Zeitschrift: Landtechnik Schweiz Herausgeber: Landtechnik Schweiz

Band: 38 (1976)

Heft: 6

Artikel: Technik der Milchkühlung

Autor: Flückiger, E.

DOI: https://doi.org/10.5169/seals-1070590

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

4. SVLT-Vortragstagung vom 21.11.1975 in Luzern

Technik der Milchkühlung

Referat von Dr. E. Flückiger, Eidg. Forschungsanstalt für Milchwirtschaft, Liebefeld / Bern

1. Bedeutung der Kühlung

Die Qualitätsförderung verfolgt im Bereiche der Milchgewinnung das Ziel, die Milch bis zur kontrollierten Weiterverarbeitung möglichst in dem Zustande zu erhalten, in dem sie das gesunde Euter verlässt. Nach dem Verlassen des Euters ist die Milch vor allem der Gefahr ausgesetzt, durch mechanische und bakteriologische Einwirkungen geschädigt zu werden. Die schonende Behandlung der Milch und die Tiefhaltung ihrer Keimzahl sind deshalb besonders wichtig. Die Keimzahl der Milch hängt einerseits vom Grad der bakteriellen Verunreinigung bei der Gewinnung und andererseits vom Ausmass der Vermehrung der Verunreinigungskeime nach der Gewinnung ab. Die Tiefhaltung der bakteriellen Verunreinigung der Milch ist primär eine Reinigungsfrage. Der Zweck der Kühlung besteht darin, zu verhindern, dass sich Keime, die auch unter günstigen, hygienischen Bedingungen in die Milch gelangen, bis zur Ablieferung wesentlich vermehren können. Wichtig ist dabei die Erkenntnis, dass die Milch auch in tiefgekühltem Zustand umso schneller verdirbt, je höher ihre Keimzahl zu Beginn der Kühlung war.

Tabelle 1: Einfluss der Anfangskeimzahl der Milch auf die Vermehrung während der Kühllagerung (Forster)

Lager- temperatur			Gesamtk		
	° C	frisch	nach 24 Std.	nach 48 Std.	nach 72 Std.
ca.	4	4 300	4 100	4 500	8 400
ca.	4	40 000	88 000	121 800	186 000
ca.	4	135 000	281 000	538 000	750 000
ca.	10	4 300	13 900	127 000	5,7 Mio
ca.	10	40 000	177 400	831 600	1,7 Mio
ca.	10	135 000	1,2 Mio	13 Mio	25,6 Mio

Physikalische Hinweise

Die Physik kennt den Begriff «Kälte» nicht. Die physikalische Temperaturskala nach Kelvin hat deshalb auch keine negativen Werte (Abb. 1). Die Milch-

kühlung ist also ein Vorgang, bei dem Wärmeenergie entzogen und nicht Kälteenergie zugeführt wird.

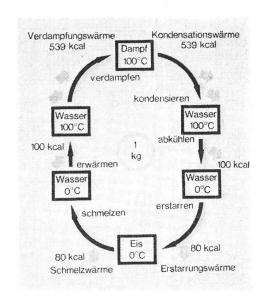


Abb. 1: Kelvin- und Celsius-Temperaturskala.

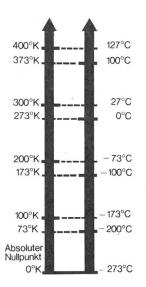


Abb. 2: Wärmeinhalt des Wassers in Abhängigkeit vom Aggregatzustand.

Die Temperatur ist das Mass für den Wärmezustand und die Kalorie (neuerdings das Joule, 1 cal = 4,187 J) die Einheit für die Wärmemenge eines Stoffes. Die spezifische Wärme gibt die Wärmemenge an, die zuzuführen ist, um 1 kg eines Stoffes um 1° C zu erwärmen. Die gleiche Wärmemenge muss

bei der Kühlung entfernt werden. Wasser hat eine spez. Wärme von 1,0 und Milch eine solche von 0,94. Praktisch kann man damit rechnen, dass der Milch pro kg und °C Temperatursenkung 1 kcal entzogen werden muss. Sollen z. B. 100 kg Milch von 35 auf 4° C gekühlt werden, so ist eine Wärmemenge von 3100 kcal abzuführen.

Wärme bewegt sich ohne äusseren Zwang nur von wärmeren zu weniger warmen Körpern. Dafür gibt es 3 Möglichkeiten: die Wärmeleitung, die Wärmeströmung (Wärmekonvektion) und die Wärmestrahlung (ähnlich der Lichtstrahlung). Für die Milchkühlung ist die durch Rühren, Umwälzen oder Berieseln künstlich erzeugte Strömung (Konvektion) die wichtigste Form der Wärmeübertragung.

