Zeitschrift: Landtechnik Schweiz Herausgeber: Landtechnik Schweiz

Band: 36 (1974)

Heft: 6

Artikel: Einflüsse von Klimafaktoren und Grasbestand auf den

Abtrocknungsverlauf von Rauhfutter

Autor: Luder, W.

DOI: https://doi.org/10.5169/seals-1070346

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

belle 5, fettgedruckte Zahlen). Die Möglichkeiten dazu liegen bei der Beschaffung von kombinierten Mais- und Rüben-Einzelkornsämaschinen bzw. im überbetrieblichen Einsatz.

5. Schluss

Aufgrund der Prüfstand- und Einsatzversuche sind folgende Vorteile der pneumatischen Einzelkornsämaschinen gegenüber denjenigen mit mechanischem Säsystem festzuhalten: Mit einem Särad bzw. einer

Säscheibe können alle Maiskaliber ohne Kornbeschädigung gesät werden. Dank den säbelförmigen Säscharen sowie dem relativ hohen Gewicht der Sägeräte lässt sich eine gleichmässige Sätiefe sogar in einem weniger günstigen Saatbett erreichen. Die Ablagegenauigkeit bei Maissaat kann je nach Fabrikat und Samenabstand auch bei höheren Fahrgeschwindigkeiten (6 bis 9 km/h) befriedigen.

Ausserdem ergeben sich folgende Nachteile: höhere Anschaffungs- und Einsatzkosten, Geräuschentwicklung des Gebläses und Bedarf eines stärkeren Traktors.

Einflüsse von Klimafaktoren und Grasbestand auf den Abtrocknungsverlauf von Rauhfutter

W. Luder

1. Einleitung

Viele Landwirtschaftsbetriebe gaben in den letzten Jahren die früher übliche Bodentrocknung des Winterfutters weitgehend auf. Neben der Silagebereitung nahmen verschiedene Varianten der künstlichen Trocknung stark an Bedeutung zu. Die grössere Unabhängigkeit vom Wetter und die im allgemeinen höhere Qualität des Grundfutters müssen aber oft mit beträchtlichen Energiekosten bezahlt werden. Ein einfaches Rechenbeispiel soll zeigen, welche Wassermengen bei verschiedenen Feuchtegraden bzw. TS-Gehalten mit dem Rauhfutter eingeführt werden:

Wassergehalte des Rauhfutters

(Netto-Ertrag 45 qTS/ha)

- Frischgut (15% TS)
$$\frac{45 \text{ q x } 85\%}{15\%}$$
 = 255 q/ha
- Anwelksilage (40% TS) $\frac{45 \text{ q x } 60\%}{40\%}$ = 67,5 q/ha

Der grosse Unterschied im Wassergehalt zwischen dem Frischgut und der Anwelksilage bedeutet, dass am Anfang des Trocknungsprozesses die weitaus grösste Wassermenge verdunstet. Deshalb bleibt beispielsweise für die Heubelüftung nur noch ein Bruchteil davon zur Verdunstung übrig. Allerdings ist zu bedenken, dass für den Wasserentzug aus fast trokkenem Futter wesentlich mehr Energie als beim Frischgut nötig ist.

An der FAT wird zur Zeit das Abtrocknungsverhalten des Rauhfutters auf dem Feld im Zusammenhang mit wichtigen Klimafaktoren untersucht. Dabei sind nicht allein Niederschlag oder Temperatur und Feuchtigkeit der Luft, sondern auch die Einflüsse der Grasbestände von Bedeutung.

2. Bewertung der Schönwettertage

Um den «Wert», das heisst das Abtrocknungsvermögen eines Schönwettertages zahlenmässig ausdrücken zu können, braucht es einen Massstab, an dem diese Grösse messbar ist.

Schönwettertage sind bekanntlich nicht allein durch eine hohe Sonnenscheindauer, sondern insbesondere durch erhöhte Temperaturen und eher tiefe relative Feuchtigkeiten der Luft gekennzeichnet. Letztere zwei Klimafaktoren haben bei der Abtrocknung des Rauhfutters zusammen mit dem Niederschlag die grösste Bedeutung. Trockene Luft kann bei gleicher Temperatur bis zur Dampfsättigung mehr Wasser aufnehmen als feuchte. Warme Luft erreicht den Sättigungspunkt später als kalte. Also bewirken hohe Temperaturen und tiefe Luftfeuchtigkeiten zusammen eine starke Vergrösserung des Wasseraufnahmevermögens.

