Zeitschrift: Der Traktor und die Landmaschine : schweizerische landtechnische

Zeitschrift

Herausgeber: Schweizerischer Verband für Landtechnik

Band: 29 (1967)

Heft: 2

Rubrik: IMA-Mitteilungen

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

IMA-MITTEILUNGEN 1-2 · 67

12. Jahrgang Januar-Februar 1967

Herausgegeben vom Schweiz. Institut für Landmaschinen-

wesen und Landarbeitstechnik in Brugg, Aargau

Verantwortliche Redaktion: J. Hefti und W. Siegfried

Beilage zu Nr. 2/67 von «DER TRAKTOR und die Landmaschine»

Traktor und Zugkraft

Erhöhung der Zugkraft durch bessere Bereifung, 4-Rad-Antrieb und Zugkraftverstärker

von F. Bergmann, ing. agr.

(Schluss)

Der Einfluss des Vierradantriebes auf die Zugkraft

In diesem Bericht ist nur vom Vierradantrieb bei Landwirtschaftstraktoren mit einer Vorderachsbelastung von 45–50 % des Gesamtgewichtes die Rede. Messungen im In- und Ausland haben ergeben, dass beim Traktor mit Vierradantrieb das Zugvermögen um 25–40 % reduziert wird, wenn der Antrieb zur Vorderachse ausgeschaltet wird. Ist dieser Vergleich stichhaltig, oder gibt es Traktoren mit 2-Rad-Antrieb mit wesentlich besseren Zugleistungen als beim 4-Rad-Antrieb-Traktor mit nicht angetriebener Vorderachse? Das war die Frage, die man sich vor der Durchführung unserer Messungen gestellt hat.

Tabelle 4: Zugkraftmessungen auf der Liebegg (25. 7. 65)

Traktor	leichter Ackerboden, feucht Zugkraft in kg	Schlupf in %	Naturstrasse fest, feucht 15 % Steigung	Schlup	
Traktor mit 2-Rad-Antrieb, Gewicht inkl. Fahrer 2000 kg, davon 64 % auf der Hinterachse	1000 (93 %)	19	880 (88 %)	24	
Allrad-Traktor, Gewicht inkl. Fahrer 2000 kg, 52 % auf der Hinterachse	1075 (100 %)	19	1000 (100 %)	24	
Allrad-Traktor wie oben, jedoch mit ausgeschalteter Vorderachse	700 (65 %)	19	570 (57 %)	24	

Zugkraftmessungen in Bözen (Herbst 66)

Traktor	fester Ackerboden	Schlupf	Ackerboden mit Schlupf lockerer Oberschicht
	Zugkraft in kg	in %	Zugkraft in kg in %
Allrad-Traktor, Gewicht inkl. Fahrer 2070 kg, 52 % auf der Hinterachse	1160 (100 %)	25	1160 (100 %) 25
Allrad-Traktor wie oben, jedoch mit ausgeschalteter Vorderachse	860 (74 %)	25	740 (64 %) 25
Traktor mit 2-Rad-Antrieb, Gewicht inkl. Fahrer 2070 kg, 62 % auf der Hinterachse	1170 (100 %)	25	1120 (97 %) 25
Traktor mit 2-Rad-Antrieb, Gewicht inkl. Fahrer 2070 kg, 58 % auf der Hinterachse	1140 (97 %)	25	1100 (95 %) 25

Aus Tabelle 4 ist klar ersichtlich, dass die Traktoren mit 4-Rad-Antrieb eine Verbesserung der Zugkraft von 0–12 % ermöglichen; mit ausgeschaltetem Vorderradantrieb schneiden sie aber viel schlechter ab (23–34 %), als gleich schwere Traktoren mit 2-Rad-Antrieb. Wenn man sich die Gewichtsverteilung genau ansieht, kann man auch eine Erklärung finden, warum das so sein muss.