Die Wärmemenge, die pro Zeiteinheit abgeführt werden kann, hängt primär ab:

- von der Temperaturdifferenz zwischen der Milch und dem Kühlmedium und
- von den Regeln des Wärmedurchganges durch eine Trennwand (Flächen- und Strömungsverhältnisse sowie Dicke und Wärmeleitung der Trennwand).

Arbeitsweise der Kältemaschinen

Nach einem physikalischen Gesetz nimmt jede Flüssigkeit beim Uebergang vom flüssigen in den gasförmigen Zustand Wärme auf (Verdampfungswärme) und alle Gase geben die Wärme bei der Rückkehr in den flüssigen Zustand wieder ab (Kondensationswärme) (Abb. 2 und 3).

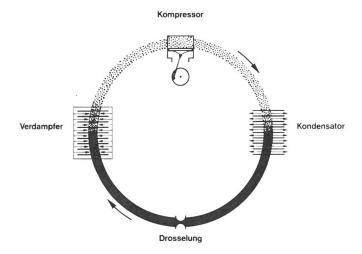


Abb. 3: Kreislauf des Kältemittels in einer Kühlanlage.

Wählt man nun eine Flüssigkeit, die unter atmosphärischen Druck bei einer Temperatur siedet, die tiefer ist als diejenige, die erzeugt werden soll, so wird sie bei dieser tiefen Temperatur unter Wärmeaufnahme aus der Umgebung verdampfen (Verdampfer). Saugt man den Dampf danach an und setzt ihn unter Druck (Kompressor), so wird er schon bei Abkühlung auf Raumtemperatur wieder flüssig (Kondensator) und gibt dabei die aufgenommene Verdampfungswärme wieder ab (Kondensationswärme).

Basiszahlen über Milchgewinnung und - sammlung (1973	Basiszahlen	über Milchgewinnung	und – sammlung	(1973)
--	-------------	---------------------	----------------	--------

Milchproduzenten	92'875
Milchkühe	889'000
Verkehrsmilch, Mio q	27
Kühe pro Besitzer	9,6
Milchleistung pro Kuh und Tag, kg	10
Betriebe mit über 10 Kühen, %	38
Kühe in Betrieben mit über 10 Kühen, %	66
Käsereien (Unionskäse)	1'313
Sammelstellen	3'130
æ Entfernung (Produzent – Sammelstelle), m	800
Lieferanten pro Sammelstelle	19
Milch pro Sammelstelle und Tag, kg	1'600
Milch pro Lieferant und Tag, kg	85
Milch pro ha Kulturland ohne Wald, kg	1'338
Ablieferung 2x täglich, %	90
Ablieferung 1x täglich, %	10
Tiefkühlung beim Produzenten, %	3
Kannenkühler, %	45
Tauchkühler, %	40
Kühlwannen , %	15
Milch, verkäst, %	41
Konsummilch und Joghurt, %	25
Konsumrahm, %	11
Milch, verbuttert %	16

Abb. 4

Entspannt man dann die immer noch unter Druck stehende Flüssigkeit auf normalen Druck (Einspritzoder Drosselventil), so kann das Verdampfungs- und Verflüssigungsspiel mit Wärmeaufnahme und Wärmeabgabe von neuem beginnen.

Uebersicht über die Kühlverfahren

Grundsätzlich ist zwischen der Vorkühlung der Milch einerseits und der Tiefkühlung andererseits zu un-

Uebersicht über d	ie wichtigsten Kühlverfah	ren
Verfahren	Geräte	Milchbehälte
1. Kühlung n	nit fliessendem Kaltwasser (Vor	rküh lung)
Badküh lung	Becken mit Zu- und Ablauf	Kannen
Berieselung	Kühlringe , Rührkühler	Kannen, Hofbehälter
Durchfluss	Plattenkühler	Kannen , Hofbehälter
2. Indirekte Kühl	ung mit Kältemaschinen (1	Fiefküh lung)
Badkühlung	Eiswasserbecken	Wannen , Kannen
Berieselung	Kühlringe, Rührkühler Behälter mit Kühlmantel	Kannen, Hofbehälter Wannen, Hofbehälter
Durchfluss	Plattenkühler	Kannen, Hofbehälter Wannen
3. Direkte Kühlung	mit Kältemaschinen (Tiefki	ihlung)
Verdampfer direkt in Milch eingetaucht	Tauchkühler	Kannen, Hofbehälter Wannen
Verdampfer in Kontakt mit Behälterwand	Kühlwannen Kühltanks	Wannen, Tanks

Abb. 5

terscheiden (siehe Uebersicht über die wichtigsten Kühlverfahren) (Abb. 5).

Unter Vorkühlung wird die Kühlung der Milch mit fliessendem Kaltwasser bis auf 3° C über dessen Temperatur verstanden (z. B. Kühlung auf 15°) bei einer Wassertemperatur von 12 C°).

