Zeitschrift: Schweizerisches Jahrbuch für Wirtschafts- und Sozialgeschichte =

Annuaire Suisse d'histoire économique et sociale

Herausgeber: Schweizerische Gesellschaft für Wirtschafts- und Sozialgeschichte

Band: 27 (2012)

Artikel: Energie et crises économiques : analyse à partir de l'exemple de

Genève (de 1850 à nos jours)

Autor: Duc, Gérard / Perroux, Olivier

DOI: https://doi.org/10.5169/seals-632415

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Energie et crises économiques

Analyse à partir de l'exemple de Genève (de 1850 à nos jours)

Energy and Economic Crises: the Case of Geneva (from the Second Half of the 19th Century to Today)

Since the 19th century and the advent of modern energy sources, these have maintained narrow links with the broader economies and societies. The Genevan case shows a link of interdependence that evolves according to the historic context. During the great Depression at the end of the 19th century, public investments aiming at equiping the city with modern installations of power production helped to limit the effects of the crisis on the Genevan economy, while stimulating local mechanical engineering sectors. During the 20th century, another link of interdependence weaved between both elements. Financed by public investments, power production companies are hardly subjected to the risks of economic start-ups. The opposite is not true. Trapped in a energy system that favoured fossil power, the Genevan economy – following the example of the swiss economy – suffered repeatedly from increases in the price of fuel.

Depuis la seconde moitié du XIX^e siècle, les énergies produites par des installations centrales de grandes capacités sont devenues indispensables au bon fonctionnement de notre système de production, ainsi qu'au maintien de notre qualité de vie. Les interdépendances entre énergie et socioéconomie sont telles qu'une crise de l'une entraîne presque forcément une crise de l'autre.

Le formidable développement des énergies de réseau dès le milieu du XIX^e siècle, d'abord le gaz et l'hydraulique puis l'électricité, génère la formation de compagnies, dont les capitaux immobilisés sont de plus en plus importants. Un premier lien d'interdépendance entre économie et énergie est à chercher dans les conséquences des soubresauts conjoncturels sur la bonne santé financière de ces compagnies, dont la rentabilité est liée à l'activité.

D'autre part, pour la production d'énergie, ces compagnies sont en partie dépendantes de sources d'approvisionnement étrangères, le charbon pour les anciennes usines à gaz ou les centrales thermiques de la première moitié du XX^e siècle, le gaz naturel, le pétrole ou l'uranium pour les grandes infrastructures actuelles. Un deuxième lien d'interdépendance est ainsi tissé dès l'aube de cette ère nouvelle, où des crises économiques liées aux difficultés d'approvisionnement peuvent se produire.

Enfin, le troisième lien d'interdépendance entre énergie et économie consiste à faire de l'investissement en direction des infrastructures énergétiques une politique de relance de l'économie. Dans les programmes électoraux de la quasi-totalité des partis politiques aux affaires dans les pays occidentaux, l'investissement dans les énergies alternatives – dites propres – occupe une place de choix, en mesure de relancer la croissance et d'éloigner la perspective d'une pénurie énergétique future, provoquée par la raréfaction des énergies fossiles. L'histoire nous enseigne que cette tendance, même si elle n'a pas toujours été clairement exprimée, n'est pas nouvelle.

Observés dans le cadre genevois, les soubresauts énergétiques se superposent souvent aux crises de l'économie en les accentuant. En arrière-plan apparaissent les trois situations d'interdépendance que nous avons esquissées ci-dessus. Cette communication propose d'analyser trois périodes de l'histoire genevoise, toutes marquées par des situations de crises économiques et sociales plus ou moins graves et de faire le lien entre celles-ci et la situation énergétique du moment.¹

La période de la Grande Dépression: l'investissement public dans des centrales de production d'énergie

La Grande Dépression qui secoue les économies occidentales durant les trente dernières années du XIX^e siècle atteint la Suisse et Genève dès le milieu des années 1870. Secteur phare de l'économie genevoise depuis le XVII^e siècle, l'horlogerie est durement touchée par la crise conjoncturelle qui se double d'une crise structurelle provoquée par l'arrivée massive sur les marchés européens de montres américaines issues de la production de masse.²

Si, malgré tout, le secteur secondaire résiste et continue de fournir des emplois à près de 45% des actifs du canton en 1910 – contre près de 50% en 1880 – et si l'empreinte de la Grande Dépression est diminuée, c'est grâce à la croissance du secteur des machines qui fournit, en 1910, 20% des actifs du secondaire contre 6% trente

¹ La matière de cette contribution provient en partie de l'ouvrage: Gérard Duc et al., Eau, gaz, électricité. Histoire des énergies à Genève (du XVIIIe siècle à nos jours), Gollion 2008.

² Notamment Antony Babel, Genève et la révolution industrielle, XVIII^e-XIX^e siècles, in: Mélanges d'études économiques et sociales offerts à Claudius-P. Terrier, Genève 1968, p. 1-22.

ans plus tôt.³ Le dynamisme de ce secteur provient en partie de l'essor de l'industrie des énergies.

Dans le rôle d'amortisseur de la crise qu'a pu jouer le secteur des énergies, plusieurs éléments sont à considérer. Le premier provient des grands travaux dans le domaine entrepris par l'ingénieur Théodore Turrettini (1845-1916), dès son accession à l'exécutif de la Ville de Genève en 1882. Ces travaux, qui précèdent de quelques années le rachat des compagnies du gaz et de l'électricité par la Ville en 1896, pourraient, a posteriori, être qualifiés de politique keynésienne anticyclique, au même titre que les chantiers de chômeurs qui permettent, dès 1883, de percer la rue Caroline, la route de Saint-Georges et la route des Acacias. Un second élément a trait, comme on l'a dit, au rôle de stimulateur qu'ont joué les énergies dans la croissance du secteur des machines. Enfin, un troisième élément est à chercher dans les capacités de la Ville à fournir à l'industrie locale une énergie peu chère et en quantité suffisante, soit d'offrir à l'économie un soutien durant la crise.

