Zeitschrift: Landtechnik Schweiz Herausgeber: Landtechnik Schweiz

Band: 43 (1981)

Heft: 8

Artikel: Untersuchung über den Betrieb von Landwirtschaftstraktoren mit

Dieselholzgas

Autor: Stadler, E.

DOI: https://doi.org/10.5169/seals-1081795

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Landtechnisches Mitteilungsblatt für die Praxis herausgegeben von der Eidg. Forschungsanstalt für Betriebswirtschaft und Landtechnik CH 8355 Tänikon

Verantwortliche Redaktion: Direktor Dr. P. Faessler

12. Jahrgang, Juni 1981

Untersuchung über den Betrieb von Landwirtschaftstraktoren mit Dieselholzgas

E. Stadler

Die FAT führte in den Jahren 1977 bis 1980 praktische Versuche mit einem Landwirtschaftstraktor mit Dieselholzgas durch. Der dreijährige praktische Einsatz wurde durch Prüfstandmessungen ergänzt und zeigte, dass das System in allen landwirtschaftlichen Einsatzbereichen sozusagen störungslos und betriebssicher funktionierte. Indessen wies der Motor gegenüber einem reinen Dieseltraktor eine Leistungseinbusse von 25% auf; die Betriebsstoffkosten waren rund doppelt so hoch wie bei reinem Dieselbetrieb.

1. Treibstoffversorgung in der Landwirtschaft

Unsere heutige Ernährungslage in der Schweiz hängt weitgehend von den Oelimporten ab. Die Lage der Landwirtschaft würde sich bei einer allfälligen Importsperre von flüssigen Treibstoffen radikal verschlechtern. Obwohl die Landwirtschaft mit nur etwa 1,7% am Gesamtenergieverbrauch beteiligt ist, drängen sich verschiedene Massnahmen auf:

- Vorratshaltung sowohl zentral als auch auf den einzelnen Landwirtschaftsbetrieben,
- Vorbereitung von Sparplänen (Kontingentierung, Rationierung), im Sinne einer gerechten Treibstoffverwendung,

Abb. 1: Landwirtschaftstraktor Hürlimann Typ D 110, umgebaut auf Diesel-Holzgasbetrieb. 4,5 kg Holz ersetzen im Durchschnitt einen Liter Dieseltreibstoff.

- Suche nach Ersatztreibstoffen.

Kürzere Unterbrechungen in der Einfuhr können am einfachsten durch das Anlegen grösserer Treibstofflager überbrückt werden. Bei längeren Einfuhrsperren wird es aber notwendig, die Traktoren auf einheimische Treibstoffe umzustellen. Als eine mögliche Alternative fällt für die schweizerische Landwirtschaft das Holz bzw. die Holzvergasung in Betracht.

An unserer Forschungsanstalt wurde seit 1976 das Projekt «Untersuchung über Holzgas in der Landwirtschaft» bearbeitet (Abb. 1). Dabei ging es vor allem um zwei Schwerpunkte:

- Die Erfahrungen während des Zweiten

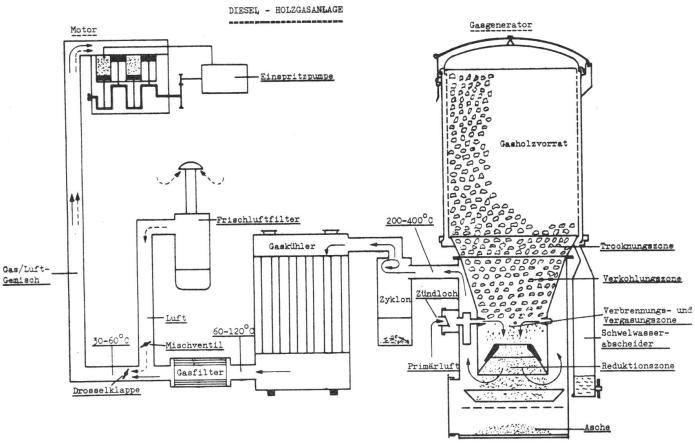


Abb. 2: Funktionsschema der Dieselholzgasanlage.

Weltkrieges und die Untersuchungen in den Jahren 1962–1969 im Maschinenlabor des Zentralschweizerischen Technikums in Luzern unter Leitung von R. Tognoni sollten nicht in Vergessenheit geraten.