Unter Tiefkühlung wird die Kühlung der Milch mittels Kältemaschinen auf 4°C verstanden. Die 4°C sollen in 3 Stunden erreicht sein und bis zur Ablieferung automatisch aufrechterhalten werden.

Vor- und Tiefkühlung lassen sich kombinieren. Bei zweimal täglicher Ablieferung genügt eine Vorkühlung der Milch, bei weniger häufiger Ablieferung ist eine Tiefkühlung erforderlich.

Vorkühlung mit fliessendem Kaltwasser

Die wichtigsten Vorkühlverfahren sind (Abb. 6 und 7):

— die Kühlung im Brunnentrog (Badkühlung)

Leitungswasser

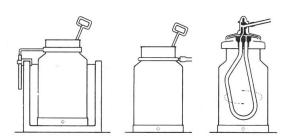


Abb. 6: Kannenkühlung: Brunnentrog, Kannenring, Kannenrührkühlung.

- die Kühlung mit Kannenring (Berieselungskühlung)
- die Kühlung mit Kannenrührkühler (Berieselungskühlung)
- die Kühlung mit Plattenkühler (Durchlaufkühlung).

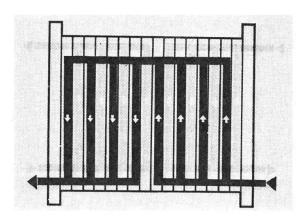


Abb. 7: Plattenkühler.

Am wenigsten wirksam ist die Kühlung im Brunnentrog und am wirksamsten die Kühlung mit dem Plattenkühler:

Kühldauer und Wasserverbrauch für die Vorkühlung von 40 I Milch auf 3° C über Kühlwassertemperatur

Verfahren	Kühldauer relativ min		Wasser verbrauch pro I Milch
Brunnentrog (mit Rühren)	100	110	11
Kannenring (mit Rühren)	73	80	8
Kannenrührkühler	36	40	4
Plattenkühler	9	10	3

Die Wirksamkeit der Vorkühlung wird beeinflusst:

- von der Intensität des Rührens der Milch in den Kannen
- von der Strömung des Wassers auf der Kannenaussenseite im Brunnentrog
- von der Benetzung der Kannenoberfläche bei den Berieselungsverfahren und
- von der gleichmässigen Beschickung mit Milch bei den Plattenkühlern.

Der Wasserdurchsatz sollte bei Kannenringen und Kannenrührkühlern auf 5-6 Minutenliter pro Gerät gedrosselt werden. Bei Becken und Trögen wird je nach Grösse mit einem Mindestdurchsatz von 10 bis 20 Minutenlitern Wasser gerechnet.

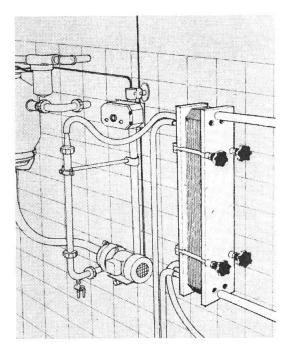


Abb. 8: Plattenkühler in Verbindung mit Rohrmelkanlage.

Die Plattenkühler bestehen aus Plattenpaketen. Innerhalb der Pakete fliessen Milch und Wasser im Gegenstrom. Die Kühlleistung kann durch Aenderung der Plattenzahl und -anordnung wechselnden Anforderungen angepasst werden. Plattenkühler kommen nur für Betriebe mit Rohrmelkanlagen in Frage, wo sie ohne besonderen Aufwand zusammen mit der Melkanlage gereinigt werden können (Abb. 8).

Direkte und indirekte Tiefkühlung

Für die Tiefkühlung der Milch werden das System der direkten Kühlung ohne Kälteträger und das System der indirekten Kühlung mit Eiswasser als Kälteträger angewendet. Die dazu erforderlichen Kältemaschinen arbeiten bei beiden Systemen wie vorher beschrieben.

Bei der direkten Kühlung stehen die Austauschflächen des Verdampfers in unmittelbarem thermischem Kontakt mit der Milch oder dem Milchbehälter. Die für die Verdampfung des Kältemittels notwendige Wärme wird also direkt aus der Milch bezogen.