Durant la période qui s'étend du milieu des années 1880 au tournant du siècle, deux infrastructures énergétiques d'importance sont bâties à Genève. La construction de l'usine hydraulique de la Coulouvrenière débute fin novembre 1883. Les travaux, d'une ampleur considérable puisqu'ils nécessitent la mise à sec successive des deux bras du Rhône dès la sortie du lac Léman, s'étalent jusqu'en mai 1886. Ils englobent la construction du bâtiment des machines, la correction du lit du fleuve et l'établissement de deux réseaux de distribution: le premier utilisant la haute pression, comptabilisant 82 km de tuyaux, qui distribue l'eau dans des zones situées à 140 m au-dessus du niveau du lac et qui s'étend dans la campagne jusqu'à 10 km de l'usine; le second, à basse pression, pour les zones proches de l'usine et moins élevées. Le coût total des travaux s'élève à plus de 7 millions de francs, dont près de 4,7 millions sont directement assumés par la Municipalité. L'«Album Turrettini», publié vers la fin des années 1880 par la Ville de Genève, est un témoin iconographique parlant du gigantisme de ces travaux.

Quelques années après la mise en service de la Coulouvrenière, Turrettini présente devant le Conseil municipal le projet d'une usine hydroélectrique en amont de Genève, sur le Rhône, à la hauteur du hameau de Chèvres. Les travaux, prévus pour s'achever avant l'Exposition nationale de 1896, débutent en janvier 1893 et durent jusqu'en décembre 1895. Equipée d'abord de cinq groupes générateurs, l'usine reçoit,

- 3 D'après Hansjörg Siegenthaler (dir.), Statistique historique de la Suisse, Zürich 1996, p. 404.
- 4 Babel (voir note 2), p. 16.
- 5 Serge Paquier, Histoire de l'électricité en Suisse, la dynamique d'un petit pays européen 1875-1939, Genève 1998, vol.1, p.379. Les cantons de Vaud et du Valais versent une subvention pour la régularisation des eaux du lac.
- 6 Plans et vues des travaux exécutés par la Ville de Genève pour l'utilisation des forces motrices du Rhône et la régularisation du lac Léman, sous la direction du conseiller administratif délégué aux travaux Th. Turrettini, ingénieur, 1883-1889, Genève s.d.

entre 1898 et 1899, dix nouveaux groupes. Dans un premier temps, la production s'élève à 1,3 million de kWh. Elle grimpe à 30 millions de kWh dès 1900.⁷

Le second élément à considérer lorsqu'on aborde cette politique des grands travaux provient du rôle de stimulateur du secteur de l'électromécanique durant une période pourtant marquée par la Grande Dépression. Progressivement, dès les prémices de l'électricité, des entreprises genevoises comme la Société genevoise d'instruments de physiques (SIP), la Société d'appareillage électrique (SAE) ou de Meuron & Cuénod – dont la fusion, en 1891, donne la Compagnie de l'industrie électrique (CIE), ancêtre de l'actuelle Sécheron SA – occupent une place de choix dans le secteur de l'électromécanique helvétique. Si l'industrie genevoise n'est pas en mesure de concurrencer les leaders du marché pour la fourniture des installations de l'usine hydraulique de la Coulouvrenière, dont les pompes et les turbines sont produites par Escher, Wyss & Co. de Zurich, elle est cependant en mesure de le faire une dizaine d'années plus tard. Pour l'usine de Chèvres, c'est notamment la CIE qui fournit les génératrices, les câbles et les lampes à arc et la SIP les pompes à huile.

Le troisième élément induit par la construction de ces infrastructures est l'abaissement conséquent du prix de l'énergie pour les industries. En 1876, alors que les premiers effets de la Grande Dépression touchent l'économie helvétique, l'ingénieur Edouard Lullin, répondant à un concours lancé à l'occasion du centenaire de la Société des Arts et dont le thème est la création d'un établissement nouveau visant à servir l'économie genevoise, propose d'établir une usine hydraulique. Pour l'ingénieur, le développement de Genève passe par la mise à disposition de l'industrie d'une force motrice abondante et peu chère. Dans son argumentaire, il note que les quelques industries qui disposent déjà d'un moteur hydraulique connecté sur le réseau de distribution de la Ville paie en moyenne le prix exorbitant de 1800 fr. par an pour disposer d'une force motrice d'1 CV. Quelques années plus tard, le vœu de Lullin est exaucé: non seulement les capacités de distribution du service des eaux de la Ville ont passé de 25 000 l/min en 1880 (ancienne machine hydraulique) à 50 000 l/min dès 1886 (Coulouvrenière), mais le prix d'une force motrice d'1 CV ne s'élève plus qu'à 400 fr. par an. Des conditions favorables pour l'industrie genevoise, qui se

⁷ Jean Pronier, Le cinquantenaire du Service de l'électricité, Genève 1946, p.13; Christian Félix, Les Services industriels de Genève, Genève 1935.

⁸ Sur le développement du secteur de l'électromécanique à Genève, notamment Paquier (voir note 5), p. 425 ss.; Doron Allalouf, Genève à la fin du XIX^e siècle. Emploi de nouvelles formes d'énergie et industrialisation, mémoire de licence, Genève 1991, p. 20 ss.; Gilles Forster, Une entreprise romande d'électrotechnique face aux difficultés de l'entre-deux-guerres. Le cas de la Société anonyme des Ateliers de Sécheron, mémoire de diplôme, Genève 1996.

⁹ Allalouf (voir note 8), p.83, 93.

¹⁰ Edouard Lullin, Rhône et Arve. Notice sur le développement du service des eaux et de l'industrie en général à Genève, Genève 1876.

