenleistungen** liegen je nach den Voraussetzungen bei zirka 40 bis 50% der erreichten Durchsatzwerte.

Spindelanteil im CCM, Rohfasergehalt

Bei der Bestimmung der Spindelanteile im CCM wurde von handgeernteten und entlieschten Kolben ausgegangen. Diese Proben erbrachten folgende Grunddaten:


Grunddaten:

	%-TS	% Rohfaser in TS	dt/ha TS-Ertrag
Kolben*	57,2	7,02	80,8
Körner	62,8	2,03	_
Spindel	40,9	38,14	_

Anteil Körner an der gesamten TS des Kolbens: 86,2 % Anteil Spindeln an der gesamten TS des Kolbens: 13.8 %

* Körner und Spindeln

Abb. 7: Geernteter Spindelanteil in Abhängigkeit vom CCM-Durchsatz.

Die ermittelten Werte entsprechen den Angaben in der Literatur, sind allerdings nur gültig für gute Maisjahre. Sofern das Ernteprodukt alle Körner und Spindeln und keine Lieschen- und Stengelteile aufweist, sollte also der Rohfasergehalt in der TS 7% betragen.

Vom mit den Mähdreschern geernteten CCM wurden vorerst entsprechende Proben durch Aussortieren von Hand auf die Körner- und Spindelanteile untersucht und mit der Zusammensetzung der handgeernteten, entlieschten Kolben verglichen. Mit dieser einzig möglichen Methode liessen sich allerdings die Erntegutfeinteile (Korn-, Spindel-, Lieschen- und Stengelteile) nicht absolut genau erfassen; ein Vergleichsmassstab für die Beurteilung der einzelnen Maschinen ist jedoch gegeben.

Abbildung 7 zeigt die auf diese Art bestimmten, geernteten Spindelanteile (bei 100% wären alle Spindelteile im CCM enthalten) in Abhängigkeit vom CCM-Durchsatz:

- FAHR M 2780 H

Im Durchsatzbereich bis 180 dt/h ziemlich starke Streuung zwischen 40 und 60%. Darüber hinaus mit zunehmendem

Durchsatz Tendenz zur Verminderung des Spindelanteils.

- IH 1460

Spindelanteil schwankt in Abhängigkeit vom Durchsatz zwischenk 62 und 73%.

NH TR 85

Höchste Spindelanteile von 81% im Durchsatzbereich bis zirka 170 dt/h. Bei höheren Durchsätzen stark abfallende Werte bis auf 44% bei 309 dt/h CCM-Durchsatz.

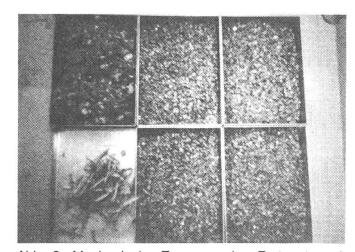


Abb. 8: Mechanische Trennung des Erntegutes ab Mähdrescher. Rechts vier Schalen mit Körnern, links oben Spindeln, links unten Stengel und Lieschen. Ein kleiner Anteil Lieschen und Stengel wird bei jedem Mähdrescher mitgeerntet. Einfluss auf den Rohfasergehalt zirka 1–2%.

Abb. 9: Der Durchsatz bei den Feuchtgetreidemühlen wird von der Dosierung stark beeinflusst. Dosierung ab Transportwagen genügt in der Regel nicht. Eine regelmässige Beschickung wird mit Förderband oder durch Transportschnecken mit mindestens 15 cm Durchmesser erreicht.

Der Rohfasergehalt wird ganz entscheidend auch durch die im Erntegut enthaltenen Stengel und Lieschenteile (Beimengungen) mitbeeinflusst. Diesbezüglich konnte bei zunehmendem Durchsatz bei keiner Erntemaschine eine eindeutige Tendenz zur Veränderung des Rohfasergehaltes festgestellt werden. Offensichtlich haben hier die Beimengungsanteile eine stärkere Auswirkung als die zum Teil abnehmenden Spindelgehalte. Der durchschnittliche Rohfasergehalt in der TS (alle Versuche) stimmt aber tendenzmässig mit den

Spindelanteilen der einzelnen Maschinen überein:

FAHR M 2780 H: 7,1 % Rohfaser in TS

IH 1460: 7,6% NH TR 85: 7,5% NEW IDEA: 6,7%

Bei den Mähdreschern liegt der Rohfasergehalt des Ernteproduktes etwas höher als beim Kolbenpflückschroter, was auf höhere Beimengungsanteile hinweist.