Das sogenannte **Sättigungsdefizit** der Luft gibt an, wie gross ihr Wasseraufnahmevermögen (g Wasser pro m³ Luft) bei einer bestimmten Temperatur ist. Mit Hilfe einer Formel kann für jedes Zahlenpaar von Temperatur und Luftfeuchte das zugehörige Sättigungsdefizit berechnet werden.

Beispiele:	Temp. (°C)	rel. Luftf. (%)	Sättigungs- defizit (g/m³)
	10	95	0,47
	15	70	3,85
	20	50	8,64
	25	40	13,81
	30	35	19,71

Bei der Bewertung der Schönwettertage berechnen wir von morgens 09.00 Uhr bis abends 18.00 Uhr stündlich die Sättigungsdefizite der Luft und zählen sie zusammen. Die **Sättigungsdefizitsumme** über diese neun Stunden ist ein sehr gutes Mass der Abtrocknungswirkung des betreffenden Tages (Einheit $=\frac{9}{m^3}x$ h).

Die Sättigungsdefizitsumme von regenfreien Sommertagen kann etwa zwischen 30 und 130 Einheiten schwanken. Grosse Unterschiede von Tag zu Tag innerhalb einer Schönwetterperiode sind gar nicht selten. Eine Feststellung, die besonders für schöne Heuerntetage gilt, bestätigte sich im Verlaufe unserer Abtrocknungsversuche immer wieder: Die Luftfeuchtigkeit erreicht häufig erst am späten Nachmittag ihr Tagesminimum und schlägt etwa um 18 Uhr in einen raschen Anstieg um. Bedingt durch diesen charakteristischen Feuchteverlauf sind auch die Sättigungsdefizite der Luft erst etwa am Nachmittag um vier bis fünf Uhr am grössten (Abb. 1).

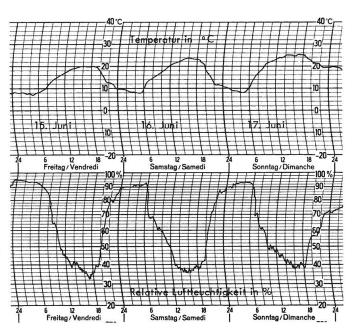


Abb. 1: Schönwetterperiode im Sommer 1973. Ausschnitt aus dem Thermohygrographenschrieb der Wetterstation Tänikon.

Belüftungstrockenes Heu, das an leichten Schwaden liegt, verliert während zwei heissen Nachmittagsstunden ohne weitere Arbeitsgänge und grosse Bröckelverluste noch eine Tonne und mehr Wasser pro Hektar. Wenn es der Arbeitsablauf auf einem Betrieb erlaubt, mit dem Einführen bis in den späten Nachmittag zu warten, können dadurch einerseits die Abladearbeiten erleichtert und anderseits Energiekosten für die Verdunstung überflüssigen Wassers gespart werden.

3. Einflüsse des Grasbestandes

Während der Bauer bei der Dürrfutterernte das Wetter nehmen muss wie es ist, hat er immerhin die Möglichkeit, durch verschiedene Massnahmen wie

Düngung, Nutzungsart und -zeitpunkt die Abtrocknungseigenschaften seiner Grasbestände nicht unwesentlich mitzubestimmen.

Die folgenden Auszüge aus unseren, zum Teil noch wenigen Zwischenergebnissen der Abtrocknungsversuche sollen den Einfluss der wichtigsten Faktoren Futterart, Alter und Ertrag sichtbar machen.

3.1 Naturwiese - Kunstwiese

Als Vergleich dienen die Abtrocknungskurven eines Naturwiesen- und Kunstwiesenbestandes auf unseren Versuchen an der FAT von 1972. Beide Parzellen wiesen in bezug auf Ertrag und Futterwert grosse Aehnlichkeiten auf.

Abb. 2 zeigt, dass das Kunstwiesenfutter im Abtrocknungsprozess bei gleichen Bedingungen durchgehend hinter dem Naturwiesenfutter nachhinkte.