¹¹ H.-J. Gosse, Notes et croquis techniques sur Genève, Genève 1892, p. 15.

traduit notamment par la croissance du nombre de moteurs hydrauliques. En 1886, on note la présence de 28 moteurs alimentés par le réseau à haute pression de la Ville; en 1895, on en compte 195 et plus de 140 alimentés par le réseau à basse pression. ¹² Durant les années de la Grande Dépression, sous l'impulsion de Turrettini, la Municipalité mène une politique anticyclique qui, même si elle n'est pas entièrement consciente, revêt néanmoins plusieurs avantages et illustre les liens d'interdépendance entre économie et énergie. La diminution du prix de la force hydraulique permet ainsi d'éviter à l'industrie genevoise de ressentir les effets du début de crise énergétique que connaît la Suisse pendant la période des grèves minières du début des années 1890. ¹³ A cette date, les moteurs hydrauliques, très répandus notammnent dans le secteur horloger, ont largement pris le pas sur les machines à vapeur dans l'industrie genevoise.

La contrepartie à cette politique d'investissement est cependant une dette municipale qui s'accroît. A la fin des années 1880, le coût de l'usine de la Coulouvrenière assumé par la Ville représente près de deux fois les recettes municipales d'un exercice normal de ces années. 14 Mais cet endettement, lié à la construction d'infrastructures d'énergie, est un pari conscient sur l'avenir: on pressent la rentabilité future de ces installations. Dès la fin des années 1870, lorsque est entamé le débat sur la construction d'une usine hydraulique, deux alternatives s'opposent. La première, qui verrait une usine établie et gérée par une compagnie privée obtient la faveur des radicaux au pouvoir. La seconde, défendue notamment par le directeur du service hydraulique municipal, Emil Merle d'Aubigné, et ThéodoreTurrettini dès son accession au conseil administratif, prévoit l'établissement d'une usine municipale. ¹⁵ Le mémoire rédigé par Merle d'Aubigné en 1883 admet ainsi que l'investissement de départ est important, mais prédit également que le Service des eaux produit ensuite, sur le long terme, des bénéfices conséquents. Les chiffres lui donnent raison. En 1889, trois ans après la mise en service de l'usine de la Coulouvrenière et alors même que toutes les turbines ne sont pas encore en fonction, le bénéfice net s'élève déjà à près de 140 000 fr. 16 Dès 1896 et la municipalisation de l'usine à gaz, les trois énergies – eau, gaz, électricité – des Services industriels de Genève (SIG), génèrent près de 30% des recettes totales de la Ville.¹⁷

- 12 Paquier (voir note 5), p. 362, 380.
- 13 D. Marek, Charbon, chap. 2: Importation et consommation, in: DHS, version du 17 août 2007 (traduit de l'allemand), www.hls-dhs-dss.ch/textes/f/F47174-1-2.php.
- Entre 1885 et 1890, les recettes municipales sont stables, oscillant autour de 2,5 millions de francs. Comptes rendus financiers de la Ville de Genève, années 1885 à 1890.
- 15 Ville de Genève, Rapport présenté à la commission de l'utilisation des forces motrices du Rhône par M. le conseiller administratif Turrettini, président de la commission technique, Genève 1^{er} septembre 1883, p.34 s.
- 16 Paquier (voir note 5), p. 379.
- 17 Duc (voir note 1), p. 84.

La période des deux guerres mondiales: les aléas de la dépendance charbonnière

A la veille du premier conflit mondial, la principale infrastructure de production d'électricité sur sol genevois est l'usine de Chèvres. Entre son inauguration en 1896 et le début du siècle, ses capacités de production sont considérablement renforcées. Elles s'avèrent cependant insuffisantes durant les pointes d'utilisation et tout particulièrement durant l'étiage des mois d'hiver. En 1905, les SIG augmentent leur capacité de production d'électricité en construisant une usine thermique «de secours», fonctionnant au charbon.

La dépendance charbonnière est encore accrue par l'importance du gaz de houille, notamment pour le chauffage et la cuisine. Après l'explosion de l'usine à gaz en 1909, Genève se dote, dès 1914, d'une nouvelle usine ultramoderne dans sa périphérie, engloutissant une centaine de tonnes de charbon par jour. 18

Le recours à une source d'approvisionnement étrangère n'est pas spécifique à Genève. En 1910, la Suisse consomme l'équivalent de 29 milliards de kWh, toutes formes d'énergie confondues, dont plus de 90% proviennent de combustibles lourds, avant tout du charbon. Toute interruption de la filière d'approvisionnement entraînerait des conséquences sociales et économiques dramatiques.

Cette situation de dépendance n'inquiète cependant pas les autorités, aussi longtemps que l'approvisionnement est assuré et le prix du charbon supportable. Ainsi, en 1912, lorsque les promoteurs de la future usine hydroélectrique de Chancy-Pougny, sur le Rhône franco-suisse, proposent de vendre à la Ville de Genève une quantité fixe du courant à venir à un prix préférentiel, le conseiller administratif Gampert rétorque sèchement: «[...] Nous avons la conviction qu'avec la force encore disponible à Chèvres [...] et avec notre usine à vapeur que nous venons de renforcer d'une puissance de 3000 HP, nous pourrons pourvoir encore pendant longtemps au développement normal de nos services. [...]»²⁰ Dotée à l'origine d'une seule turbine de 670 kW, l'usine thermique est équipée de deux nouvelles turbines en 1912 et 1916, développant une puissance de 7000 kW.²¹ Dans le schéma d'approvisionnement en électricité de Genève, l'usine thermique perd peu à peu son rôle d'usine de secours et ses installations fonctionnent en permanence à plein régime. Durant la Belle Epoque, le coût de production de l'électricité thermique est par ailleurs le principal

¹⁸ Services industriels de Genève, Notice historique et technique, Genève 1934, p. 17.

¹⁹ Eric Georges, Problèmes énergétiques suisses et voies nouvelles, in: Bulletin mensuel de la Société suisse du gaz et des eaux (SSGE) 7 (1963), p. 164 s.

²⁰ Archives de la Ville de Genève (AVG), 03.DOS.163b, Lettre de M. Gampert à Hermann Cuénod, ingénieur-conseil à Genève, 27 novembre 1912.