Vom fütterungstechnischen Standpunkt her gesehen, haben somit alle vier untersuchten Fabrikate voll befriedigt.

Abb. 10: Feuchgetreidemühle. Das Rundsieb kann je nach Feuchtigkeitsgehalt und gewünschter Mahlfeinheit schnell und einfach gewechselt werden. Für CCM in der Regel 18 mm Lochdurchmesser. Antrieb mindestens 80 kW bei 12 t Durchsatz pro h oder 50 kW bei 9 t/h.

3. Einlagerung

In der Regel wird der Maiskolben vor dem Silieren geschrotet, entweder auf dem Feld (Kolbenpflückschroter) oder beim Abladen (Mähdrescher) durch Recutter oder Schlagmühle mit Siebeinsatz.

Messungen in der Praxis zeigen, dass in der Regel über 70% der Spindel mitgeerntet werden und somit ein Rohfasergehalt von 5 bis 7% in der TS erwartet werden kann. Die praktischen Leistungen moderner Mädrescher betragen heute rund 1 ha/h bzw. 140

Tabelle 3: In der Praxis erhobene Leistungen bei der Ernte von CCM mit Maispflückdreschern

Praktische Leistung = Dreschen, Wenden, Tank entleeren

Maissorte: LG 11

Jahr	Fabrikat/Typ	Ertr	Ertrag		Leistung Futter	
		Futter dt/h	TS dt/ha	%	dt/h	ter ha/h
1980	BRAUD 108*	148	78	52,5	79	0,5
1981	BRAUD 108*	152	86,9	57,2	86	0,6
1981	IH 1460	155	87,4	56,2	138	0,9
1981	NH TR 85	143	84,6	59,2	142	1,0

^{*} spezieller Kolbenpflückdrescher

Tabelle 4: Versuche mit Feuchtgetreidemühlen (Abb. 9 + 10)

Mühlensystem	Sieb- loch-∅	Förder- höhe	Antrieb Zapfwelle	TS	Durchsatz	Leistungs- aufnahme
	10011 2	m	kW	%	t/h	kW
Schlagmühle mit Rundsieb,	18-20 mm	8	90	54	13,4	60 –80
Siebräumer, inkl. Förderung	18-20 mm	8	90	49	9,9	40- 50
(z. B. «Gruber»)	18-20 mm	8	46	54	9,4	45– 50
Schlagmühle mit Rundsieb, ohne Siebräumer, inkl. Förderung (z. B. «Skiold»)		Keine M	essung mögl	ich	a.	
Mühle mit gegenläufigen Wurf- Schrotfügeln, inkl. Förderung («Aebi»)	-	8	90	56	7,8	50 –65
Schlagmühle mit Feuchtmais- einsatz, Zwangsabfuhr, ohne Förderung (z. B. «Faller»)	Mais- einsatz	10	65	54	12,0	45 –50
Recutter mit Siebeinsatz inkl. Förderung *) (z. B. «Gehl»)	1 Zoll 3/4 Zoll	15 15	90 90	50 51	25,4 25,4	75 –80 –

^{*)} Mahlqualität ungenügend

dt CCM/h (Tab. 3). Damit das Ernteverfahren «rund» läuft, sollte daher auf dem Hof eine Schroteinrichtung vorhanden sein, die mindestens 160 dt/h CCm bewältigt. Im weiteren sollte das Mahlprodukt keine ganzen Körner aufweisen. Aus diesen Gründen wurden 1980 einige Feuchtgetreidemühlen (mittlere Modelle) untersucht (Tab. 4).

Bei mittleren Modellen der betreffenden Fabrikate ist eine direkte Verarbeitung ab Mähdrescher nicht mehr möglich. Der Landwirt kann durch eine hohe Transportkapazität oder Unterbrechung der Drescharbeit einen Ausgleich herbringen, beim Lohnunternehmer heisst die Devise aber: Grösstes Modell des betreffenden Fabrikates und Antrieb durch Lastwagenmotor (ab 120 kW). Bei pneumatischer Förderung von geschrotetem CCM in den Silo entsteht eine starke Entmischung. So ergaben Messungen in

der Silomitte 4,6% Rohfaser in der TS, am Silorand hingegen 11,8%. Da beim Einfüllen technisch noch keine befriedigende Lösung in Sicht ist, sollte vor allem bei der Entnahme darauf geachtet werden, dass ganze Schichten entnommen werden.