1. Schnitt	Naturwiese	Kunstwiese
Datum	24.5.1972	24.5.1972
Stadium	Löwenzahn mit Samen	Weissklee vor der Blüte
	Gräser Rispen geschoben	Knaulgras vor dem Rispenschieben
Bestand	85% Wiesen- rispengras 13% Kräuter 2% Weissklee	98% Knaulgras+ engl. Raygras 2% Weissklee Ladino
Bruttoertrag (ohne Verluste)	59,6 q TS/ha	58,0 q TS/ha
Rohfaser (in % der TS)	23,3	23,4
verdaul. Roheiweiss (in % der TS)	10,2	10,2
Stärkeeinheiten	64	65

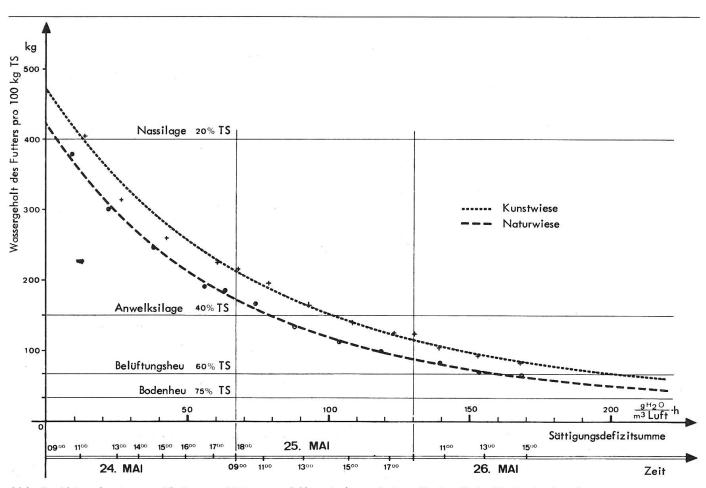


Abb. 2: Abtrocknungsverläufe von Natur- und Kunstwiesenfutter. Erster Schnitt, Bodentrocknung, Mähen mit Messerbalken, Bearbeitung mit Kreiselzettwender.

Abb. 3: Schlechtere Abtrocknungseigenschaften und zudem oft sehr hohe Erträge lassen die Bodentrocknung von hochwertigem Kunstwiesenfutter für viele Gebiete als fraglich erscheinen.

Das hatte in unserem Beispiel zur Folge, dass das Naturwiesenfutter kurz nach dem Mittag des dritten Tages mit 60% TS auf die Heubelüfung eingeführt werden konnte, während das Kunstwiesenfutter dann erst das 50% TS-Stadium überschritten hatte und im Laufe des Nachmittages nicht mehr belüftungstrocken wurde. Gemessen an der Zeitachse der Abb. 2 macht der Unterschied zwischen dem Natur- und dem Kunstwiesenfutter des Vergleichsversuches bei der 60% TS-«Schwelle» (Belüftungsheu) rund einen halben Tag aus. Die Zeit als Massstab für die «Geschwindigkeit» der Abtrocknung hat allerdings nur in Verbindung mit den genauen Angaben der herrschenden klimatischen Bedingungen einen Wert. Dies gilt besonders für die drei Versuchstage in Abb. 2, an denen die Lufttemperatur nur ganz wenig über 20° C anstieg und die relative Luftfeuchtigkeit nur für kurze Zeit unter 50% sank. Dementsprechend erreichte die Sättigungsdefizitsumme pro Tag nur 60 bis 70 Einheiten und nicht 90 bis 100, wie das an sommerlichen Tagen Ende Mai der Fall sein kann.

Aus den zwei Abtrocknungskurven ist ersichtlich, dass die Kunstwiesenparzelle bis zum Belüftungsheu-Stadium (60% TS) gute 200 Einheiten Sättigungsdefizitsumme brauchte, während für die Naturwiese deren 160 genügten. Der Mehrbedarf der Kunstwiese betrug also 40 Einheiten oder 25%. Ganzähnlich sieht der Vergleich für Anwelksilage aus.

3.2 Alter des Futters

Um den Einfluss des Alters auf den Abtrocknungsverlauf beim Rauhfutter sichtbar zu machen, mussten Bestandeszusammensetzung und Ertrag der Vergleichsparzellen übereinstimmen.