²¹ Mémoriaux du Conseil municipal (MCM), 88, 1930-1931, p. 890; MCM, 74, 1916-1917, p. 567.

responsable du report de la construction d'une nouvelle usine hydroélectrique sur le Rhône, à Verbois.²²

Lorsqu'éclate le premier conflit mondial, la dépendance énergétique est ainsi réelle, mais ses effets négligés. D'ailleurs, durant les premières années de guerre, le prix du charbon reste relativement stable, soit environ 30 fr. la tonne. Dès 1917, il grimpe à 75 fr., pour bondir à 150 fr. en 1918. Le pic est atteint en 1920, à plus de 200 fr. la tonne.²³ Le renchérissement et les difficultés d'approvisionnement d'un combustible provenant en grande partie de mines allemandes dont la production se fait désormais au compte-gouttes, enjoint le Conseil fédéral à imposer un strict contingentement: dès 1917, la production d'électricité à partir du charbon est interdite. Les usines thermiques sont paralysées et les usines à gaz suisses diminuent volontairement leur production de 25% par rapport à 1916.²⁴ En ville de Genève, la situation des petits ménages devient dramatique. On commence à souffrir de la faim, non pas en raison du manque d'aliments, mais bien plus en raison des difficultés à les faire cuire. Le Conseil administratif fixe à 20 m³ par mois la quantité de gaz allouée à chaque abonné, une diminution importante si l'on considère qu'en 1915 la consommation moyenne par abonné s'élevait à près de 35 m³ par mois. En 1917, alors que le froid provoque des pointes dans l'utilisation du gaz de chauffage, les autorités envisagent d'interdire les chauffe-bains afin de réserver le gaz au seul usage de la cuisine.²⁵ En 1919, les arrivées de charbon allemand cessent totalement. La quantité de gaz distribuée est fixée à 12 m³ par mois pour un ménage d'une personne. ²⁶ Dérivé de la distillation du charbon dans les usines à gaz, le coke, très répandu pour le chauffage des logements, manque également.

Les responsables de l'approvisionnement tentent de trouver des solutions alternatives. Ainsi, entre février et avril 1918, la Ville de Genève engage la somme considérable de 450 000 fr. pour procurer à son usine à gaz des produits de distillation locaux de substitution: charbon des mines de Semsales (FR); tourbe de Chavornay (VD), des Ponts-de-Martel (IIRI) ou de la vallée de Joux (VD).²⁷ Parallèlement, en janvier 1917, la Ville de Genève participe pour un million de francs au capital de la Centrale des charbons SA, compagnie fondée à l'instigation du gouvernement fédéral, afin

²² Cela ressort clairement à la lecture des raisons qu'évoquent le conseil administratif dans le refus de recourir à l'achat d'hydroélectricité en provenance de Chancy-Pougny. MCM, 74, 1916-1917, p.535.

²³ Serge Paquier, La S.A. Energie-Ouest-Suisse de 1919 à 1936, mémoire de licence, Genève 1988, p.9, 98.

²⁴ Sur cette période, W. Grimm, Die Gasversorgung der Schweiz während der Kriegszeit, in: Bulletin mensuel de la SSGE 7 (1921), p. 136 s.

²⁵ MCM, 74, 1916-1917, p. 682 s.

²⁶ AVG, 03.DOS.82 C, Tableau des denrées monopolisées (29 janvier 1919).

²⁷ MCM, 75, 1917-1918, p. 707; ibid., p. 938 ss.; MCM, 76, 1918-1919, p. 53 ss.

d'avancer les fonds nécessaires à l'achat de charbon à l'Allemagne. Cette prise de participation doit garantir à Genève 11 000 tonnes de charbon allemand par semestre. A défaut de modifier, sur le long terme, la répartition des énergies consommées à Genève, les difficultés d'approvisionnement en charbon de la Première Guerre mondiale amorcent un changement dans les mentalités des autorités. En décembre 1918, Genève participe pour 625 000 fr. au capital d'établissement de l'entreprise Energie Ouest Suisse (EOS), dont la première tâche est d'établir une ligne à haute tension entre Lausanne – qui dispose d'une usine hydroélectrique de capacité suffisante sur le Rhône, à la hauteur de Saint-Maurice (VS) – et Genève. L'interconnexion des réseaux électriques débute ainsi dès l'après-guerre, au moment même où les autorités genevoises font un bilan désastreux de la «dépendance économique dans laquelle nous nous sommes placés, sous le rapport du charbon, vis-à-vis de l'Etat [soit l'Allemagne] qui seul pouvait nous la fournir en quantité à peu près suffisante».

Dans les faits, durant l'entre-deux-guerres, la volonté d'opérer le transfert de l'électricité thermique vers l'hydroélectricité qu'affichent les autorités au lendemain de la Première Guerre mondiale vient buter sur l'idéal d'indépendance énergétique qui anime ces mêmes autorités. La situation du marché des capitaux au lendemain de la guerre renvoyant la construction d'une nouvelle usine hydroélectrique sur le Rhône à des jours meilleurs, le service de l'électricité préfère apporter plusieurs améliorations des capacités de production de l'usine thermique, plutôt que d'entièrement miser sur le courant d'EOS, dont on craint encore les interruptions dans le transport haute tension. Dans l'esprit des responsables du service de l'électricité, une énergie produite localement, fusse-t-elle moyennant du charbon ou du pétrole, vaut mieux que l'hydroélectricité transportée sur une centaine de kilomètres entre Lausanne et Genève. On aboutit à cette situation paradoxale qu'en 1942, deux ans avant la mise en service de la nouvelle usine hydroélectrique de Verbois, la Ville de Genève a payé, depuis le début des années 1920, 22 millions de francs à EOS pour acheter environ 1 milliard de kWh, dont 430 millions sont restés inutilisés.³⁰

Malgré les restrictions de la Grande Guerre, la dépendance charbonnière n'est ainsi pas éliminée pour la production d'électricité. Face à la progression exponentielle de la consommation annuelle d'énergie électrique, le service de l'électricité doit parer au plus urgent, dans l'attente de la mise en service de Verbois. A côté d'EOS, l'électricité thermique fait ainsi partie intégrante de sa stratégie. La croissance de la consommation d'électricité est d'autant plus forte que l'on assiste à un transfert

²⁸ MCM, 75, 1917-1918, p.582 ss. Sur la Centrale des charbons SA, cf. Malik Mazbouri, Capital financier et politique extérieure à la fin de la première guerre mondiale: la création de la centrale des charbons (1917) et de la Société financière suisse (1918), in: Jean-Claude Favez et al. (éd.), Les relations internationales de la Suisse, Lausanne 1998, p.45-70.

