Zeitschrift: Der Traktor und die Landmaschine : schweizerische landtechnische

Zeitschrift

Herausgeber: Schweizerischer Verband für Landtechnik

Band: 19 (1957)

Heft: 7

Artikel: Feldversuche über die Zugfähigkeit von Traktorreifen

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-1069783

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Feldversuche über die Zugfähigkeit von Traktorreifen

Am Institut für Schlepperforschung der Forschungsanstalt für Landwirtschaft in Braunschweig-Völkenrode wurden äusserst interessante Feldversuche über die Zugfähigkeit von Ackerschlepperreifen (AS-Reifen) durchgeführt. Es soll versucht werden, unsern Lesern, ohne auf wissenschaftliche Einzelheiten einzutreten, eine Zusammenfassung des im Heft Nr. 3 (10. Konstrukteurheft) «Grundlagen der Landtechnik» (VDI-Verlag G.m.b.H., Düsseldorf) erschienenen Artikels von Dipl.-Ing. Günter Bock zu vermitteln.

Die Versuche wurden bei verschiedenen Böden und Bodenzuständen mit dem Ziel durchgeführt, Unterlagen zu gewinnen über den Einfluss

- 1. der Reifenabmessungen (Reifendurchmesser und -breite)
- 2. der Achslast und
- 3. des Profils.

Versuchsgrundlagen

Die Untersuchungen beschränkten sich im wesentlichen auf Zugkraft- und Rollwiderstandmessungen. Bei den Zugkraftmessungen wurden die zu prüfenden Reifen an hinterradgetriebenen Traktoren, die durch einen Messwagen (Abb. 1) belastet wurden, gefahren. Dabei wurde der Zugwiderstand über eine Fahrstrecke von jeweils etwa 10 m annähernd konstant galten und stufenweise vergrössert bzw. verkleinert. Die Zugkraft wurde mittels eines hydraulischen Zugkraftschreibers (System Amsler) aufgeschrieben. Die statische Vorder- und Hinterachslast (Gv und Gh) des Traktors (inkl. Fahrer)

Abb. 1: Versuchseinrichtung des Institutes für Schlepperforschung zum Messen von Zugkraft und Schlupf der Traktorreifen. Links auf dem Bild der Traktor mit den zu untersuchenden Reifen, rechts der Bremswagen mit den Messinstrumenten.

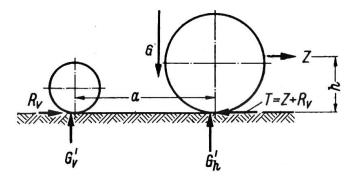


Abb. 2: Die am Schlepper angreifenden

Kräfte beim Zug in der Ebene und bei gleichbleibender Geschwindigkeit.

G Schleppergewicht (im Schwerpunkt angreifend)

 G'_{V} und G'_{h} Reaktionskräfte der Achslasten beim Fahren $G'_{V} + G'_{h} = G$

Z Zugwiderstand

R_v Rollwiderstand der Vorderräder

T Triebkraft der Hinterräder

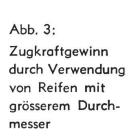
h Zughakenhöhe

a Radstand

wurden auf der Waage ermittelt. Durch Zusatzgewichte wurden die gewünschten Belastungen (z. B. Belastung nach den Tragfähigkeitsangaben) erzielt. Durch verstellbare Anhängevorrichtungen wurden die Zughakenhöhe \mathbf{h} stets so gewählt, dass sie in einem bestimmten Verhältnis zum Radstand \mathbf{a} stand: h/a = 1/4, wobei der Zugwiderstand stets parallel zur Fahrbahn wirkte (Abb. 2).

Von den Ackerböden auf denen die Versuche durchgeführt wurden, machte man mechanische Bodenanalysen (Sieb- und Schlämmanalysen). Die Korngrössenverteilung der Böden wurden in Form von Summenkurven festgehalten. Diesen Summenkurven wiederum wurden die Bodenfraktionen Grobsand, Feinsand, Schluff (Schwimmsand) und Ton entnommen und danach die Böden eingeteilt und bezeichnet, wie dies in nachstehender Tabelle festgehalten ist:

Tabellel: Mechanische Bodenanalysen der Versuchsböden.


	Anteile in Gew. 0/0					
Boden	Grobsand	Feinsand	Schluff	Ton	Bodenbezeichnung	
В	46	36	12	6	lehmiger Sand (Völkenrode)	
M	36	35	17	12	sandiger Lehm (Lucklum)	
G	24	38	31	7	Lehm (Lucklum)	
С	4	57	32	7	Löss (Bodenstedt)	
K	13	46	29	12	Lehm (Lucklum)	
D	10	38	38	14	Lehm (Lucklum)	
L	25	37	21	17	toniger Lehm (Lucklum)	
Ε	14	37	33	16	humoser toniger Lehm (Lucklum	
Н	13	46	21	20	toniger Lehm (Lucklum)	
Α	14	33	31	22	toniger Lehm (Lucklum)	
J	10	35	28	27	lehmiger Ton (Lucklum)	
F	18	22	34	26	lehmiger Ton (Lucklum)	

Reifenabmessungen und Zugfähigkeit

Durch frühere Untersuchungen mit eisernen Greiferrädern waren die Vorteile grosser Durchmesser belegt. Ueber Luftreifen bestanden bis zum Jahre 1949 noch keine allgemein gültigen Ergebnisse. Man war vielmehr auf die Feststellungen von Einzelversuchen angewiesen. Im Herbst 1949 wurde in Völkenrode mit Messungen über die Zugfähigkeit begonnen.