Im Sommer 1973 teilten wir einen ausgeglichenen Naturwiesenbestand in drei Parzellen auf, die wir dann in verschiedenen Altersstadien schnitten:

- Schnittzeit beim Rispenschieben, kurz nach Löwenzahnblüte: 20,9% Rohfaser
- 2. Schnittzeitpunkt vor der Gräserblüte, Löwenzahn trägt Samen: 25,4% Rohfaser
- Schnittzeitpunkt Ende der Gräserblüte, Löwenzahn versamt, Blütenstände zurückgebildet: 28,7% Rohfaser.

Abb. 4: Die Futtermengen wurden auf der Waage auf die Flächen der Versuchsparzellen abgestimmt.

Die Bestände wiesen in allen Fällen einen Gräseranteil von 70 bis 75% auf.

Das frisch geschnittene Futter musste auf der Waage so auf die Parzellenfläche abgestimmt werden, dass die Menge einem Ertrag von brutto 45 q TS/ha entsprach (Abb. 4). Bevor wir mit der «normalen» Bearbeitung mit dem Kreiselzettwender beginnen konnten, verteilten wir das Gras von Hand sorgfältig in die vier Marken.

Die Kurven von Abb. 5 zeigen deutlich, wie gross die Unterschiede im Abtrocknungsverlauf der drei Vergleichsparzellen waren. Die beiden älteren Bestände erreichten vor Versuchsabbruch das Stadium von Belüftungsheu, wobei der eine mit 25,4% Rohfaser

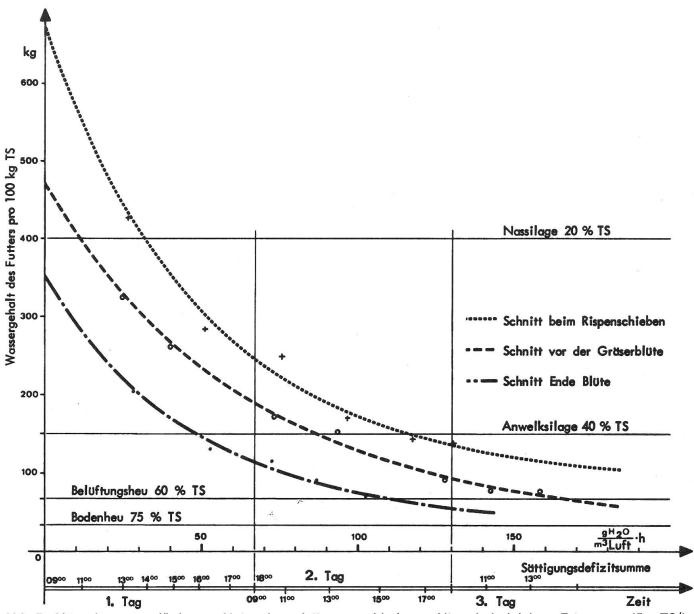


Abb. 5: Abtrocknungsverläufe von Naturwiesenfutter verschiedenen Alters bei gleichem Ertrag von 45 q TS/ha. Erster Schnitt, Bodentrocknung, Mähen mit Messerbalken, Bearbeitung mit Kreiselzettwender.

ziemlich genau die Hälfte mehr Sättigungsdefizitsumme brauchte als jener mit 28,7%.

Aufgrund von Messungen in anderen Versuchen stellten wir fest, dass junges, im besten Zeitpunkt geschnittenes Gras bei gleichem TS-Ertrag zur Abtrocknung rund doppelt soviel Sättigungsdefizitsumme benötigt wie überständiges Futter.

3.3 Ertrag

Zur Darstellung der ertragsbedingten Unterschiede arbeiteten wir in zwei Parallelversuchen mit jungem Naturwiesenfutter (Versuch A, 20,9% Rohfaser) und

mit überständigem (Versuch B, 28,7% Rohfaser) entsprechend den Altersstadien eins und drei im Abschnitt 3,2. In beiden Versuchen stimmten wir die Grasmenge so auf die Vergleichsparzellen ab, dass sie den Bruttoerträgen von 30, 45 und 60 q TS/ha entsprechen (Abb. 6).

