Zeitschrift: Der Traktor : schweizerische Zeitschrift für motorisiertes

Landmaschinenwesen = Le tracteur : organe suisse pour le matériel de

culture mécanique

Herausgeber: Schweizerischer Traktorverband

Band: 6 (1944)

Heft: 6

Artikel: Löten, Schweissen und Metallisieren zum Reparieren [Fortsetzung]

Autor: Huter, Willy

DOI: https://doi.org/10.5169/seals-1048886

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

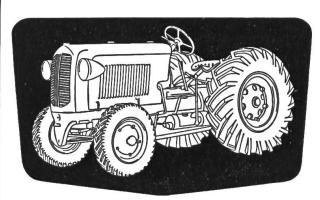
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Revision selbstverständlich darauf gesehen werden, dass die Lager die vorgeschriebene Oelluft von 1 % des Zapfendurchmessers erhalten.

Abgesehen von diesen konstruktiven Massnahmen seitens des Reparateurs, ist es Sache des Fahrers, beim Einfahren eines revidierten Motors etwas Gefühl für die Maschine aufzubringen. Man bedenke, dass auch Kolben und Lager keine starren Gebilde sind, sondern ihre Form besonders im Anfang durch starke Schläge verändern können. Die notwendige Rücksichtnahme ist kaum in Zahlen auszudrücken, aber es leuchtet ein, dass der Motor eben auf alle Arten geschont werden muss: man lasse ihn immer zuerst gut warm laufen, bevor er belastet wird und alles «auf Touren jagen» ist zu vermeiden. Wenn eine bestimmte Zugkraft benötigt wird, so wähle man mit Vorteil den kleinern Gang, halte aber auch hier mit der Drehzahl zurück. Auf längern Steigungen schalte man einen Zwischenhalt ein, wenn die Temperatur des Kühlwassers 80 Grad C. übersteigt. Sobald einmal der kritische Punkt überwunden ist und die aneinander reibenden Teile eine gewisse Glätte erhalten haben, wird der Motor gegen Ueberlastung rasch unempfindlich und kompensiert durch seine Betriebssicherheit und Lebensdauer die anfänglich geübte Schonung.


Löten, Schweissen und Metallisieren zum Reparieren

von Willy Huter (Fortsetzung von Nr. 5).

Das Schweissen.

Werden an eine Metallverbindung hohe Festigkeitsansprüche gestellt, so tritt an Stelle des im ersten Teil besprochenen Lötens das Schweissen. Unter diesem Begriff versteht man ein festes Zusammenfügen von Metallen durch Verschmelzung. Ein richtig geschweisstes Werkstück hat meistens die gleichen Eigenschaften wie ein als ganzes aus dem gleichen Werkstoff hergestelltes Stück.

Die technische Vervollkommnung der verschiedenen Schweissmethoden ermöglicht es heute praktisch alle in Frage kommenden Metalle und Legierungen zu schweissen. Im Automobil- und Traktorreparaturwesen werden von

BÜHRER-TRAKTOREN

Spez. Reparaturwerkstatt

Ersatzteile, Zubehör, Anhänger, Einmannpflüge, Verdecke, Kotflügel, Ketten etc. - OCCASIONEN

Matzinger AG., Zürich 6

Wehntalerstr. 23, Tel. (051) 8.33.43

Stabhebebinder "Herkules"

Mit Hilfe des Leicht-Stabhebebinders geht die Erntearbeit leicht

Im Prinzip ist dieser von der gleichen bewährten Konstruktion wie die grösseren Binder. Die Abmessungen des Bindeapparates der Transporttücher usw. sind so gewählt, dass der Leichtbinder ebenso langes und dichtes Getreide bewältigen kann. Trotzdem verdient dieser neue Binder den Namen Leichtbinder. Er ist dem Bedarf der kleineren landwirtschaftlichen Betriebe besonders angepasst. In kupiertem Gelände und auf kleinen und unregelmässigen Aeckern treten die Leichtzügigkeit und die Handlichkeit besonders vorteilhaft hervor.

Spare Zeit u. Kraft mit dem leichten Stabhebebinder "Herkules"

Wir können gegenwärtig alle Grössen sofort ab Lager liefern.

Prospekte und viele Referenzen gratis.

MATRA Zollikofen

Landwirt: Schone deine Reifen!