Ein 2000 kg schwerer Traktor mit 4-Rad-Antrieb (47,5 % Vorderachslast) hat eine Hinterachslast von **1050 kg.**

Ein 2-Rad-angetriebener Traktor mit 37 % Vorderachslast (2000 kg Gesamtgewicht) hat eine Hinterachslast von **1260 kg.**

Multiplizieren wir die beiden Gewichte mit dem Triebkraftbeiwert des 12,4/11-28-Reifens, so erhalten wir:

1050 x 0,56 = 588 kg Zugkraft (83 %) für den 4-Rad-Antrieb-Traktor (mit 2-Rad-Antrieb)

1260 x 0,56 = 706 kg Zugkraft (100 %) für den konventionellen Traktor

Ein Traktor mit 1260 kg Hinterachslast hat aber in der Praxis eine grössere Bereifung (z. B. 11-32 AS oder 13-30 AS). Mit der Bereifung 11-32 erhalten wir eine Zugkraft von 1260 x 0,59 = 743 kg (100 %) im Vergleich zu den 588 kg (79 %) aus dem vorhergehenden Beispiel. Ist der Traktor mit 2-Rad-Antrieb gar mit 13-30 AS-Reifen versehen, so erhalten wir als Zugkraft 769 kg (100 %), gegenüber den 588 kg (76 %). Wir sehen also, der Traktor mit 4-Rad-Antrieb und ausgeschalteter Vorderachse zieht theoretisch 17—24 % weniger, als ein gewöhnlicher 2-Rad-angetriebener Traktor. Die Differenz bei unseren Messungen war noch grösser. Der Hauptgrund liegt in der vermehrten zusätzlichen Belastung der Hinterachse durch Entlastung der Vorderachse (erhöhte Zugkraft = erhöhte Vorderachsentlastung).

Die Messungen wurden mit einem 2-Achs-Anhänger durchgeführt. Man muss deshalb annehmen, dass die Erhöhung der Zugkraft durch den Vierradantrieb bei der Verwendung von Einachsanhängern mit grosser Stützlast (z. B. Ladewagen) noch kleiner ist. Dasselbe gilt auch beim Pflügen mit der Regelhydraulik. Unter normalen Bedingungen (unsere Messungen wurden auf trockenen und feuchten Böden durchgeführt) kann daher mit einer Steigerung der Zugkraft von höchstens 15 % gerechnet werden. Im häufigsten Anwendungsbereich, wenn wir eine möglichst grosse Zugkraft brauchen, z. B. am Ladewagen (in Hanglagen) oder beim Pflügen, wird die Verbesserung der Zugkraft kaum mehr als 5 % betragen. Versuche, die über die Steigfähigkeit von Allrad- und 2-Rad-Antrieb-Traktoren Klarheit schaffen sollten, haben jedenfalls gezeigt, dass der gewöhnliche Traktor praktisch die gleichen Steigungen überwindet wie der 4-Rad-angetriebene. Es wurde eine Differenz von höchstens 2 % Steigung festgestellt. Das Steigvermögen des doppelt bereiften Traktors ist, wenn er genügend Gewicht auf der Vorderachse hat (Aufbäumen), mindestens ebensogut wie dasjenige des 4-Rad-angetriebenen.

Günstiger sieht es für den 4-Rad-Antrieb auf nassen Böden aus.

Wenn wir als Vergleich ein Beispiel unter sehr schlechten Bedingungen, wie sie etwa im Spätherbst und Winter, oder nach starken Regenfällen auftreten, durchrechnen, so kommen wir auf folgendes Ergebnis:

nis:	Triebkraftbeiwert für Triebkraftbeiwert für	11-32 AS 11-28 AS	0,30 0,28
	Triebkraftbeiwert Vorderräder	$7,50 \times 20$	0,23
E		7,5-20/11-28-bereifter 4-Rad-angetriebener Traktor (2000 kg)	11–32—bereifter 2-Rad-angetriebener Traktor (2000 kg)
Hinteracl	hsgewicht	1050 kg	1260 kg
Zugkraft		295 kg	380 kg
* Entlast	tung der Vorderachse		
durch o	die Zugkraft	110 kg	160 kg
Gesamte	Hinterachslast ca.	1160 kg	1420 kg
Daraus re	esultierende Zugkraft	325 kg	430 kg
Zugkraft	der Vorderachse (840 x 0,23)	193 kg	_
Gesamtz	ugkraft	518 kg (100 %)	430 kg (83 %)

Die Verbesserung beträgt also bei sehr schlechten Bedingungen theoretisch 17 %. Das gilt jedoch nur für ebenes Gelände.