 Das jetzt bestehende Diesel-Holzgassystem sollte verbessert werden durch mehr Betriebssicherheit, weniger Wartung, kleineren Treibstoffverbrauch, einfacheren Umbau von Diesel- auf Diesel-Holzgasbetrieb sowie durch Verwendung von Holzschnitzeln anstelle von Holzklötzchen.

2. Wie funktioniert eine Holzgasanlage?

Um Holzgas herzustellen, das sich für den Betrieb von Motoren eignet, braucht es eine Holzgasanlage, deren Hauptbestandteile ein Gasgenerator, ein Reiniger, ein Kühler und ein Mischer sind (Abb. 2).

Im Generator bildet sich Holzgas. Dieses wird zunächst durch den Zyklonvorabscheider geleitet, in dem die schwereren Russteilchen abgetrennt werden. schliessend durch den Kühler, in welchem eine Absenkung der Temperatur erfolgt. dann durch den Feinfilter, in dem die feinen Russteilchen und Schwebstoffe abgeschieden werden, und schliesslich durch den Mischer, in welchem das Holzgas mit der angemessenen Menge Luft vermischt wird. Das Gas-Luftgemisch strömt dann durch die Drosselklappe, bevor es in den Motor eingesogen wird.

3. Anwendung am Dieselmotor

Die Umstellung von Dieselmotoren auf Generatorgasbetrieb kann nach zwei verschiedenen Systemen erfolgen:

- a) Voller Generatorgasbetrieb mit elektrischer Fremdzündung, ohne Zusatz von flüssigem Brennstoff.
- b) Diesel / Gas-Betrieb (Mischgas-Betrieb) mit Kompressionszündung, das heisst: mit Generatorgas als Haupttreibstoff und Dieselöl als Zündtreibstoff.

Die Umstellung auf vollen Generatorgasbetrieb (a) bedingt grosse Eingriffe in den Dieselmotor. Die Kompressionszündung muss durch eine elektrische Zündung ersetzt und das Kompressionsverhältnis auf ein für das Holzgas angemessenes Niveau gesenkt werden. Darüber hinaus muss die Einspritzpumpe demontiert und durch eine Zündanlage ersetzt sowie ein Gasmischer eingebaut werden.

Die in der Schweiz angewendete Alternativlösung gegenüber dem vollen Generatorgasbetrieb ist der **Diesel/Gasbetrieb** (b), bei welchem die Umbauarbeiten bedeutend billiger und einfacher sind, indem die Kompressionszündung beibehalten wird.

Bei dieser Methode wird das Generatorgas dem Ansaug-System des Motors zugeführt, mit Frischluft gemischt und in den Verbrennungsraum eingesogen. Während des letzten Teils des Kompressionstaktes wird eine kleine Menge Dieselöl eingespritzt, welches sich durch die Kompressionshitze sofort entzündet und seinerseits das Generatorgas-Luftgemisch in Brand setzt.

4. Welche Aenderungen sind am Motor nötig?

Die wesentlichen Aenderungen am Motor bei Diesel-Gas-Betrieb betreffen die Einspritzpumpe, das Ansaugrohr, allenfalls die Einspritzdüsen, den Einspritzzeitpunkt und die Motorkühlung.

Das Ansaugrohr des Motors wird mit einem Gasmischer versehen.

Für eine sichere Zündung und eine genügende Kühlung der Einspritzdüsen ist eine Treibstoffmenge erforderlich, die etwa der

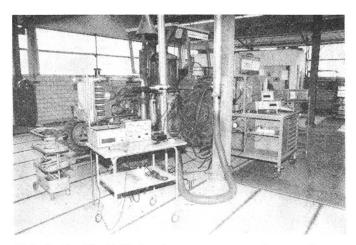


Abb. 3: Exakte Prüfstandmessungen ergänzen die Praxiseinsätze.

normalen Leerlaufmenge bei Dieselbetrieb entspricht. Damit die Einspritzpumpe diese Zündölmenge über den ganzen Drehzahlbereich liefern kann, muss sie umgestellt werden.

Der Einspritzzeitpunkt muss im allgemeinen mehr vorverstellt werden als bei reinem Dieselbetrieb. Der Grund dafür liegt an der niedrigeren Verbrennungsgeschwindigkeit des Generatorgases. Bei der Einstellung muss jedoch ein Kompromiss zwischen maximaler Leistung, klopffreiem Lauf und guten Starteigenschaften geschlossen werden (Abb. 3).