Auffallend in Abb. 7 ist die stärkere Auffächerung der Abtrocknungskurven der Gruppe A gegenüber der Gruppe B. Die Ertragsunterschiede machen sich demnach bei jungem Futter wesentlich stärker bemerkbar als bei altem. Diese Feststellung hat zwei wichtige Gründe:

- Im jungen Gras ist der Wasseranteil viel grösser als im alten (640 kg Wasser gegenüber 350 kg pro 100 kg TS). Damit sind die zu verdunstenden Wassermengen im jungen Gras bei verschiedenen Erträgen auch viel unterschiedlicher als im überständigen, bei dem das Wasser nicht mehr so stark ins Gewicht fällt.
- Junges, rohfaserarmes Futter liegt am Boden ziemlich dicht und gibt praktisch nur aus der obersten Schicht Wasser an die trocknende Luft ab. Bei hohen Erträgen mit mächtigen Graslagen geht deshalb die Abtrocknung besonders schleppend vor sich. Häufige Bearbeitung ist in diesen Fällen sehr wichtig!

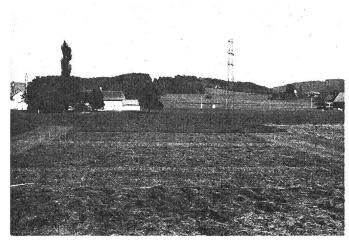


Abb. 6: Parallelversuche mit gleichem Futter und verschiedenen Erträgen von brutto 60, 45 und 30 q TS/ha (von vorne nach hinten).

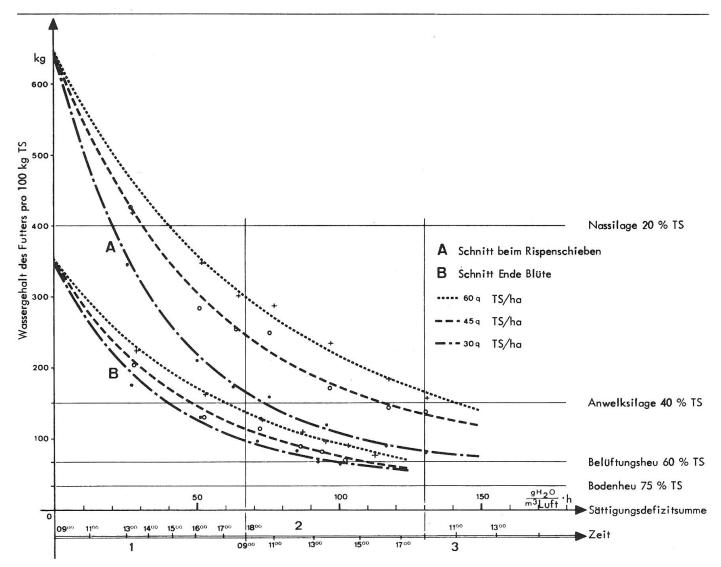


Abb. 7: Abtrocknungsverläufe von jungem und altem Naturwiesenfutter bei verschiedenen Erträgen. Erster Schnitt, Bodentrocknung, Mähen mit Messerbalken, Bearbeitung mit Kreiselzettwender.

ZH

Mit jungem Futter der Versuchsgruppe A benötigte die Parzelle mit dem höchsten Ertrag (60 q TS/ha) bis zum Stadium der Anwelksilage auch rund doppelt soviele Sättigungsdefiziteinheiten wie die Parzelle mit dem kleinsten Ertrag (30 q TS/ha). Wollte man daraus eine Faustregel ableiten so müsste sie heissen: Doppelter Ertrag — doppelte Abtrocknungsdauer.

3.4 Bestandeszusammensetzung

In einem Parallelversuch erwies sich, dass eine Parzelle mit rund 50% Bärenklau gegenüber einer ertragsgleichen und gleichaltrigen Naturwiesenparzelle mit 70% Gräseranteil deutlich schlechter abtrocknete. Allerdings war die durch den hohen Kräuteranteil bedingte Verzögerung nicht so gross wie sie vergleichsweise durch eine Erhöhung des Ertrages im normalen Bestand von 45 auf 60 q TS/ha entsteht. Krautreiche Bestände sollten schon wegen der hohen Bröckelverluste nicht für die Bodentrocknung vorgesehen werden.