Die Verbesserung der Zugfähigkeit durch den Zugkraftverstärker

Die Achslasterhöhung durch die Hydraulik ist nicht neu. Genau derselbe Effekt wird durch die Regelhydraulik beim Pflügen oder Eggen angestrebt. Aber auch beim Fahren mit dem Zweiachswagen wird sich der gewiegte Traktorfahrer in schwierigen Situationen die Hydraulik zu Nutze machen, in-

^{*} Nach dem Hebelgesetz ist: Zugkraft x Höhe des Zugmauls ab Boden = Radstand × Vorderachsentlastung.

dem er mit der Ackerschiene die Deichsel und damit einen Teil der Wagenlast anhebt. Dadurch werden die Vorderräder des Traktors entlastet und wir erhalten eine erhebliche Erhöhung der Hinterachslast. Neu beim Zugkraftverstärker ist, dass eine eingestellte Hubkraft der Hydraulik konstant bleibt, auch wenn der Traktor nach unten oder oben neigt. Zudem ist es möglich, auch bei Kurvenfahrt voll anzuheben, weil der Galgen drehbar ist und somit immer parallel zur Deichsel verläuft. Bei Messungen hat es sich gezeigt, dass die Verbesserung der Zugkraft gleich gross ist, wie wenn man von einem Zweiachswagen auf einen Einachsanhänger mit viel Stützlast (Ladewagen) umstellt. Die Grenze durch Aufbäumen wird ohne zusätzliche Frontgewichte allerdings sehr schnell erreicht.

Da wir auch auf nassem Boden den Traktor vorne abheben können, ist die Erhöhung der Zugkraft bei schlechten Bedingungen wesentlich besser, als auf trockenen Böden. Bei einem Einachsanhänger ohne Stützlast (zu ²/₃ entladener Miststreuer) kann nur noch wenig Gewicht vom Anhänger auf den Traktor gebracht werden, da wir mit einem schlechten Hebelverhältnis arbeiten.

Nach Messungen in England (NIAE-Test) konnte beim MF 135 die Zugkraft von 1315 kg (14 % Schlupf) auf 1633 kg (13 % Schlupf) gesteigert werden. Das ergibt eine Differenz von 20 % (1633 kg = 100 %). Diese Messungen wurden auf einer Tarmacadam-Strecke (gleiche Bedingungen wie auf Betonbahn) durchgeführt. Auf dem Acker kann eine stärkere Erhöhung der Zugkraft erwartet werden. Bei Messungen, die wir auf dem Acker durchführten, wurde eine Steigerung der Leistung von 900 kg (70 %) auf 1300 kg (100 %) erreicht.

Zusammenfassung

- Die Zugkraft eines Traktors kann durch die Reifenwahl stark beeinflusst werden.
- Der spezifische Bodendruck ist bei vielen schweren Traktoren dank günstiger Bereifung kleiner, als bei leichten Traktoren.

Als Beispiel guter Bereifung können folgende Pneudimensionen gelten:

Traktorgewicht:	Pneudimension:	(als Hackreifen):
- 1500 kg	10—28	9-32
1500 — 1800 kg	11-28; 12-28	9-36
1700 - 2200 kg	11-32; 13-30; (10-36)	9-36 (9-42)
2000 - 2500 kg	13-30; 11-36	(9-42)
über 2500 ka	11-38: 12-38: 15-30	

- Traktoren mit 4-Rad-Antrieb, bei denen der Vorderradantrieb ausgeschaltet ist, ziehen wesentlich weniger (über 25 %) als gleich schwere gewöhnliche Traktoren, sofern diese vernünftig bereift sind.
- Die Verbesserung der Zugkraft durch den Vierradantrieb beträgt unter normalen Bedingungen weniger als 15 %, auf sehr nassem Boden 15— 20 %.