Welchen Gewinn an Zugkraft die Verwendung von Reifen grösseren Durchmessers bringen kann, ist am Beispiel eines Traktors von 1400 kg Hinterachslast dargestellt (Abb. 3). Der Traktor wurde einmal mit Reifen 9,00—24, dann mit nReifen 9,00—40 ausgerüstet. Zudem ist bei dieser Abbildung ein Vergleich der mit Reifen 8—24, bzw. 8—32 bei Gh = 800 kg erreichbaren Zugkräfte gezeigt.

Es wurden auch Messungen mit dem Reifen 11—24 vorgenommen, wobei die Tragfähigkeit ebenfalls ausgenutzt wurde. Dabei stellte man fest, dass der breitere Reifen etwas besser abschneidet als der schmale, ausgenommen auf schmierendem, aber tragfähigem Boden.

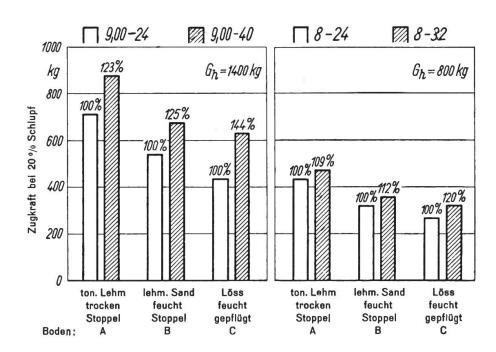


Abb. 4: Gegenüberstellung der in diesem Bericht untersuchten Reifengrössen.

Tabelle II: Abmessungen der in diesem Bericht untersuchten AS-Reifen,

Bezeichnung	Durchmesser mm	Breite mm	Tragfähigkeit bei 0,8 atü kg
8 — 24	990	210	425
8 — 32	1185	210	475
8 — 36	1295	210	500
9 — 24	1035	240	522
9 — 40	1441	238	664
9 — 42	1500	242	710
10 — 28	1200	272	690
11 — 24	1152	295	763
11 — 38	1520	302	1000
13 — 30	1420	365	1200
8,00 — 20	935	215	400
9,00 — 24	1115	265	650
9,00 — 40	1520	245	750
11,25 — 24	1205	295	800

Man befasste sich ebenfalls mit der Frage: Was bringt eine Vergrösserung der Reifenbreite bei gleichem Aussendurchmesser, gleichem Reifeninnendruck und bei gleicher Achslast? Wenn auch im allgemeinen aus Preisgründen eine Reifengrösse verwendet wird, deren Tragfähigkeit gerade ausreicht, so interessierte doch die Frage, ob und unter welchen Verhältnissen überdimensionierte Reifen Vorteile ergeben. Für einen Traktor mit 950 kg Hinterachslast stehen z. B. die Reifen 8—32 und 10—28 zur Aus-

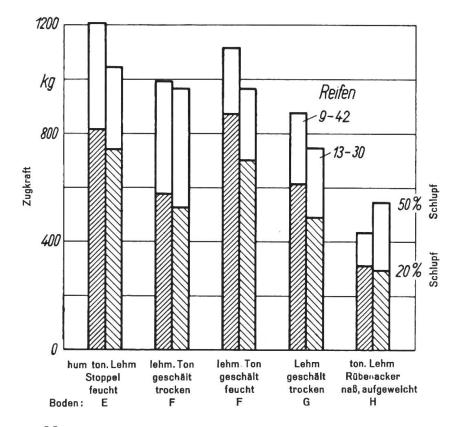
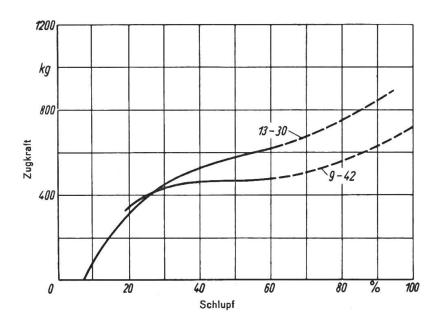



Abb. 5: Einfluss der Reifenbreite auf die Zugkraft bei 20 bzw. 50 % Schlupf.