Bei der indirekten oder Eiswasserkühlung befindet sich der Verdampfer in einem Eiswasserbad. Auf ihm wird ein Eisvorrat angesammelt. Die Kühlung der Milch erfolgt durch Umwälzung des Eiswassers

Vergleich zwischen indirektem und direktem Kühlsystem

Merkmal	Kühlung	
V	indirekt	direkt
Anschlusswert , kW	niedriger	höher
Maschinengrösse	kleiner	grösser
Kälteleistung pro 100 l Milch	700 kcal/h	1'700 kcal/l
Maschinenlaufzeit	länger	kürzer
Stromverbrauch	höher	niedriger
Nachtstromausnutzung	mehr	weniger
Kälteverluste	grösser	kleiner
Verdampfungstemperatur	ungünstiger	günstig
Kühlgeschwindigkeit (anfangs)	grösser	kleiner
Kältevorrat	gro s s	fehlt
Wasser- Milch- Verhältnis	2:1	entfällt
Erweiterungsmöglichkeiten	grösser	geringer
Wartungsanforderungen	grösser	kleiner
Eisbildung in Milch (Gefahr)	keine	besteht

Abb. 9

und Abschmelzen des Eisvorrates. Beide Systeme haben ihre Vor- und Nachteile (siehe nebenstehenden Vergleich) (Abb. 9).

Anforderungen an Behälterkühlanlagen

Die Anforderungen an Behälterkühlanlagen werden zur Zeit von einer internationalen Arbeitsgruppe (CICICI) neu festgelegt. Es folgt ein Auszug aus dem letzten, von der Gruppe zur Vernehmlassung vorgelegten Normenentwurf.

Kühlzeit. Die Kühlung eines Gemelkes von 35 auf 4 $^{\circ}$ C darf bei einer zwischen +5 und $+32{^{\circ}}$ C liegenden Umgebungstemperatur höchstens 3 Std.

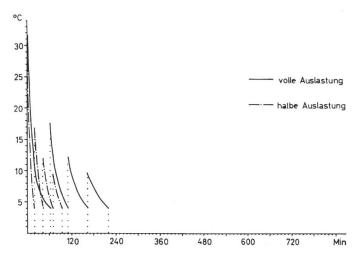


Abb. 10: Kühlkurven (4 Gemelke) indirekte Kühlung, grosser Eisvorrat.

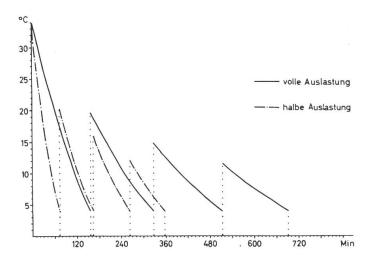


Abb. 11: Kühlkurven (4 Gemelke) direkte Kühlung (ohne Kältereserve).

dauern. Nach Einfüllen des zweiten Gemelkes darf die Kühlung des Gesamtvolumens von 10 auf 4° C höchstens 90 min dauern.

Eisvorrat. Der Eisvorrat muss bei Anlagen für 2 Gemelke zur Kühlung von 60% und bei Anlagen für 4 Gemelke zur Kühlung von 30% des Behälterinhaltes ausreichen. Eine gute Kontrolle des Eisvorrates, ein leichtes Auswechseln des Eiswassers und eine genügende Berstsicherheit der Behälter bei störungsbedingtem Einfrieren des gesamten Wassers) müssen gewährleistet sein.

Eisbildung in der Milch. Bei einer Milchmenge, die 10 bis 100% des nutzbaren Behältervolumens ausmacht, darf keine Eisbildung auftreten. Milchtemperatur. Die mittlere Milchtemperatur darf zwischen 2 Kühlperioden nicht über 4 und die höchste Milchtemperatur nicht über 9° C ansteigen.

Isolation. Eine dem Nutzvolumen des Behälters entsprechende Milchmenge darf sich bei ausgeschalteter Kältemaschine und bei einer Umgebungstemperatur von 32°C in 4 Stunden höchstens von 4 auf 5°C erwärmen.

Ausbutterung. Das Rührwerk soll die Milch in 2 min so wirksam mischen können, dass Fettgehaltsunterschiede von mehr als 0,1 g pro 100 g Milch nicht vorkommen. Dabei darf ein Ausbuttern des Milchfettes oder ein Schäumen der Milch nicht auftreten.

Temperaturanzeige. Der Thermometerfehler darf zwischen +2 und $+12^{\circ}$ C höchstens 1° C

betragen. Im Bereich von -10 bis $+70^{\circ}$ C wird eine schadlose Belastbarkeit verlangt.

Indirekte Kühlung mit Eiswasser

Die Kühlleistung der Eiswasseranlagen hängt nicht primär von der Kapazität der Kältemaschine ab. Massgebend sind vor allem:

- das Verhältnis der Milchmenge zur Eiswassermenge und zum Eisvorrat sowie
- die Abtauleistung (gemessen in Wärmeeinheiten, die pro Stunde durch Schmelzen des Eisvorrates nutzbar gemacht werden können).