- Der neuerdings aktuell gewordene Zugkraftverstärker ermöglicht bei Zweiachswagen eine Zugkraftsteigerung von 20-30 % unter normalen Bedingungen und etwas über 30 % bei sehr schlechten Bedingungen. Die praktische Bedeutung ist jedoch nicht sehr gross, wenn die Traktorbesitzer mit Einachsanhänger arbeiten.
- Durch die Doppelbereifung kann die Zugkraft wesentlich gesteigert werden; unter sehr schlechten Bedingungen füllen sich die Zwischenräume jedoch relatif rasch. Der Hauptvorteil der Doppelbereifung ist die Reduktion der Kippgefahr beim Fahren in der Schichtenlinie.

U 102 Motor- und Zapfwellenleistungen von Vierradtraktoren

(Fortsetzung von IMA-Mitteilung Nr. 10/1966)

Im Oktober 1966 haben wir in den IMA-Mitteilungen Nr. 10 die wichtigsten Resultate von über 20 Traktoren, die nach den OCDE-Prüfregeln gemessen wurden, veröffentlicht. In der Zwischenzeit sind uns von der OCDE (Organisation de Coopération et de Développement Economiques) in Paris einige weitere Prüfberichte von Traktorfabrikaten übermittelt worden, die auch in unserem Lande von Interesse sind. Wir legen deshalb Wert darauf, deren wichtigste technische Daten und Messergebnisse unverzüglich zu publizieren.

Im Gegensatz zu den in der IMA-Mitteilung Nr. 10 aufgeführten Tabellen weist die vorliegende Zusammenstellung in der Rubrik Motorleistung einige Lücken auf. Die Messung dieser Leistung ist im OCDE-Prüfprogramm nicht obligatorisch und wird damit begründet, dass die Motorleistung im Gegensatz zur Zapfwellenleistung praktisch nicht von Bedeutung sei. Wenn wir bei unseren eigenen Messungen die Motorleistung gleichwohl ermitteln, so liegt der Grund darin, dass die Gegenüberstellung der Motor- und Zapfwellenleistung eine wertvolle Angabe für den Getriebeverlust liefert. Die Motorleistungsangabe ermöglicht dem Landwirt zudem, die im Prospekt angegebene PS-Leistung auf ihre Richtigkeit zu überprüfen.

Was beim Studium der Tabelle weiter auffallen mag, ist die Erscheinung, dass die Schwankungen bezüglich Treibstoffverbrauch viel weniger gross sind als bei der Zusammenstellung vom Oktober 1966. In der letzten Tabelle figurierten 8 Traktoren mit über 220 g/PSh bei 540 U/min an der Zapfwelle und 3 Traktoren mit weniger als 170 g/PSh bei den gleichen Bedingungen. Derart extreme Werte fehlen in der vorliegenden Tabelle. Im übrigen verweisen wir auf den Text der IMA-Mitteilungen Nr. 10/1966.

OCDE-geprüfte Traktoren

		TRAKT	O R		MOTOR			
Marke	Тур	Jahrgang	Nr.	Gewicht 1) in kg vorne/hinten/total	Marke	Тур	Nr.	Kühlun
David Brown	770	1966	582097/S	601/963/1564	David Brown	AD 3/49	1013	Wasser
David Brown	880	1966	530246	703/1240/1943	David Brown	AD 3/55 A	1241	Wasser
David Brown	990	1966	482488	785/1334/2119	David Brown	AD 4/47 A	60786	Wasser
Eicher Königstiger	EA 400	1965	90010	830/1380/2210	Eicher	EDK/3	83711	Luft
Fiat	615	1964	130819	1030/1710/2740	Fiat	OM 600	818550	Wasser
Ford Super Dexta	3000	1966	B 814633 K 145	738/1013/1751	Ford	3000	ND 082673 J 285	Wasser
Ford Major	4000	1966	B 814636 K 185	761/1316/2077	Ford	4000	PD-092641 K 275	Wassei
Ford Super Major	5000	1966	B 0813413	918/1601/2519	Ford	5000	RD-079977 J 215	Wasser
Massey-Ferguson	130-8	1966	373272	510/840/1350	Perkins	A/4/107	F 17419	Wasse
Zetor	3011	1963	36395	616/1010/1626	Zetor	3001	38065	Wasser