4. Konservierung und Entnahme

Da es sich bei CCM um ein energetisch hochwertiges Produkt handelt, sollten nur einwandfreie Silos (keine Drahtgitter oder andere Behelfssilos) verwendet werden. Pro Hektare Maisfläche ist je nach Ertrag mit 15–18 m³ Siloraum zu rechnen.

Sofern der Silo in drei Tagen gefüllt wird, sind keine Silierhilfsmittel notwendig. Um Abgangsverluste zu verhindern, sollten die obersten 20 bis 30 cm im Silo mit Propionsäure behandelt werden.

Ohne Silierhilfsmittel sind folgende tägliche Entnahmetiefen wegen den unangenehmen und mit hohen Verlusten verbundenen Nachgärungen zu beachten:

Bis 2 cm pro Tag: Weder von Hand noch mit Obenentnahmefräse möglich.

- 2–4 cm pro Tag: Nur Winterfütterung, mit Entnahmefräse möglich.
- 4–6 cm pro Tag: Ganzjahresfütterung, mit Entnahmefräse möglich.

Ab 6 cm pro Tag: Handentnahme möglich, wenn sorgfältig ausgeführt.

Die Einhaltung dieser Empfehlungen ist für eine erfolgreiche Mast mit Maiskolbenschrotsilage von entscheidender Wichtigkeit, da durch Nachgärungen sofort Verluste von 10% und mehr entstehen! Für Systeme mit Untenentnahmefräsen darf nur unzerkleinertes Gut eingefüllt werden, da sich bei Schrot Futterbrücken bilden und somit die Funktion nicht gewährleistet ist.

Tabelle 5 zeigt, dass für Tierbestände unter zirka 80 Mastschweineplätzen eine ganzjährige CCM-Fütterung mit der heutigen

Tabelle 5: Tägliche Entnahmetiefe in Abhängigkeit von der Ration und des Tierbestandes

Anteil CCM (TS) in der Ration Anzahl Umtriebe	%	6	60	2,9	4	0
CCM pro Mastschwein (25–100 kg LG)	kg TS			225		
Total pro Mastplatz (MSPL)	kg TS	0.0	20	653	0/	20
CCM pro Mastplatz CCM pro Mastschwein und Tag	kg TS kg TS		92 07		0,7	52 72
(Durchschnitt)	Ng 10	1,	07		0,	12
CCM-Gewicht im Silo (einmal Nachfüllen)	kg TS/m³			450		
Siloraum CCM pro Mastplatz	m³	Ο,	,9		0,	,6
CCM-Ertrag pro ha	kg TS			8500		
CCM-Ertrag pro ha (-10 % Kons. verl.)	kg TS			7650		
Anzahl MSPL pro ha			9		2	
Anbaufläche pro MSPL	а	5,	,3		3,	,4
Silodurchmesser	m	2,5	3,0		2,5	3,0
Entnahme pro Tag						
bei 60 MSPL	cm	2,9	2,0		1,9	1,4
80 MSPL	cm	3,9	2,7		2,6	1,8
100 MSPL	cm	4,8	3,4		3,3	2,3
120 MSPL	cm	5,8	4,0		3,9	2,7
140 MSPL	cm	6,8	4,7		4,6	3,2
160 MSPL	cm	7,8	5,4		5,2	3,6
180 MSPL 200 MSPL	cm	8,8	6,1		5,9	4,1
ZUU IVIOFL	cm	9,7	6,7		6,5	4,5

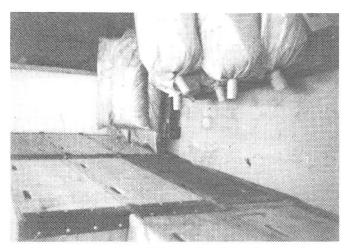


Abb. 11: Lagerung von CCM in Plastiksäcken. Links abgeschlossen in Paloxen = «Mäusesicher», rechts offen auf Paletten. Nach zwei Monaten Verlust von 15–20% durch Mäuse. Nachträglich erfolgreiche Bekämpfung mit chemischen Mitteln.

Technologie nicht möglich ist. Da das Trocknen immer teurer wird (heute Fr. 1300.– bis 1500.–/ha) wurde überprüft, ob CCM in Plastiksäcken (PE) konserviert werden kann (Abb. 11).