Die Abtauleistung ist von der Eisoberfläche und von der durch die Eiswasserpumpe erzeugten Strömung abhängig. Alle Eiswasseranlagen müssen über eine gute Eiswasserpumpe und eine zuverlässige Steuerung des Eisvorrates verfügen. Ein Eisansatz von mehr als 2–3 cm Dicke ist im allgemeinen unwirtschaftlich. Eisblockbildung führt ausserdem wegen der Verkleinerung der Oberfläche zu sehr schlechten Abtauleistungen.

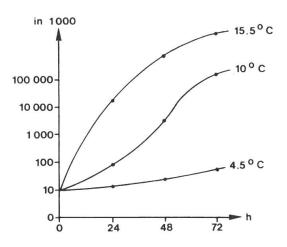


Abb. 12: Keimvermehrung in Abhängigkeit von der Temperatur.

Kannenkühlung in Eiswasserbecken (Abb. 13)

An Eiswasserbecken sind folgende Anforderungen zu stellen:

- einfache Reinigungsmöglichkeit (Wasserauslauf)
- gute wasserseitige Wärmeübertragung (Eiswasserpumpe)
- gleichmässige, vom Standort unabhängige Kühlung aller Kannen

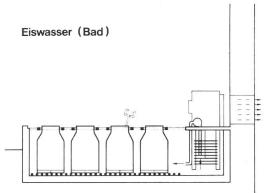


Abb. 13: Eiswasserbecken mit aufgesetztem Kühlaggregat.

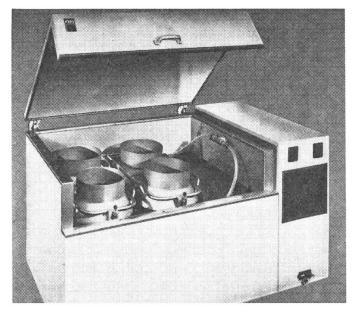


Abb. 14: Eiswasserbecken mit Deckel.

- genügende Kälteleistung auch nach Erneuerung des Eiswassers
- Vorhandensein einer Haltevorrichtung für leere Kannen
- Vorhandensein eines Kannenrostes (Bodenkühlung)
- gute Isolation (geringe Wärmeeinstrahlung)
 (Abb. 15)
- gute Kontrollmöglichkeit des Eisansatzes.

Die zahlreichen Spezialausführungen von Eiswasserbecken zielen vor allem auf eine Senkung der Kälteverluste (ca. 25%) und auf eine Verbesserung des wasser- und milchseitigen Wärmeaustausches ab (Abb. 14).

Eiswassergekühlte Wannen und Tanks

Sie bestehen aus dem Innen- oder Milchbehälter und einem isolierten Aussenbehälter. Das Eiswasser

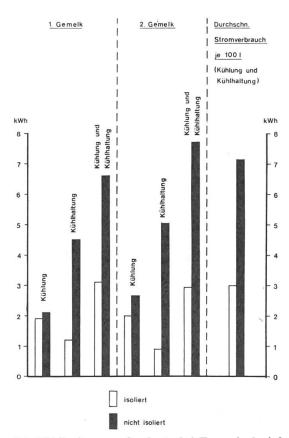


Abb. 15: Kühlhaltung erfordert viel Energie bei Aufbewahrung der Milch in nicht isolierten Behältern.

und der Verdampfer sind in der Regel im Raum zwischen diesen beiden Behältern untergebracht. Im Prinzip gibt es 2 Varianten: die Eiswasserberieselung und die Eiswasserumspülung des Innenbehälters. Bei der ersten Variante sind das Eiswasser und der Verdampfer meistens im wannenartigen unteren Teil des Zwischenraumes untergebracht. Eine Berührung zwischen Eiswasser und Milchbehälter besteht nur während der Berieselung des Behälters. Der Milchbehälter lässt sich also sehr gut mit warmen Lösungen reinigen (Abb. 16).

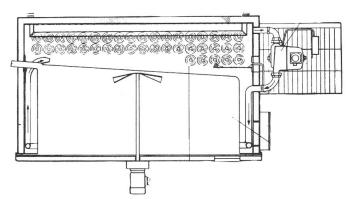


Abb. 16: Kühlwanne mit Eiswasserberieselung.

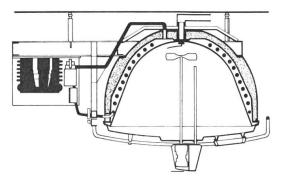


Abb. 17: Kühlwanne mit Eiswasserumspülung.

Bei der zweiten Variante ist der Zwischenraum in seiner ganzen Höhe dauernd mit Eiswasser gefüllt, das während des Kühlens durch die Eiswasserpumpe in eine möglichst turbulente Strömung versetzt wird (Abb. 17). Eine Reinigung mit warmen Lösungen ist in diesem Fall praktisch nicht möglich. Dafür bietet aber der Dauerkontakt des Milchbehälters mit dem Eiswasser sehr gute Voraussetzungen für die Kühlhaltung (Nachkühleffekt) der Milch. Der Eisvorrat und der flächenmässig günstige Wärmeaustausch (die ganze Oberfläche des Milchbehälters ist nutzbar) ermöglichen sehr kurze Kühlzeiten.