Durch den dem Wasserkühler vorgeschalteten Gaskühler wird die Wasserkühlung des Motors zusätzlich belastet. Dadurch kann eine Verstärkung der Motorkühlung notwendig werden.

5. Ergebnisse

Der Motor arbeitete während der ganzen Versuchsdauer ohne grössere Störungen. Die bei heissem Wetter und grosser Belastung anfänglich aufgetretenen Klopferscheinungen konnten mit einer verstärkten Motorkühlung behoben werden. Die Leistung am Motor mit maximal 25 kW (34 PS) bei 2000 U/min am Motor lag für die untersuchte Motorgrösse (Hubraum 2,95 Liter)

im üblichen Rahmen. Gegenüber reinem Dieselbetrieb bedeutet dies eine Leistungseinbusse von etwa 25%.

Der Gasholzverbrauch von durchschnittlich 13,4 kg/h Holzklötzchen oder Hackholz kann als normal bezeichnet werden. Er variiert stark und wird vor allem durch die Belastung des Gasgenerators, die Holzsorte (Hart- oder Weichholz) sowie vom Traktorfahrer beeinflusst. Im Schnitt ersetzen 4,5 kg Holz einen Liter Diesel-Treibstoff.

Der Verbrauch an Zündöl betrug durchschnittlich 1,2 l/h, das heisst etwa 30% des Verbrauches bei normalem Dieselbetrieb. Dieser Verbrauch ist vor allem im Teillastbetrieb hoch, dürfte jedoch schwer zu senken sein, ausser man würde die Nenndrehzahl des Motors tiefer ansetzen, was aber aus Rücksicht auf die zapfwellengetriebenen Arbeitsgeräte nicht möglich ist. Im weiteren hat auch die Fahrweise einen erheblichen Einfluss auf den Zündölverbrauch.

Ein abnormaler Motorölverbrauch konnte nicht festgestellt werden. Der Prüfbericht der EMPA über die Oelprobe, welche nach 50 Holzgasbetriebsstunden genommen wurde, zeigte ein günstiges Ergebnis. Oelwechselintervalle von 100 Betriebsstunden können nach Angaben des Motorherstellers empfohlen werden.

Der Schwelwasseranfall hängt vor allem stark von der Auslastung des Generators ab und beträgt durchschnittlich 10% des Holzgewichtes. Laut Untersuchungsbericht der EAWAG sollten kleinere Mengen Schwelwasser ohne Schadenfolge der Gülle beigemischt werden können.

Der neu eingesetzte Gasfilter hat sich bezüglich Gasreinigung gut bewährt. Das Reinigen des Filtereinsatzes soll alle 20 bis 30 Betriebsstunden durch Ausklopfen oder Auswaschen geschehen.

Gasholz: Holzklötzchengemisch ⅓ Tanne und ²/₃ Buche sowie Hackholz in der Schnittlänge von 4 bis 5 cm eignen sich gut für die Holzvergasung, das letztere insbesondere dann, wenn Astholz unter 2 cm Durchmesser vor dem Hacken ausgeschieden wird.

Die Holzkosten je Liter Treibstoffersatz belaufen sich bei Klötzchenholz auf etwa Fr. 1.—, bei Hackholz auf etwa Fr. —.60. Werden noch die Mehrkosten für den Betrieb der Gasgeneratoranlage (Amortisation, Reparatur, Bedienung etc.) dazugerechnet, so kostet 1 Liter ersetzten Dieseltreibstoff bei Klötzchenbetrieb rund Fr. 2.40 und bei Hackholzbetrieb zirka Fr. 2.—.

Der Anbau der Generatorgasanlage ist wegen der vielseitigen Verwendbarkeit des Traktors heute sehr schwierig geworden. Als einzige Anbaumöglichkeit für den Gasgenerator bietet sich nach wie vor der seitliche Freiraum zwischen Vorder- und Hinterrad an. Bei Traktoren mit nur Hinterradantrieb genügt der Freiraum auch für den seitlichen Fahreraufstieg. Bei Allradantrieb werden die Platzverhältnisse wegen der grösseren Vorderräder bereits sehr knapp. An Traktoren der neusten Entwicklung mit integrierten Fahrerkabinen ist der Anbau von Gasgeneratoren ohne umfangreiche Abänderungen am Traktor unmöglich. Die Generatorgasanlage weist betriebsbereit ein Gewicht von zirka 270 kg auf. Infolge des seitlichen Anbaues am Traktor wird der Schwerpunkt um etwa 12 cm zur Seite verschoben. Dadurch erhöht sich die Kippgefahr des Traktors bei Fahrten an Hanglagen.