²⁹ MCM, 76, 1918-1919, p.406.

³⁰ Louis Comisetti, L'Usine de Verbois au point de vue économique et social, Genève 1943, p. 56.

énergétique du gaz vers l'électricité, l'industrie du gaz ayant été malmenée par les restrictions de la guerre. Durant l'entre-deux-guerres, si le gaz parvient à se maintenir, notamment pour la cuisine, il sera en grande partie évincé durant la Seconde Guerre mondiale. Dès septembre 1944, lorsque les livraisons de charbon à la Suisse cessent complètement, les situations dramatiques qu'avait connues Genève à partir de 1917 se répètent: en plein hiver 1944-1945, des ménages qui dépassent leur contingent se voient couper le gaz une cinquantaine de jours. Dès le printemps 1945, l'installation de réchauds électriques prend définitivement le pas sur les cuisinières à gaz. Il n'est toutefois pas vain de rappeler qu'en 1950, la Suisse dépend encore essentiellement du charbon pour son approvisionnement énergétique, qui représente 42% de la consommation énergétique globale, contre 25% pour les produits pétroliers, 12% pour le bois et 21% pour l'électricité. 33

L'après-guerre: du mirage de l'indépendance énergétique aux économies d'énergie Dans l'après-guerre, toutes les conditions sont réunies pour que se réalise une forte poussée de l'investissement des collectivités publiques sur un marché des énergies en expansion. Les pénuries qui ont touché la Suisse pendant les deux guerres mondiales, liées tant à la dépendance vis-à-vis d'une seule source énergétique — le charbon —, qu'à l'absence de cette ressource localement, ajoutée à la peur de les voir revenir ou perdurer, ne vont plus quitter le débat énergétique. Dopés par une demande en forte croissance, ³⁴ les investissements dans la production locale se dirigent prioritairement en direction de gros projets comme les installations de la Grande Dixence (VS). L'émergence d'une nouvelle énergie, le nucléaire, ouvre des perspectives prometteuses pour le pays, car elle répond exactement aux attentes d'une production locale de grande capacité, même si la matière fissible est importée. Enfin, la croissance des «Trente Glorieuses» enrichit les collectivités publiques, propriétaires des unités de production d'énergie. Dès la fin des années 1950, les bonis budgétaires des municipalités sont de plus en plus confortables. ³⁵

A Genève, des difficultés majeures interviennent pourtant dès les années 1950. En premier lieu, la volonté des techniciens d'investir dans de nouvelles installations est freinée par les sommes astronomiques que supposent ces investissements. L'usine de Verbois, malgré le gouffre financier qu'elle a représenté, ne parviendra jamais à satisfaire la consommation locale. La Ville doit recourir à l'aide d'EOS et augmenter

- 31 MCM, 102, 1944-1945, p.614.
- 32 Ibid., p. 641.
- 33 Archives des Services industriels de Genève (ASIG), Bref coup d'œil sur l'économie électrique suisse, s.l.n.d.
- 34 Entre 1950 et 1974, alors que la population genevoise croît de 2% par année, la consommation électrique croît de 7% par an. Claude Raffestin, Peter Tschopp, Du dialogue entre scientifiques et techniciens au dialogue entre producteurs et consommateurs d'énergie, Genève 1981, p. 125.
- 35 A Genève, les premiers bénéfices comptables de la Ville datent de 1952, atteignant près de 200 000 fr. Ville de Genève, Comptes rendus administratifs et financiers, diverses années.

massivement sa participation au capital-actions de la société: elle passe de 5 millions de francs en 1946 à près de 15 millions en 1957.³⁶

Une autre difficulté, de nature politique celle-là, est à rechercher dans le conflit entre Ville de Genève et pouvoir cantonal au sujet de la propriété des installations de production d'énergie.³⁷ La Ville a été l'unique propriétaire des SIG depuis 1896. C'est elle qui a financé le rachat des réseaux de gaz et d'électricité, ainsi que toutes les installations créées depuis. Cependant, depuis 1930 et le changement de statut des SIG, modifié dans le sillage de la fusion des communes urbaines formant l'actuel territoire de la Ville de Genève, ³⁸ celle-ci n'a plus le contrôle exclusif de l'entreprise. Elle doit partager les recettes générées par la vente des énergies avec les autres communes du canton, sans toutefois faire de même avec les investissements. Un flou s'est dès lors installé sur le propriétaire final et réel des installations, disputées entre la Ville de Genève qui les paie et l'entreprise qui les exploite. La complexité de la situation découle d'une gestion partagée des SIG appartenant à toutes les communes et au canton. L'inauguration de l'usine de Verbois crispe ce conflit qui n'avait jusqu'alors eu aucune occasion d'éclater au grand jour. La Ville de Genève rechigne désormais à jouer le banquier d'une entreprise qu'elle ne contrôle plus. Les finances publiques sont saines, mais les projets d'investissement ne manquent pas (écoles, routes...). De plus, l'échéance des concessions le long du Rhône octroyées à la Ville est fixée en 1981. Impliquant les deux usines de la Coulouvrenière et de Verbois, celle-ci n'encourage pas non plus les nouveaux investissements.³⁹

Malgré la forte hausse de la demande en énergie et des finances publiques saines, Genève prend ainsi du retard dans la réalisation de nouvelles installations. C'est entre autres pour ces raisons que le projet de centrale nucléaire à Verbois, qui émerge dès la fin des années 1960, est porté par EOS et non par les SIG.