Direkte Kühlung

Unter vergleichbaren Bedingungen des Wärmeaustausches bestimmt bei der direkten Kühlung im wesentlichen die Leistung der Kältemaschine den Ablauf des Kühlvorganges, denn Kältereserven, wie bei der indirekten Kühlung, sind nicht verfügbar.

Tauchkühler (direkte Kühlung) (Abb. 18)

Der Verdampfer der Tauchkühler ist als Hohlzylinder ausgebildet und über flexible Schläuche mit der

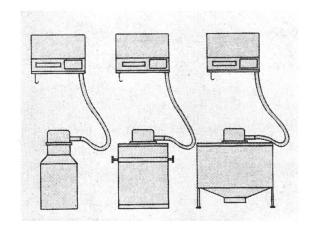


Abb. 18: Tauchkühler-Einsatzvarianten.

Kältemaschine verbunden. Er wird direkt in die Milch getaucht. Da die Verdampferfläche relativ klein ist, muss durch eine hohe Strömungsgeschwindigkeit am Zylinder für einen guten Wärmeübergang gesorgt werden. Dies geschieht mit einem hochtourigen Rührer (ca. 1300 U/min) im unteren Zylinderteil. Aufgrund der vorliegenden Ehrfahrungen sind folgende Punkte zu beachten:

- die Ausbutterungsgefahr steigt im Prinzip mit der Kühldauer, deshalb sind kurze Kühlzeiten anzustreben (ein 0,5 PS-Gerät kühlt z. B. 40 I Milch in ca. 1 Std. von 35 auf 4° C)
- zu geringe Eintauchtiefe erhöht die Gefahr der Butterung und Eisbildung, deshalb soll der Kühler erst eingeschaltet werden, wenn der Verdampfer ganz mit Milch bedeckt ist (Schaumbildung ist als ein Warnzeichen zu betrachten) (Abb. 19)

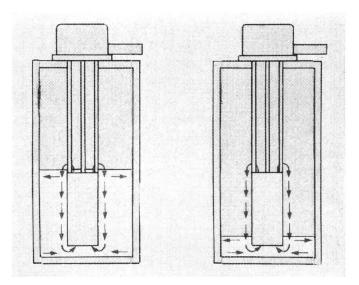


Abb. 19: Strömung der Milch am Zylinder (rechts zu wenig tief eingetaucht).

- die Gefahr der Eisbildung nimmt aus strömungstechnischen Gründen mit zunehmendem Behälterdurchmesser zu, deshalb sind weite Wannen für die Kühlung mit Tauchkühlern abzulehnen (Zusatzrührwerke befriedigen meistens nicht)
- um Temperaturschichtungen zu vermeiden, ist eine Nachrührautomatik vorteilhaft (das gilt auch für die übrigen Kühlgeräte)
- zur Erleichterung der Reinigung sollen die Verdampfer mit 65° C warmen Lösungen belastbar sein

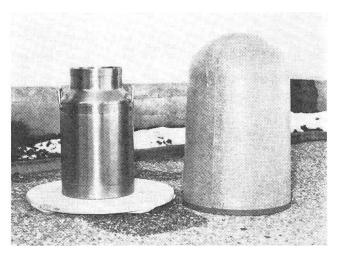


Abb. 20: Milchkanne mit Isolationshaube und Bodendeckel.

- zur Kühlhaltung der Milch in Kannen für ca.
 10 Std. eignen sich Isolierhauben (z. B. aus Schaumpolystyrol); ohne Isolation des Kannenbodens (Bodendeckel) ist die Wirkung der Hauben jedoch unbefriedigend (Abb. 21)
- für die Kühlung von 4 Gemelken im gleichen Behälter sind Tauchkühler wegen der starken mechanischen Belastung der Milch nicht zu empfehlen.

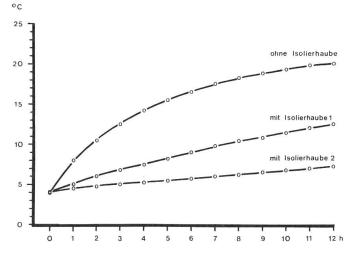


Abb. 21: Erwärmung der Milch mit und ohne Isolationshaube (1 ohne 2 mit Bodendeckel).