Landwirt: Pflege deine Reifen!

Entferne eingedrungene Fremdkörper wie Steine, Nägel, Glassplitter etc. Beachte den vorgeschriebenen Pneudruck.

Landwirt: Ueberlaste deine Reifen nicht!

den verschiedenen Methoden vorwiegend zwei, die Autogen- und die Lichtbogenschweissung angewandt. Die beiden Verfahren unterscheiden sich im Prinzip nur durch die verschiedenen Wärmequellen; beide beruhen auf dem Prinzip der Schmelzschweissung, bei welcher die Metallränder in flüssigem Zustande miteinander verbunden werden.

Die Vorbereitungsarbeiten sind für den Erfolg einer Schweifung von ausschlaggebender Bedeutung; sie nehmen meistens mehr Zeit in Anspruch als die Schweissung selbst. Hierzu gehören unter Umständen:

Metalluntersuchungen des Grundmetalls zur Ermittlung des geeigneten Zusatzmaterials.

Vorbereiten der zu verbindenden Stücke und ihrer Schweissflächen durch entsprechende Bearbeitung.

Aufspannen der Stücke in geeigneten Vorrichtungen oder Lehren.

Wärmebehandlung der Stücke zur Vermeidung von Materialspannungen und Rissen.

Die Autogen-Schweissung oder Flammenverschmelzung: Dieses Verfahren kommt im Reparaturwesen sehr oft und besonders bei schwer schweissbaren Metallen und Legierungen sowie für Dünnblechschweissungen zur Anwendung.

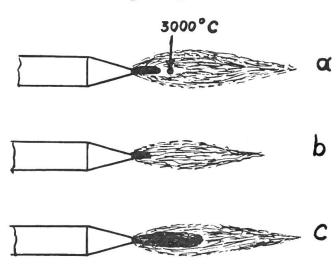


Fig. 1:

- a) Richtig eingestellte Flamme.
- b) Flamme mit Sauerstoffüberschuss.
- c) Flamme mit Azetylenüberschuss.

Die zur Schmelzung der Metalle nötige Hitze wird durch eine Azetylen-Sauerstoffflamme an der Austrittöffnung des Schweissbrenners erzeugt. Die richtige Einregulierung der Schweissflamme ist für die Qualität der Schweissnaht ausschlaggebend. Aus Form und Farbe des Flammenkegels ist die Zusammensetzung des Gasgemisches zu erkennen (Fig. 1).

Zum Auffüllen der Schweissnähte und bei Auftragschweissungen wird in das flüssige Schmelzbad des Grundmetalls ein Zusatzmaterial in Form eines Schweissdrahtes hineingeschmolzen. Für

gewöhnliche Schweissungen von Eisenblechen, Fluss- und Schmiedeeisen verwendet man meistens weichen schwedischen Holzkohlendraht. Für höhere Festigkeitsansprüche werden Schweissdrähte mit höherem Kohlenstoff und Mangangehalt gebraucht. Der Schweissdraht soll während des Schmelzens

Mitglieder werbt Mitglieder!

im Schmelzbad gerührt werden, um eine innige Verschmelzung des Zusatzmetalls mit dem Grundmetall herbeizuführen und die Bildung einer Oxydhaut zu verhindern (Fig. 2).

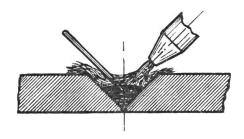


Fig. 2:
Rühren des Schweissdrahtes im
Metallbad (zur besseren Darstellung ist der Schweissbrenner quer
zur Schweissnaht gezeichnet. Er
soll aber immer in der Längsrichtung geführt werden).

Um ferner das Schmelzbad vor schädlichen Einflüssen des Sauerstoffes zu schützen und zu reinigen, werden geeignete Flussmittel verwendet. Im Laufe der Zeit haben sich in der Schweisstechnik 2 verschiedene Schweissarten, die Rechts- und die Linksschweissung, entwickelt. Bei der Rechtsschweissung verläuft der Arbeitsgang vom Schweisser aus gesehen von links nach rechts, also mit vorauslaufender Flamme. Bei der Linksschweifung wird von rechts nach links, also mit vorauslaufendem Schweissdraht geschweisst. Die Neigung des Brenners zum Werkstück hängt von der Dicke des letztern ab. Bei

dünnen Blechen wird der Brenner, um ein Herausbrennen von Löchern zu vermeiden, möglichst flach gehalten. Bei dicken Stücken dagegen muss er, um ein besseres Eindringen des wirksamen Flammenteils in die Tiefe der Schweissnaht zu ermöglichen, fast senkrecht gehalten werden.