Ailleurs qu'à Genève, l'industrie nucléaire helvétique n'est toutefois guère dans de meilleures dispositions pour entreprendre des projets. Offrant un formidable potentiel énergétique, le nucléaire ne parvient pas à faire oublier les centaines de milliers de victimes des explosions de Nagasaki et Hiroshima en 1945: «La science a arraché à la nature un secret dont les forces potentielles sont si vastes que l'esprit hésite à les embrasser tant est grande la terreur qu'elles engendrent.»

Pourtant, la crainte d'une pénurie énergétique qui viendrait gripper une machine

³⁶ MCM, 108, 1950-1951, p.272; MCM, 115, 1957-1958, p.422.

³⁷ AVG, B 649, Walter Oswald, Complément à la consultation sur la situation respective de la Ville de Genève et des Services industriels quant à la question de la propriété, s.l. 1948.

³⁸ Hansjörg Roth, La fusion des communes de l'agglomération urbaine genevoise en 1930, Genève 2004.

³⁹ Marcel Roesgen, La force motrice du Rhône. Quelques péripéties de sa mise en valeur, Genève 1990, p.23.

⁴⁰ Commission de l'énergie atomique de l'ONU, 14 juin 1946. Citée par Jean-Claude Favez et al., Le nucléaire en Suisse, Lausanne 1987, p. 37.

économique tournant à plein régime explique le traitement politique particulier dont va bénéficier l'industrie nucléaire suisse. Tandis que, par le passé, les collectivités ont plutôt suivi les techniques, comme ce fut le cas avec le gaz et l'électricité, sous la pression des lobbies de l'industrie, le pays se dote d'un appareil législatif sur l'énergie atomique en 1959 déjà, avant même que l'industrie concernée n'existe en Europe. 41 La nécessité d'anticiper un développement technique économiquement très prometteur et susceptible de répondre aux pénuries, a prévalu sur les nombreuses incertitudes techniques, dont celle du traitement des déchets. Les règles posées par la loi fédérale de 1959 ont ainsi clairement vocation à empêcher la Suisse, pionnière en matière d'électromécanique au début du siècle, de rater le train de l'électronucléaire: «Il a paru à la majorité de la commission [préparant la loi de 1959] que la libre entreprise telle qu'elle est conçue en Suisse devait être chargée d'utiliser l'énergie atomique et que confiance devait lui être faite.»⁴² Hormis la société Réacteur SA, fondée par l'entremise de Walter Boveri dès 1955 et qui devient dès 1960 l'Institut fédéral de recherche en matière de réacteurs, rattaché à l'EPFZ, d'autres groupements privés unissant entreprises d'électrotechnique et distributeurs d'énergies voient le jours durant la décennie. Tous ambitionnent de créer un réacteur entièrement suisse.

Les entreprises électriques de Suisse romande et EOS en particulier mettent beaucoup d'espoir dans le centre expérimental de Lucens (VD), dont l'installation souterraine débute en 1962. Là, industriels de l'électrotechnique et militaires tentent de mettre au point un réacteur issu du savoir-faire suisse, véritable outil d'indépendance énergétique. Une expérience qui tourne court en 1969, lorsqu'un accident oblige la Confédération à fermer précipitamment l'installation souterraine qui abrite le projet. En automne 1963, puis au printemps 1965, le point culminant de la course à la réalisation de grosses unités nucléaires est atteint, lorsque six entreprises électriques d'importance nationale, auxquelles se joignent les services électriques des villes de Berne, Bâle et Zurich et les CFF publient successivement deux rapports visant à prévoir les besoins énergétiques des dix années à venir. ⁴³ Ce groupe de pression, dit des «Dix», défend fermement la construction d'installations de production, dont plusieurs centrales nucléaires. En 1968, le groupe mentionne «qu'il devient possible de construire des centrales nucléaires à des prix intéressants, si intéressants que la

⁴¹ La première centrale nucléaire à des fins commerciales est mise en service à Shippingport (Etats-Unis) en 1957. Claude Meylan, L'option nucléaire et les entreprises suisses, Berne 1983, p.36. Sur le nucléaire suisse, Favez (voir note 40); Tobias Wildi, Der Traum vom eigenen Reaktor. Die schweizerische Atomtechnologieentwicklung 1945-1969, Zürich 2003.

⁴² Mémorial des séances du Conseil national, séance du 23 septembre 1959.

⁴³ Les six entreprises sont: Aar et Tessin, Société anonyme d'électricité (Atel) à Olten; Forces motrices bernoises SA à Berne (BKW); Forces motrices de la Suisse centrale SA à Lucerne (CKW); Electricité du Laufenbourg SA (EDL); Forces motrices du nord-est de la Suisse SA à Baden (NOK) et EOS à Lausanne.

construction d'une centrale hydraulique présentant les mêmes caractéristiques de production ne s'avère préférable que dans certains cas».⁴⁴

Lorsque survient le premier choc pétrolier de 1973, la Suisse dispose déjà de trois réacteurs nucléaires: Beznau I et II (AG) et Mühleberg (BE). Malgré cela, l'industrie nucléaire n'est pas parvenue à quitter sa position défensive et défavorable, contrainte de faire face à la méfiance croissante de la population. La crise va lui offrir un argumentaire de poids, liée à la résurgence de la peur des pénuries. Le Conseil fédéral, suivit par la population suisse, ⁴⁵ reprend cet argument ⁴⁶ et décide, le 9 décembre 1973, de la construction de trois nouvelles centrales: Leibstadt (AG), Kaiseraugst (AG) et Gösgen (AG). Leur mise en service est prévue pour la fin des années 1970. En août 1975, le groupe des «Dix» reconsidère, à la lumière de la crise énergétique, les perspectives d'approvisionnement en énergie de la Suisse. Si, dans un précédent rapport de février 1973, le groupe appelait timidement de ses vœux l'édification de plusieurs centrales nucléaires, l'envolée du prix du pétrole a changé les conclusions: «Dans l'état actuel de la technique, seule la construction de centrales nucléaires sera en mesure de garantir l'accroissement suffisant de la capacité de production et de permettre la constitution des réserves indispensables.»⁴⁷