Wannen und Tanks (direkte Kühlung)

Bei den direkt gekühlten Wannen und Tanks besteht ein unmittelbarer thermischer Kontakt zwischen dem Verdampfer und dem Innen- oder Milchbehälter. Der Raum zwischen Innen- und Aussenbehälter ist mit Isolationsmaterial (z. B. Polyurethanschaum

ausgefüllt (Abb. 22). Der Verdampfer befindet sich meistens am Boden der Wanne, weshalb flache Wannenformen bevorzugt werden. Ein wirksames Rühren der Milch ist nicht nur zur Optimierung des Wärmeüberganges, sondern auch zur Verhinderung des Anfrierens der Milch unerlässlich. Die Anlage darf erst eingeschaltet werden, wenn die hiefür nötige Behälterfüllung erreicht ist. Grossflügelige Rührwerke (Flügellänge etwa halber Behälterdurchmesser) mit Drehzahlen von 40–60 pro min werden den Erfordernissen des Wärmeaustausches und der Milchschonung besser gerecht als kleinflügelige und hochtourige. Um ein schnelles und vollständiges Entleeren der Wannen zu gewährleisten, ist ein ausreichendes Gefälle des Wannenbodens nötig (siehe Abb. 22).

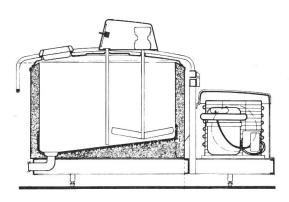


Abb. 22: Direkt gekühlte Wanne.

Reinigung und Entkeimung

Es gelten die bekannten Grundsätze:

- 1. Reinigung kommt vor Kühlung!
- 2. Sofort spülen, ehe Milchreste antrocknen können.
- 3. Kombiniert reinigen und entkeimen, wo immer möglich mit mindestens 60° C warmen Lösungen.
- Sauer reinigen einmal pro Woche zur Vermeidung von Belagsbildungen und des Aufkommens einer «Betriebsflora».
- 5. Entfernung aller Reinigungs- und Entkeimungsmittelreste durch gutes Nachspülen.
- 6. Regelmässige Kontrolle der milchberührten Oberflächen nach maschineller Reinigung.
- 7. Manuelle Reinigung aller Teile, die von der Reinigungsautomatik nicht erfasst werden.

Reinigungsautomaten werden über den Auslaufstutzen, das Rührwerk oder über einen zentralen Sprühkopf an die Wanne oder den Tank angeschlossen (Abb. 23). Die Dosierung der Mittel, die Temperatur

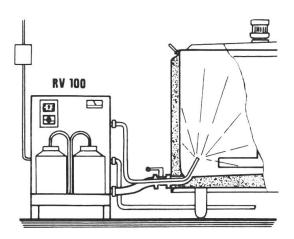


Abb. 23: Automatische Tankreinigung über den Auslaufstutzen.

der Lösungen und der zeitliche Ablauf der Reinigung sind voll programmierbar, bedürfen aber einer sorgfältigen Ueberwachung.

Energiebedarf

Der Energieverbrauch für die Kühlung von 100 kg Milch ist von der abzuführenden Wärmemenge, von der Anlagengrösse, von den Kälteverlusten und von einer Anzahl spezieller Betriebsbedingungen abhängig. Einen erhöhten Energieverbrauch bewirken vor allem:

- steigende Umgebungstemperaturen (falsche Aufstellung der Anlage und schlechte Lüftung, siehe Abb. 24)
- verschmutzte Kondensatoren bei luftgekühlten Anlagen

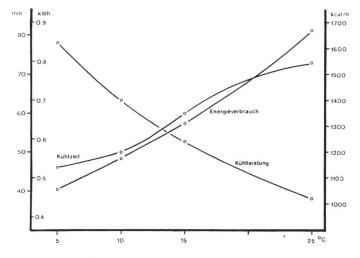


Abb. 24: Einfluss der Umgebungstemperatur auf die Kühlleistung und den Energieverbrauch.

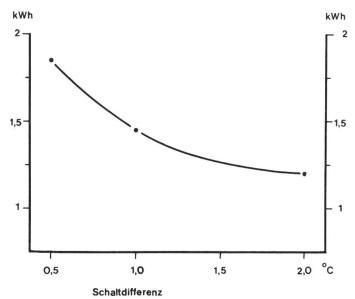


Abb. 25: Einfluss der Schaltdifferenz auf den Energieverbrauch.

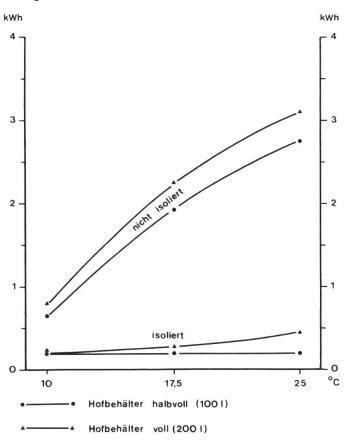


Abb. 26: Einfluss der Isolation auf den Energieverbauch.