6. Schlussfolgerungen

Nach der dreijährigen, nun mehr abgeschlossenen Versuchsperiode können folgende Schlussfolgerungen gezogen werden:

Der Versuchstraktor konnte soweit entwikkelt werden, dass er in allen landwirtschaftlichen Einsatzbereichen betriebssicher arbeitet.

Die Beschaffung von Holz als dezentralisiert anfallender, regenerierbarer Rohstoff dürfte für Landwirtschaftsbetriebe keine unüberwindlichen Hindernisse bereiten.

Im Hackholz ist eine Aufbereitungsart gefunden worden, die von den Landwirten dezentralisiert und kostengünstig durchgeführt werden kann.

Im Vergleich zum Traktor mit normalem Dieselbetrieb weist demgegenüber der Dieselholzgasbetrieb folgende Erschwernisse und Nachteile auf:

- Die Beschaffung und die Aufbereitung von Gasholz sind arbeitsaufwendig.
- Die Betriebsstoffkosten für die am Traktor nutzbare Kilowattstunde sind derzeit rund doppelt so hoch wie bei reinem Dieselbetrieb.
- Dieseltreibstoff ist trotzdem notwendig (Zweistoffbetrieb).
- Eine Motorleistungseinbusse von zirka 25% muss in Kauf genommen werden.
- Auf dem Fahrzeug lässt sich nur eine sehr beschränkte «Treibstoffreserve» mitführen.
- Platzbedarf für die gesamte Anlage am Traktor. Die Anbaumöglichkeit für gewisse Zusatzgeräte ist erschwert, eventuell sogar verunmöglicht.
- Durch das zusätzliche, seitlich angebrachte Gewicht am Traktor wird die Kippgefahr erhöht.
- Vermehrte, unbequeme und schmutzige Wartung.
- Vergiftungs- und Brandgefahr.
- Der Gesamtwirkungsgrad ist um rund einen Drittel geringer als beim konventionellen Dieselmotor.

Aufgrund dieser Nachteile erscheint es als wenig aussichtsreich, dass das untersuchte Diesel-Holzgasprinzip als langfristige Energie-Alternative für den Betrieb von Landwirtschaftstraktoren grosse Bedeutung erlangen könnte.

Hingegen könnte dieses als funktionstüchtig zu betrachtende System bei einem kurzbis mittelfristigen gänzlichen Ausfall der Energiezufuhren und beim Fehlen anderer Alternativen zum Strecken der Dieselölvorräte durchaus in Betracht gezogen werden. In diesem Fall müsste man sich auf bestimmte, für den Umbau gut geeignete, grössere Traktortypen konzentrieren.

Eine weitere zukünftige Möglichkeit zur Nutzung des Holzgassystems ist im Stationärbetrieb in Kombination von Gasmotoren mit Wärmepumpe oder mit Elektrogenerator (Wärme-Kraft-Koppelung) zu sehen, weil hier mehrere der weiter oben aufgezählten Nachteile wegfallen würden. Um einen guten Gesamtwirkungsgrad zu erzielen, muss allerdings vorausgesetzt werden, dass sich die anfallende Abwärme jederzeit voll nutzen lässt.

Hinweis:

Ein ausführlicher Untersuchungsbericht erscheint in der Schriftenreihe Nr. 12 der FAT, 8355 Tänikon.

Nachdruck der ungekürzten Beiträge unter Quellenangabe gestattet.

FAT-Mitteilungen können als Separatdrucke in deutscher Sprache unter dem Titel «Blätter für Landtechnik» und in französischer Sprache unter dem Titel «Documentation de technique agricole» im Abonnement bei der FAT bestellt werden. Jahresabonnement Fr. 27.—. Einzahlungen an die Eidg. Forschungsanstalt für Betriebswirtschaft und Landtechnik, 8355 Tänikon, Postcheck 30 - 520. In beschränkter Anzahl können auch Vervielfältigungen in italienischer Sprache abgegeben werden.