L'option nucléaire est réaffirmée par les «Dix» en 1979, quelques mois après le deuxième choc pétrolier: «L'énergie nucléaire s'avère ainsi être une solution sûre, écologique et économique, permettant de couvrir les besoins futurs de la Suisse en énergie électrique. [...] Une première centrale devrait ainsi pouvoir entrer en service pour le semestre d'hiver 1984-1985. Il en faudrait une deuxième vers la fin des années 1980.»⁴⁸

La crise énergétique de 1973 a renforcé les antagonismes entre pro et anti-nucléaires, déjà présents au tout début des années 1970. Aux vœux d'accélération des projets de centrales, approuvés par le Gouvernement suisse, répondent les premières occupations de site, tenues à Kaiseraugst dès avril 1974.⁴⁹

Quelques jours plus tard, le 7 mai 1974, une autorisation de site est octroyée par la Confédération pour le projet de Centrale nucléaire romande (CNR) à Verbois, dans

- 44 Union des centrales suisses d'électricité, Perspectives d'approvisionnement de la Suisse en électricité, s.1 1968, p.1.
- 45 Presse du 17 décembre 1973, un sondage indique que 65% des Suisses pensent que de nouvelles centrales nucléaires sont nécessaires.
- 46 A l'image du conseiller fédéral Roger Bonvin (1907-1982) qui déclare, en réponse à une interpellation demandant un moratoire: «Il faut construire de nouvelles centrales pour éviter une pénurie énergétique», Mémorial des séances du Conseil national, séance du 12 décembre 1973.
- 47 Union des centrales suisses d'électricité, Perspectives d'approvisionnement de la Suisse en électricité de 1975 à 1985, s.l. 1975, p.13.
- 48 Union des centrales suisses d'électricité, Perspectives d'approvisionnement de la Suisse en électricité de 1979 à 1990, s.l. 1979, p.19.
- 49 Cf. Patrick Kupper, Atomenergie und gespaltene Gesellschaft. Die Geschichte des gescheiterten Projektes Kernkraftwerk Kaiseraugst, Zürich 2003.

les tiroirs d'EOS depuis quelques années.⁵⁰ Il s'agit du premier des nombreux feux verts menant à l'autorisation de construire.

Ce premier jalon technique dans la réalisation de l'installation nucléaire au bord du Rhône sera également le dernier. En ouvrant le débat, la CNR va démarrer un processus qui, en quelques années, va retourner complètement le rapport de force. Fortement contesté, le projet est l'objet d'une initiative populaire lancée en 1979 qui vise à interdire le nucléaire dans le canton. Partisans et opposants luttent pendant sept ans autour du texte, avant que ce dernier ne soit soumis au peuple. Le hasard veut que la votation soit organisée en automne 1986, quelques mois après la catastrophe de Tchernobyl, entraînant l'écrasante victoire des opposants au nucléaire.

Grâce à cette initiative constitutionnelle, le canton de Genève devient, sans l'assentiment des SIG, pionnier dans les politiques d'économie d'énergie. Il faut en effet attendre septembre 1990 pour qu'une votation équivalente soit tenue au niveau suisse. Le moratoire sur le nucléaire, accepté par le peuple, démarre le programme «Energie 2000» de la Confédération. A Genève, la politique cantonale en la matière peut compter sur l'aide contrainte des SIG, au sein desquels, le conflit entre pro et anti-nucléaire tourne finalement à l'avantage des seconds.

Avec l'éloignement de la crainte des pénuries – au seuil des années 1990, les conséquences des deux crises pétrolières largement gommées de la conscience politique et populaire, l'or noir représente encore 65% de la consommation d'énergie du pays⁵² – vient la lente agonie de l'industrie nucléaire, qui va considérablement réorienter les politiques publiques en matière énergétique. Ces dernières vont entamer deux changements fondamentaux. En premier lieu, elles prônent, pour la première fois, les économies d'énergie. En contrôlant les producteurs d'énergie, les cantons et les communes créent une position paradoxale, chargée d'un côté de rentabiliser des structures en vendant des ressources, tout en mettant en place des programmes évitant cette consommation. Le développement des énergies alternatives répond à ce paradoxe, mais il représente un marché insignifiant dans les années 1980.

En second lieu, et découlant de cette position, l'appui des collectivités aux mégaprojets de centrales va être compliqué, car les énergies alternatives, dont se sont désintéressés les scientifiques depuis le XIX^e siècle, ne concernent que de petites unités de production, dont les grandes entreprises se méfient. Face au programme de la Confédération, les directeurs romands des entreprises énergétiques décident

⁵⁰ ASIG, Procès-verbaux des séances du Conseil d'Administration, séance du 27 novembre 1968, p.188.

⁵¹ ASIG, Le programme Energie 2000, Département fédéral des transports, des communications et de l'énergie, février 1991.

⁵² Forum suisse de l'énergie, Les points cardinaux des questions énergétiques, Berne 2003, p.51.

d'«opter pour une attitude positive à l'égard d'Energie 2000», 53 mais ce soutien est grevé de réserves qui laissent apparaître qu'il «n'est pas pour autant immuable». 54 La position des collectivités publiques a été sévèrement débattue entre les tenants d'une privatisation globale de la production et de la distribution d'énergie et ses opposants. Sans entrer dans cette polémique, encore très actuelle, l'un des enjeux majeurs de cette période charnière est la question du rachat aux autoproducteurs,⁵⁵ acquis, à Genève, dès la loi sur l'organisation des SI de 1992.⁵⁶ Le monopole octroyé dans la production d'énergie, issu en droite ligne du XIXe siècle, complique l'émergence d'une industrie des énergies alternatives. En obligeant l'opérateur à racheter le courant produit par des particuliers, le législateur fait bien plus qu'alléger le monopole. Il redonne au marché des énergies une forme ancienne en fissurant l'hégémonie d'une seule source énergétique. Parallèlement, le retour au local répond à un nouveau type de vulnérabilité apparue ces dernières années dans le transport du courant électrique. Les lignes à très haute tension qui parcourent l'Europe, alimentées par de très grandes centrales électriques sont devenues, au fil du temps, incompatibles avec des exigences accrues en matière de sécurité de l'approvisionnement.⁵⁷

Conclusion

Un siècle et demi d'histoire des énergies modernes à Genève a démontré les liens étroits que celles-ci entretiennent avec la socioéconomie.