- fehlende oder ungenügende Isolation der Milchbehälter (Abb. 26)
- unnötig häufiges Schalten des Thermostaten (Thermostat defekt oder Schaltdifferenz zu knapp eingestellt) (Abb. 25)

Motor des Kompressors		ressors	Kältemaschinen		spez. Energie -
PS	W	wg*	Kälteleistung kcal/h	Energieverbrauch Wh	verbrauch Wh/kcal
1/6	122	0,6	250 - 300	200	0,72
1/5	147	0,6	300	225	0.75
1/4	184	0,6	400 - 470	300	0,68
1/3	243	0.7	475 - 600	350 - 425	0.72
1/2	368	0.7	900-1300	525 - 750	0.57
3/4	552	0.7	1200-1750	800 - 1040	0,62
1	736	0.7	2200-2500	1050 - 1120	0,46
1, 5	1104	0,8	2800-3200	1300 - 1400	0.45
2	1472	0.8	4400-5000	1500 - 2000	0.37
3	2208	0.9	5000-6000	2200-2500	0.42

*WG = Wirkungsgrad

Abb. 27: Einfluss der Maschinengrösse auf den Energieverbrauch.

- zu starker Eisansatz (über 3 cm dick) bei Eiswasseranlagen
- schlechte Auslastung von Anlagen mit von der Milchmenge weitgehend unabhängigen und relativ hohen Kälteverlusten.

Hinweise zur Wahl des Kühlverfahrens

Primär stellt sich die Behälterfrage, d. h. ob in Kannen, in mobilden Grossbehältern oder in stationären Wannen bzw. Tanks gekühlt werden soll. Für die Beantwortung dieser Frage sind massgebend (Abb. 28):

- das Milchsammelsystem
- die Betriebsgrösse, das Melksystem und die Milchproduktion
- die voraussichtliche Entwicklung hinsichtlich Produktion, Sammlung und Verwertung der Milch und
- die Mitsprache des Beratungsdienstes und Milchverwerters.

Es ist im allgemeinen weniger wichtig, ein bestimmtes Kühlsystem (direkte oder indirekte Kühlung) zu wählen, als ein wirklich bewährtes Fabrikat, bei dem ein zuverlässiger Kundendienst gewährleistet ist.

Die Anschaffung einer Anlage für die Milchkühlung zählt zu den längerfristigen Investitionen, die primär der Qualitätserhaltung der Milch zu dienen haben.

Um die Möglichkeiten der Tiefkühlung der Milch voll ausschöpfen zu können, muss man ihre Grenzen kennen. Die Kühlung kann keine Probleme lösen, die ihrer Natur nach Reinigungsprobleme sind. Mit der Vernachlässigung der Reinigung würde man die Mög-

Milchgewinnung und Milchkühlung

Abtransport	Eimermelk	anlagen	Rohrmelka	nlagen
der Milch	Vorkühlung	Tiefkühlung	Vorkühlung	Tiefkühlung
zweimal pro Tag in Kannen	Kühlbecken Kannenkühler	entfällt	Plattenkühler Kannenkühler	entfällt
einmal pro Tag in Kannen od. Grossbehälter	entfällt	Eiswasser – becken, Tauch kühler	entfällt, ev. mit Platten – kühler	Eiswasser- becken Tauchkühler Plattenkühler Kühlwanne Kühltank
einmal pro Tag mit Tank – wagen	entfällt	Tauchkübler mit Hofbehäl – ter od. Wanne Kühlwanne	entfällt, ev. mit Platten – kühler	Tauchkühler mit Hofbehäl- ter oder Wanne, Plattenkühle Kühlwanne Kühltank
alle 2 Tage mit Tankwagen	entfällt	Kühlwanne Kühltank	event. mit Plattenkühler	Kühlwanne Kühltank

Abb. 28

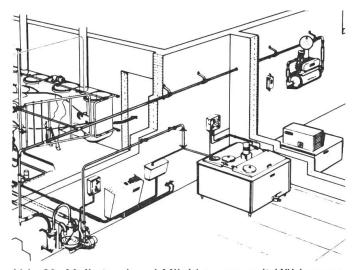


Abb. 29: Melkstand und Milchkammer mit Kühlwanne sowie getrenntem Maschinenraum.

lichkeiten der Kühlung nicht erweitern, sondern stark einschränken. Zur Erhaltung der Milchqualität müssen deshalb die saubere Milchgewinnung, die sorgfältige Reinigung und die schonende Kühlung zu einer lückenlosen Hygienekette verknüpft werden. Besonders wichtig ist die Verhinderung des Aufkommens einer kälteadaptierten Flora in der tiefgekühlten und kühlgelagerten Milch durch eine sorgfältige Reinigung der Kühlanlagen.