Der

MERZ

TRAKTOR

die rationelle Maschine für den Mehranbau

Besichtigen sie ihn unverbindlich

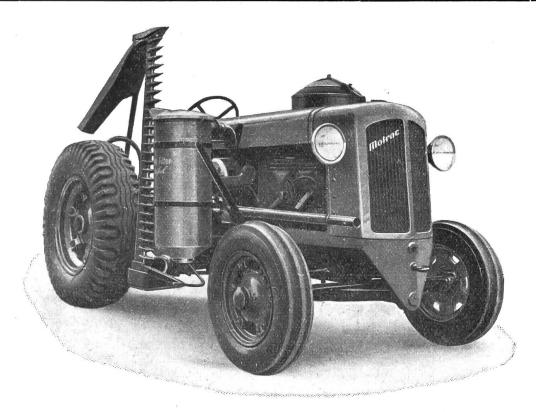
Wir liefern auch kompl. durchrevidierte

FORDSON TRAKTOREN

mit Dolzgasanlage, elektr. Anlasser, Mähapparat MERZ, Differentialsperre MERZ,

sowie Orig.-Ersatzteile

W. Merz & Co., Frauenfeld Tel. 555 Brütten Tel. 3.01.05


Jedes Metall dehnt sich bei der Erwärmung in gewissem Umfange aus und schrumpft beim Erkalten wieder zusammen. Beim Schweissen wird das Werkstück in einer gewissen Zone erhitzt, während die Umgebung kalt bleibt. Dadurch treten im Material Spannungen auf, die zu Verformungen oder zu Rissen führen können. Der erfahrene Schweisser kennt diese Erscheinungen und kann sie durch geeignete Werkstück-Vorbereitungen und Schweissmethoden verhüten. Die gefährlichsten Spannungen treten bei gegossenen Hohlkörpern auf. Solche Stücke werden vor der Schweissung vorgewärmt oder sogar direkt im Holzkohlenfeuer geschweisst und nacher langsam erkalten lassen. Diese Methode kommt bei Reparaturen von Zylinderköpfen und -blöcken, Getrieben, Hinterachs- und Wasserpumpengehäusen etc. sehr oft zur Anwendung.

Ein dem Schweissen verwandtes Verfahren ist die autogene Lotschweissung. Bei dieser noch jungen Methode wird als Zusatzmaterial statt eines artgleichen Metalls ein Fremdmet all, meistens Messing, Bronze, Kupfer oder Neusilber verwendet. Die Schweißstelle muss beim Hartlöten von Schmutz, Farbe, Rost und Fett gereinigt werden. Diese Schweissmethode findet häufig Anwendung bei der Verschweissung ungleicher Metalle und besonders auch bei Graugußstücken, um deren unberechenbare Spannungen zu umgehen, indem das Gußstück viel weniger stark erhitzt werden muss.

Die elektrische Lichtbogenschweissung: Diese Methode stellt das schnellste und wirtschaftlichste Schweissverfahren dar und kann mit verhältnismässig einfachen Mitteln durchgeführt werden. Die zum Schmelzen des Metalls notwendige Hitze wird in einem elektrischen Lichtbogen, der zwischen einer Schweisselektrode und dem Werkstück brennt, erzeugt.

Der zum Schweissen notwendige Strom wird von einem Schweissapparat geliefert. Man unterscheidet zwei Arten von Schweissapparaten: Die Wechselstrom - und die Gleichstrom - Apparate; die ersteren sind Transformatoren, die den Netzstrom umtransformieren, während die letzteren aus einer Umformergruppe oder einem Gleichrichter bestehen und den Netzstrom in Gleichstrom verwandeln. Der Schweißstrom beträgt normalerweise 30—400 Ampère und hat eine Spannung von 25—40 Volt.