Sous l'impulsion du conseiller administratif Théodore Turrettini, les installations hydrauliques, puis hydroélectriques construites durant les vingt-cinq dernières années du XIX^e siècle prennent le caractère d'une politique anticyclique digne d'un manuel d'économie d'inspiration keynésienne. La politique d'investissements de la Ville dans les énergies permet d'amortir les effets de la Grande Dépression en recourant à l'endettement public. A fortiori, tout en amorçant la diminution séculaire du prix de l'énergie pour les ménages et les industries, cette politique entraîne également le développement du secteur de l'électromécanique genevoise.

Avec la Belle Epoque, l'étroite imbrication entre énergies et socioéconomie, carac-

- 53 ASIG, Conférence des directeurs romands (CDR), Energie 2000, proposition des entreprises électriques membres de la CDR, note CDR 91-6, 8 octobre 1991.
- 54 Ibid. A noter que cette réserve a été ajoutée au projet de note adressée pour consultation aux membres de la conférence le 13 septembre 1991.
- 55 Le rachat aux autoproducteurs consiste à casser sous certaines conditions le monopole de production d'énergie, en obligeant l'opérateur disposant de ce monopole à racheter les énergies produites par des installations privées (installation photovoltaïque de toiture, par exemple).
- 56 Recueil des lois de la République et Canton de Genève, loi sur l'organisation des Services industriels, adoptée le 9 avril 1992, article 1, alinéa 3.
- 57 Rainer Bacher, A quoi ressemblera le réseau électrique du futur?, in: Energeia, 2, avril 2008, p. 8 ss.

téristique du XX° et du début du XXI° siècle, subit une accélération que rend compte notamment la croissance exponentielle de la consommation d'énergie, dont les utilisations sont, dès le tournant du siècle omniprésentes, aussi bien pour éclairer les rues que pour faire fonctionner l'industrie et améliorer sans cesse le confort des logements. A Genève, la consommation d'électricité part d'un modeste 1,3 million de kWh en 1896, pour bondir à 22 millions vers 1910, 88 millions en 1930, près de 300 millions à la fin de la Seconde Guerre mondiale et dépasser le milliard dès 1970.⁵⁸ Cela sans tenir compte des autres formes d'énergie (gaz de houille, pétrole puis gaz naturel et énergies alternatives dès les années 1970-1980). Financées par les pouvoirs publics depuis la municipalisation des énergie de la fin du XIX° siècle, les infrastructures de production et de distribution ressentent peu les soubressauts conjoncturels. La crise économique qui suit le premier conflit mondial, puis la Grande Crise retardent tout de même le projet de l'usine de Verbois, dont la construction est décidée en décembre 1937, notamment en raison de taux avantageux qui permettent de contracter un emprunt dans de bonnes conditions.

A contrario, les crises énergétiques pèsent de façon de plus en plus évidente sur le système de production et la qualité de vie. Les deux guerres mondiales, puis les chocs pétroliers des années 1970 ont démontré les effets désastreux d'une politique énergétique dominée par une seule ressource, de surcroît absente de notre sous-sol. Mais, à l'image de la Grande Guerre, qui ne parvint pas à détourner la société de sa dépendance charbonnière, d'où la répétition des mêmes effets vingt-cinq ans plus tard, les chocs pétroliers des années 1970 n'ont eu que peu d'effets sur une remise en question durable de notre dépendance envers les hydrocarbures. Dans ce contexte tendu lié au passage d'une dépendance à une autre, l'électronucléaire aurait dû occuper le terrain. Même si le fonctionnement d'une centrale nucléaire requiert de l'uranium, matière absente de notre sous-sol, son approvisionnement n'est, durant les années 1970-1980, pas considéré comme problématique puisque provenant essentiellement de pays «amis». 59 Or, le nucléaire ne parviendra jamais à se départir de son image de mort et à régler le problème lancinant du retraitement des déchets. D'autre part, la loi fédérale sur l'énergie atomique de 1959, en considérant la problématique comme technique et non pas politique, annihile dans l'œuf tout débat sur la question et ne fait que renforcer l'opposition à une énergie contestée. Si le nucléaire parvient tout de même à prendre une certaine importance durant les années 1970, c'est à la faveur des chocs pétroliers et des craintes de pénurie énergétique, une situation qui se répète aujourd'hui, alors que la perspective d'un épuisement des énergies fossiles est devenue prégnante.

⁵⁸ Chiffres tirés de Duc (voir note 1), p. 106, 150.

⁵⁹ Commission fédérale de l'énergie, Rapport sur la preuve du besoin de centrale nucléaire, Berne 1981, p. 18.

Plus séduisantes que l'énergie nucléaire, dont la promotion demeure purement défensive et étroitement liée à une perspective, récurrente à travers l'histoire, de pénurie énergétique, les énergies alternatives occupent seules, dans les actuels programmes électoraux de la majorité des partis politiques, le rôle de secteur susceptible de relancer l'économie. La part que peut prendre l'investissement dans des infrastructures énergétiques lors de l'élaboration d'une politique économique anticyclique ressort en partie de l'exemple genevois: évident, bien qu'en partie involontaire dans le cas de la construction des usines de la Coulouvrenière et de Chèvres, ce rôle est certainement plus conscient, notamment dans le soutien à l'emploi, lors de la construction de l'usine de Verbois au début des années 1940. Des photographies de l'époque témoignent de la débauche de main-d'œuvre utilisée pour la pose des câbles sous-terrains ou le transport des transformateurs.⁶⁰