4. Schluss

Wenn der Bauer auch in nassen Jahrgängen einen hochwertigen Heustock erzielen will, braucht er dazu neben einem schlagkräftigen Heuernteverfahren das nötige «Wetterglück» oder aber übermässig viel Strom für die Kalt- bzw. Heizöl für die Warmbelüftung.

Aus den dargestellten Beobachtungen bei unseren Abtrocknungsversuchen können folgende stark vereinfachte «Faustregeln» abgeleitet werden:

 Kunstwiesenfutter braucht bei gleichem Ertrag und in vergleichbarem Altersstadium rund ein Viertel mehr Abtrocknungszeit als Naturwiesenfutter. (Die in der Praxis oft noch grösseren Unterschiede in der Trocknungsgeschwindigkeit sind auf den höheren Ertrag und den früheren Schnitt der Kunstwiesen zurückzuführen).

- Ueberständiges Heu trocknet bei gleichem TS-Ertrag doppelt so schnell ab als junges Futter.
- Ertragsunterschiede machen sich besonders bei der Abtrocknung von jungem Futter bemerkbar; hier gilt etwa: Doppelter Ertrag – doppelte Abtrocknungsdauer. Bei altem Heu sind die ertragsbedingten Einflüsse nicht so gross.

Allfällige Anfragen über das oben behandelte Thema, sowie auch über andere landtechnische Probleme, sind nicht an die FAT bzw. deren Mitarbeiter, sondern an die unten aufgeführten kantonalen Maschinenberater zu richten.

Schwarzer Otto, 052 / 25 31 21, 8408 Wülflingen

ZH Schmid Viktor, 01 / 77 02 48, 8620 Wetzikon BE Mumenthaler Rudolf, 033 / 57 11 16, 3752 Wimmis BE Schenker Walter, 031 / 57 31 41, 3052 Zollikofen BE Herrenschwand Willy, 032 / 83 12 35, 3232 Ins LU Rüttimann Xaver, 045 / 6 18 33, 6130 Willisau LU Widmer Norbert, 041 / 88 20 22, 6276 Hohenrain UR Zurfluh Hans, 044 / 2 15 36, 6468 Attinghausen SZ Fuchs Albin, 055 / 48 33 45, 8808 Pfäffikon OW Gander Gottlieb, 041 / 96 14 40, 6055 Alpnach Lussi Josef, 041 / 61 14 26, 6370 Oberdorf NW Jenny Jost, 058 / 61 13 59, 8750 Glarus GL ZG Müller Alfons, landw. Schule Schluechthof, 042 / 36 46 46, 6330 Cham FR Lippuner André, 037 / 9 14 68, 1725 Grangeneuve RI Wüthrich Samuel, 061 / 96 15 29, 4418 Reigoldswil Seiler Bernhard, 053 / 2 33 21, 8212 Neuhausen SH AR Ernst Alfred, 071 / 33 34 90, 9053 Teufen SG Haltiner Ulrich, 071 / 44 17 81, 9424 Rheineck SG Pfister Th., 071 / 83 16 70, 9230 Flawil GR Stoffel Werner, 081 / 81 17 39, 7430 Thusis AG Müri Paul, landw. Schule Liebegg, 064 / 31 15 53, 5722 Gränichen

TG Monhart Viktor, 072 / 6 22 35, 8268 Arenenberg. Schweiz. Zentralstelle SVBL Küsnacht, Maschinenberatung, Telefon 01 - 90 56 81, 8703 Erlenbach.

Nachdruck der ungekürzten Beiträge unter Quellenangabe gestattet.

FAT-Mitteilungen können als Separatdrucke in deutscher Sprache unter dem Titel «Blätter für Landtechnik» und in französischer Sprache unter dem Titel «Documentation de technique agricole» im Abonnement bei der FAT bestellt werden. Jahresabonnement Fr. 24.—, Einzahlungen an die Eidg. Forschungsanstalt für Betriebswirtschaft und Landtechnik, 8355 Tänikon, Postcheck 30 - 520. In beschränkter Anzahl können auch Vervielfältigungen in italienischer Sprache abgegeben werden.