Die Schweisselektrode ist zugleich Werkzeug und Zusatzwerkstoff. Als Werkzeug dient sie zum Führen des Lichtbogens und als Werkstoff geht ihr Kern bei der Schweissung in die Schweissnaht über. An die
Schweisselektroden werden sehr vielseitige Ansprüche gestellt. Je nach
der Schweissarbeit, den Qualitätsansprüchen und der Zusammensetzung des
Grundmaterials werden Elektroden verschiedener Zusammensetzung und Dicke
gewählt. Für Reparaturen verwendet man ausschliesslich umhüllte Elektroden.
Diese Umhüllung enthält verschiedene schlackenbildende und gasentwickelnde Stoffe. Sie dient zur Reinigung des Schweissgutes und verdrängt
durch die Gasentwicklung beim Schweissen die Luft von der Schweifsstelle;
sie erleichtert somit das Schweissen und verbessert die Qualität des Schweissgutes. Der Elektrodenkern stellt das Zusatzmaterial dar und besteht je
nach Bedarf aus Stahl, Legierungen oder Nicht-Eisenmetallen.

MOTRAC-Holzgas-Traktor

vielseitige, robuste und bewährte Konstruktion für Industrie und Landwirtschaft

Einfache Bedienung Sparsam im Betrieb Grosses Ersatzteillager Prompter Versand

Die Technik der Lichtbogenschweissung erfordert einige Handfertigkeit, Materialkenntnisse u. Beobachtungsgabe. Wie bei der Autogen-Schweissung spielen auch hier die Vorbereitungsarbeiten eine wesentliche Rolle. Die Schweissung beginnt mit der Zündung des Lichtbogens. Dies geschieht ähnlich wie das Anzünden eines Streichholzes durch Streichen der Elektrodenspitze über das Werkstück. Die Länge des Lichtbogens soll ca. 3 mm betragen. Bei zu langem Lichtbogen wird das Zusatzmaterial in Form von Tropfen abgeschleudert und verbindet sich nur oberflächlich mit dem Werkstück.

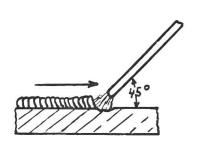


Fig. 3: Schweissrichtung in der Elektrodenneigung.

Bei zu kurzem Lichtbogen bleibt die Elektrode leicht am Werkstück kleben, erhitzt sich und wird unbrauchbar. Die Elektrode wird in einem Winkel von 45—80° gehalten. Im Gegensatz zur Autogen-Schweifung besteht beim Elektro-Schweissen nur eine Schweissrichtung und zwar in der Elektrodenneigung (Fig. 3).

Zu den heikelsten Problemen der Lichtbogenschweissung gehört das Schweissen von Grauguss. Man unterscheidet hierbei die Kalt- und Warmschweissung wird mit

kleinem Lichtbogen, kleiner Stromstärke und dünner Elektrode, sowie mit häufigen Pausen gearbeitet, damit das Werkstück möglichst kalt bleibt und sich nicht verzieht. Das Verfahren dient hauptsächlich für das Anschweissen fehlender Teile an die Gußstücke, eignet sich aber nicht für das Schweissen dünnwandiger Hohlkörper.

Bei der Warmschweissung wird das Gußstück in rotwarmem Zustand geschweisst und nach der Schweissung in Sand oder Asche eingepackt und langsam erkalten gelassen. Diese Schweissart ist die teuerste, aber zuverlässigste. Komplizierte und dünnwandige Gußstücke, bei denen die Gefahr von Spannungsrissen gross ist, werden elektrisch nur mit dieser Methode geschweisst.

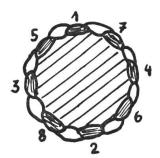


Fig. 4: Reihenfolge der Auffragungen auf einer Welle zum Verformungsausgleich.

Eine wichtige Rolle nehmen bei Reparaturen die Auftragschweissung mit geringen Kosten wieder wie neuwertig instandgestellt werden. Durch Verwendung entsprechender Elektroden können die Eigenschaften des aufgeschweissten Metalls besser sein als diejenigen des Grundmetalls. Die Auftragschweissung wird daher heute auch zur Verbesserung der Abnützungsfestigkeit von hochbeanspruchten Neuteilen verwendet. Um die unvermeidliche Verformung möglichst auszugleichen ist bei der Auftragung der

Raupen eine bestimmte Reihenfolge zu beachten (Fig. 4). (Fortsetzung folgt.)