CCM-Konservierung in Plastiksäcken

Sackgrösse: 550 x 1000 x 0,2 mm

Kosten pro Sack: Fr. 1.05

Verschluss: mit Schweissgerät (Anschaffungskosten Fr. 1200.–)

Füllgewicht: Ø 38,5 kg CCM mit 56,8% TS =

21,9 kg TS/Sack Lagerdauer: 4 Monate

Die Konservierungsverluste (TS) betrugen im Durchschnitt 0,5% und waren somit wesentlich tiefer als in herkömmlichen Hochsilos (6–10%). Die relativ hohen Sackkosten könnten daher mit dem Minderverlust ohne weiteres aufgefangen werden. Es traten aber andere Probleme auf wie:

- Pro ha CCM sind zirka 350 Säcke notwendig. Das benötigt sehr viel Lagerraum.
- Das Abfüllen und Verschweissen der Säcke ist sehr zeitaufwendig.
- Die Mäuse müssen unbedingt bekämpft werden.

Dieses Verfahren kann bis 1 ha Anbauflä-

che empfohlen werden, sofern währnd der Ernteperiode genügend Arbeitskräfte vorhanden sind.

5. Fütterung

Technisch gesehen steht die Flüssigfütterung im Vordergrund. Heute ist es möglich, bei rationierter Fütterung mittels elektronischer Wägung der einzelnen Futterkomponenten in der Futterstande und anschliessender induktiver Durchlaufzählung iede gewünschte Ration einwandfrei zu verfüttern. Bedingt durch die hohen Investitionskosten ist dieses Verfahren aber erst ab zirka 200 Mastschweineplätzen interessant. Bei Feuchfütterung sollten zuerst die Eiweisskomponenten und dann die Kolbenschrotsilage in den Trog gebracht werden. Problematisch ist nach wie vor die Verfütterung von Silage mittels Automaten (notwendig bei mehreren Tieren pro Fressplatz!). Erste Testversuche in der Praxis zeigen, dass die Funktion bei einem Gemisch (CCM feucht/Gerste trocken/Eiweisskonzentrat trocken) gewährleistet ist. Die CCM-Silage darf allerdings keine Lieschen aufweisen, da sonst die Durchlassöffnung verstopft.

6. Zusammenfassung und Schlussfolgerungen

Besonders in der Schweinefütterung gewinnt der Maiskolben als landeseigenes Grundfutter zunehmend an Bedeutung. Da die Trocknungskosten stark angestiegen sind, wird heute der Maiskolben vermehrt als Corn-Cob-Mix (CCM) siliert. CCM lässt sich am rationellsten mit Mähdreschern ernten. Sowohl für herkömmliche Typen als auch für Maschinen mit Axialdreschwerken sind heute spezielle Umrüstsätze für dieses Ernteverfahren erhältlich.

In den meisten Fällen ist das Erntegut in geschroteter Form einzulagern. Der Mähdre-

ZH

schereinsatz bedingt hierfür leistungsfähige Mühlen mit entsprechenden Dosiervorrichtungen (bei kontinuierlicher Anfuhr sind Antriebsleistungen von über 100 kW erforderlich). Bei Kolbenpflückschrotern entfällt dieser Arbeitsgang. Als weitere Vorteile dieses Verfahrens sind die geringere Entmischungsgefahr und die grössere Flexibilität zu nennen. Um die hohen Kosten für eine selbstfahrende Spezialmaschine zu umgehen, soll in Zukunft ein neuartiger Kolbenpflückschroter als Adapter für einen vielseitigen Geräteträger angeboten werden.

Beträchtliche Körnerverluste durch die Pflückvorsätze traten bei niedrigen und hohen Arbeitsgeschwindigkeiten auf. Einer besseren Anpassungsmöglichkeit an unterschiedliche Bedingungen wie auch der verlustfreien Aufnahme von am Boden lagernden Pflanzen bzw. Kolben sollte künftig noch grössere Aufmerksamkeit geschenkt werden.

Hinsichtlich der Durchsatzleistung und der Dreschwerkverluste konnten unter den eher günstigen Voraussetzungen die untersuchten Mähdreschersysteme befriedigen. Noch wesentlich kleinere Dreschverluste zeigte der eingesetzte Kolbenpflückschroter.