Reifen Reifen-Durchm. G_h G_V Luftdruck 9-42 1500 mm 1470 kg 740 kg 0,8 atū 13-30 1420 mm 1530 kg 740 kg 0,8 atū

Abb. 6:
Einfluss der Reifenbreite
auf nassem, aufgeweichtem
Rübenabfuhracker.
Boden: toniger Lehm H
(20 % Ton). Reifen, Belastung und Luftdruck wie
in Abb. 5.

wahl oder für einen Traktor mit 1400 kg Hinterachslast die Reifen 9—41, 11—38 und 13—30. Abb. 4 und Tabelle II zeigen eine Übersicht sämtlicher bei den Versuchen verwendeten Traktorenreifen. Es mag noch interessieren, dass bei den Versuchen mit diesen Reifen auf verschiedenen Böden stets der gleiche Traktor verwendet wurde, so dass die statische Hinterachslast nur um die Differenz der Rädergewichte verschieden war. Die Reifen wurden mit 0,8 atü gefahren. Bekanntlich wird dieser Reifeninnendruck von 0,8 atü zurzeit als untere Grenze angesehen, weil bei weiterer Herabsetzung des Luftdruckes ein Wandern des Reifens auf der Felge bei schwerem Zug zu befürchten ist. Abbildung 5 zeigt, dass der breitere, nicht ausgelastete Reifen 13—30 in fast allen Fällen (Böden E, F und G) schlechter war als der Reifen 9—42. Eine Ausnahme trat nur auf dem aufgeweichten, wenig tragfähigen Rübenabfuhracker (Boden H) ein. Abbildung 6 zeigt die Zugkraftschlupfkurven für die beiden Reifen auf dem nassen Rübenabfuhracker (waagrechtes Abgleiten für 9—42 ab 25 % Schlupf).

Nach Ing. Bock könnte der Grund für das schlechtere Verhalten des breiteren Reifens auf trockenen und wenig feuchten Böden in folgendem zu suchen sein: Der Reifen 13—30 wurde, wie auch der Reifen 9—42, mit 0,8 atü gefahren. Er war somit bei einer Hinterachslast von 1530 kg bei weitem nicht ausgelastet, seine Einfederung und somit seine Bodenberührungsfläche waren geringer als bei voller zulässiger Belastung. Seine Fläche war zwar breiter, aber wesentlich kürzer als die des Reifens 9—42.

Da diese Ergebnisse scheinbar in Widerspruch stehen mit den oben angegebenen, die bei voller Auslastung dem breiteren Reifen einen im allgemeinen besseren Kraftschlussbeiwert zuordneten, ergibt sich die Frage nach der gegenseitigen Abhängigkeit von der Achslast.

Anmerkung der Redaktion: In einer der nächsten Nummern werden im 2. Teil die Abschnitte «Achslast» und «Reifenprofil und Zugfähigkeit» behandelt,

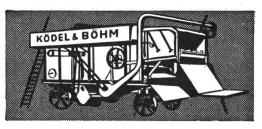
Zur neuen Ernte...

Für jeden Betrieb die richtige Köla-Maschine - 85 jährige Köla-Erfahrung im Landmaschinenbau - über 100 000 gebaute Köla-Dreschmaschinen - in der Schweiz seit Jahrzehnten eingeführt und gern gekauft

Hőla

DRESCHMASCHINEN

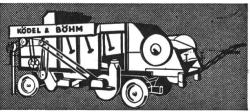
11 Typen mit Stundenleistungen von 300-2000 kg, modernste Sonderausrüstungen wie Selbsteinleger, Strohgebläse, Spreugebläse, 4 Rad-Lenkung, Luftbereifung, Staubabsaugung usw.

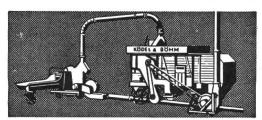

VERBUNDDRESCHER

9 Typen mit Stundenleistungen von 400-2000 kg, mit eingebauter Strohpresse, zusätzliches Strohgebläse, zur wahlweisen Verwendung, alle Sonderausrüstungen wie bei normalen Dreschmaschinen

EINMANN-HÄCKSELDRESCHER

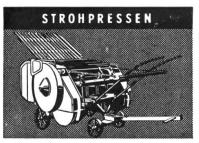
vom IMA geprüft und anerkannt, größte Arbeitskräfteersparnis, hohe Leistung mit kleinen und daher billigen Maschinen, 900 - 2000 kg Stundenleistung




schon ab 12 PS

Mercedes-Dieselmotor - für Traktorzug

Type GM 4, 1,60 m Schnittbreite, 1500 kg


Stundenleistung, Kraftbedarf bei Zapfwellenantrieb ab 25 PS, mit Aufbaumotor

7 Typen für jede Leistung, stabil, äu-Berst geringer Kraftbedarf, größte Zuverlässigkeit, stufenlose Bundgrö-Beneinstellung

schon für Schlepper ab 15 PS, stufenlose Bundgrößeneinstellung, zuverlässig unter schwierigsten Bedingungen, allseitig verkleidet, formschön, unfallgeschützt

Auch für Sie ist die geeignete Type darunter. Jede Köla-Maschine ist Spitzenqualität. Über 1/2 Million Landwirte in aller Welt sind bereits zufriedene Besitzer von Köla-Landmaschinen. Fordern Sie kostenlose und unverbindliche Beratung und Offerten durch unsere Werksvertretung für die Schweiz

C. Hemmerling-Gutzwiller, Zürich, Schneckenmannstraße 10