	TRAKTO	R	ZAPFWELLE					
Marke	Тур	Hubkraft ³) an der Ackerschiene in kg	Leistung in DIN-PS effektiv	Drehz. 4) U/min	— Dieseld I/h	olverbrauch - gr/PSe		
David Brown	770	1179	32,8 27,4	667/2000 540/1620	7,2 5,5	182 170		
David Brown	880	1315	42,0 37,9	650/2200 540/1828	9,7 8,1	193 178		
David Brown	990	1928	52,4 46,1	650/2200 540/1828	11,68 9,73	187 177		
Eicher Königstiger	EA 400	1800	39,8 38,8	558/2000 540/1950	9,2 8,86	190 187		
Fiat	615	1959		— nicht gemessen				
Ford Super Dexta	3000	1438	40,9 38,9	596/2000 540/1811	9,27 8,64	190 185		
Ford Major	4000	1633	48,3 44,2	656/2200 540/1811	11,96 10,09	207 191		
Ford Super Major	5000	2200	57,7 54,1	596/2100 540/1902	13,77 12,27	199 189		
Massey Ferguson	130-8	955	27,8 24,8	639/2237 544/1904	7,14 6,206	212 207		
Zetor	3011	1070	36,1	542/2000	8,05	185		

MOTOR

ylinder- ahl	Bohrung/Hub in mm Hubraum in Liter	Leistung in angeg.	DIN-PS effekt. 2)	Drehz. U/min	— Dieselölver I/h	rbrauch — gr/PSeh	Baro mm Hg	— Temp. in Luft	ºC — Oel
3	100/101,6 2,394	36		2000		nic	ht gemess e n		
3	100/114,3 2,694	46		2200		nic	ht gemessen		
4	92,1/114,3 3,045	56		2200	-	—— nic	ht gemessen		
3	100/125 2,945	40		2000	(<u>)</u>	——— nicl	nt gemessen		
4	108/120 4,397	66	68,84	1900	14,17	171	747	16	100
3	106,7/106,7 2,86	44	42,9	2000	9,27	181	764	19	93
3	111,8/111,8 3,289	52	50,4	2200	11,96	198	758	19	98
4	106,7/106,7 3,81	62	61,4	2100	13,91	189	765	16	97
4	79,37/88,9 1,753	30	31,1	2250	9,88	197	759	22	80
3	95/110 2,339	40	36,9	2000	8,0	179	752	20	79

7APFWFIIF

ZAPFWELLE							
Baro	— Tem	p. ºC —	OCDE Nr.				
mm Hg	Luft	Motoröl					
772	16	88	114				
772	17	82					
745	17	93	117				
745	16	87					
769	20	88	118				
769	18	82					
760 760	20 20	<u> </u>	104				
nic	tht gemessen		080				
754	19	96	119				
754	17	93					
767	17	93	116				
767	16	88					
763	16	100	112				
756	16	98					
761	16	86	115				
762	16	81					
756	19	80	061				

Legende:

- Gewicht betriebsfertig, mit hydraulischer Hebevorrichtung und Dreipunktaufhängung inkl. Ackerschiene, ohne Mähwerk und Zusatzgewichte.
 Leistung bei Nenndrehzahl des Motors.
 Hubkraft bei waagrechter Stellung der unteren Lenker.
 Zapfwellen-/Motordrehzahl.