Obwohl nicht alle Spindeln mitgeerntet wurden, lagen die Rohfasergehalte infolge der weiteren Beimengungen bei allen Maschinen im optimalen Bereich. Im Hinblick auf allfällige Störungen beim Mahlen und Fördern sind weitere technische Verbesserungen angezeigt, um die Körner mit möglichst allen Spindeln, aber ohne andere Beimengungen in den Erntemaschinen zu separieren.

Für Betriebe ab 200 Mastschweineplätzen ist die Konservierung und Verfütterung von CCM problemlos. Kleinere Betriebe sollten sich an die Mindestentnahmemengen halten, da durch die unangenehmen Nachgärungen hohe Verluste entstehen. Durch kleine Silodurchmesser, erhöhter Anteil in der Ration oder durch Konservierung in Pla-

stiksäcken können die Einsatzgrenzen für siliertes CCM gesenkt werden. Allerdings steigen die Investitionskosten und der Arbeitsaufwand stark an.

Allfällige Anfragen über das behandelte Thema, sowie auch über andere landtechnische Probleme, sind an die unten aufgeführten kantonalen Maschinenberater zu richten. Weitere Publikationen und Prüfberichte können direkt bei der FAT (8355 Tänikon) angefordert werden (Tel. 052 - 47 20 25 Bibliothek).

Schwarzer Otto, 052 - 25 31 21, 8408 Wülflingen

BE	Mumenthaler Rudolf, 033 - 57 11 16, 3752 Wimmis
	Marti Fritz, 031 - 57 31 41, 3052 Zollikofen
	Herrenschwand Willy, 032 - 83 32 32, 3232 Ins
	Marthaler Hansueli, 035 - 2 42 66, 3552 Bärau
	Hofmann Hans Ueli, landw. Schule Waldhof,
	063 - 22 30 33, 4900 Langenthal
	Brunner Samuel, 033 - 54 11 67, 3702 Hondrich
LU	Schäli Ueli, 045 - 81 33 18, 6130 Willisau
	Widmer Norbert, 041 - 88 20 22, 6276 Hohenrain
	Wandeler Erwin, 045 - 54 14 03
UR	Zurfluh Hans, 044 - 2 15 36, 6468 Attinghausen
SZ	Fuchs Albin, 055 - 48 33 45, 8808 Pfäffikon
OW	Müller Erwin, 041 - 68 16 16, 6074 Giswil
NW	Muri Josef, 041 - 63 11 22, 6370 Stans
ZG	Müller Alfons, landw. Schule Schluechthof,
	042 - 36 46 46, 6330 Cham
FR	Krebs Hans, 037 - 82 11 61, 1725 Grangeneuve
BL	Langel Fritz, Feldhof, 061 - 83 28 88, 4302 Augst
	Speiser Rudolf, Aeschbrunnhof, 061 - 99 05 10,
	4461 Anwil
SH	Hauser Peter, Kant. landw. Schule Charlottenfels,
	053 - 2 33 21, 8212 Neuhausen a.Rhf.
AR	Klee Anton, 071 - 33 26 33, 9053 Teufen
SG	Haltiner Ulrich, 085 - 7 58 88, 9465 Salez
	Pfister Theophil, 071 - 83 16 70, 9230 Flawil
	Steiner Gallus, 071 - 83 16 70, 9230 Flawil
GR	Stoffel Werner, 081 - 81 17 39, 7430 Thusis
AG	Müri Paul, landw. Schule Liebegg, 064 - 31 52 52,
,	5722 Gränichen
TG	Monhart Viktor, 072 - 64 22 44, 8268 Arenenberg
TI	Müller Antonio, 092 - 24 35 53, 6501 Bellinzona
so	Tschumi Fredi, landw. Schule Wallierhof, 065 - 22 93 42.
30	4533 Riedholz
	4333 Hieurioiz

Landwirtschaftliche Beratungszentrale, Maschinenberatung, Telefon 052 - 33 19 21, 8307 Lindau.

FAT-Mitteilungen können als Separatdrucke in deutscher Sprache unter dem Titel «Blätter für Landtechnik» und in französischer Sprache unter dem Titel «Documentation de technique agricole» im Abonnement bei der FAT bestellt werden. Jahresabonnement Fr. 30.–. Einzahlungen an die Eidg. Forschungsanstalt für Betriebswirtschaft und Landtechnik, 8355 Tänikon, Postcheck 30 - 520. In beschränkter Anzahl können auch Vervielfältigungen in italienischer Sprache abgegeben werden.