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Das Rätsel der abgegriffenen Seiten

Remo Bernet und Roman Wyss
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Zusammenfassung

Newcomb im 19. Jahrhundert und Benford
im 20. Jahrhundert entdeckten, dass bei
gewissen Zahlenmengen die Anfangsziffern
nicht so verteilt sind, wie man es erwarten
würde.

Diese unerwartete Eigenschaft wird an
Beispielen erläutert. Ein mathematisches
Urnenmodel wird berechnet. Die Ergebnisse
diese Modells werden mit tatsächlichen
Verteilungen verglichen.

1. Einleitung

Werden an einer Lichtampel die Fahrzeugnummern

mit Anfangsziffer Eins gezählt,
dann jene mit Anfangsziffer Zwei, Drei bis

zur Anfangsziffer Neun, so zeigt sich - anders
als erwartet-, dass die Anfangsziffer Eins
häufiger als die Anfangsziffer Zwei, die Zwei
häufiger als die Drei usw. auftritt. Ähnlich
verhält es sich, wenn man in einer Steuererklärung

die Anfangsziffern z.B. der Saldi der
Bankkonten auszählt.

Dieses seltsame Gesetz der Statistik soll
mittels eines Urnenmodells plausibel
gemacht werden.
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So ergeben sich folgende Werte (Siehe
Tabelle 1).

Newcomb publizierte seine Erkenntnisse
im renommierten <American Journal of
Mathematics^ Diese gerieten aber bald in
Vergessenheit.

Im Jahr 1938 fiel dem Amerikaner Frank
Benford bei Untersuchungen an
Logarithmentafeln die seltsame Verteilung wiederum
auf. Er publiziert die Erkenntnisse neuerlich.
Um dem Urheber der Entdeckung Rechnung
zu tragen, nennt man das Gesetz heute <New-
comb-Benford-Law>.

Benford erkannte, dass es auch Datensätze
gibt, die dem Gesetz nicht gehorchen. So

schränkte er die zu untersuchenden Zahlensätze

ein: Die sogenannten <unregelmässigen
Zahlen* durften weder Natur-konstanten
noch ganz zufällig sein (wie z.B. in einem
Lottospiel). Genauso wenig wie Newcomb
vermochte er die seltsame Verteilung zu
erklären.

3. Anwendungen

Das Gesetz von Benford und Newcomb hat
in den letzten Jahren an Bekanntheit gewonnen.

Die Fälschungen im Rechnungswesen
der Grosskonzerne Enron und Worldcom
wurde nachgewiesen, indem gezeigt wurde,
dass die Häufigkeitsverteilung der Anfangsziffern

der Zahlen nicht dem Gesetz von
Benford und Newcomb gehorchte. Beim
Erfinden* von Zahlen neigen Menschen offen-

Anfangsziffer z 1 2 3 4 5 6 7 8 9

Auftretenswahrscheinlichkeit in % 30.1 17.6 12.4 9.69 7.91 6.69 5.79 5.11 4.57

Tabelle 1

Anfangsziffer z 1 2 3 4 5 6 7 8 9

Auftretenswahrscheinlichkeit
gemäss Urnenmodell in %

33.3 21.3 15.7 12.5 10.4 8.86 7.74 6.86 6.17

Tabelle 2:

Wahrscheinlichkeiten im Urnenmodell.
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Abbildung 1:

Simon Newcomb

2. Geschichte des Gesetzes von Newcomb
und Benford

Im 19. Jahrhundert entdeckte der
kanadischamerikanische Mathematiker und Astronom
Simon Newcomb (Abbildung 1), dass die
vorderen Seiten von Logarithmentafeln
abgegriffener waren als die hinteren. Er fand
heraus, dass Mantissen mit der Anfangsziffer
1 häufiger vorkommen als jene mit der
Anfangsziffer 2, jene mit der Anfangsziffer 2

häufiger als jene mit der Anfangsziffer 3 usw.
Anschliessend fand er diese Gesetzmässigkeit

bei vielen anderen Datensätzen: Bei
Sterbetafeln, Körperlängen, Flusslängen usw.
Obwohl er die Verteilung der Wahrscheinlichkeiten

nicht erklären konnte, gelang es

ihm trotzdem, die Wahrscheinlichkeiten zu
berechnen: Für die Wahrscheinlichkeit p(z),
dass eine Zahl mit Anfangsziffer z gezogen
wird, gilt:

P(z)=log10(l+i)
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sichtlich dazu, die Anfangsziffern so zu wählen,

dass sich ihre Häufigkeitsverteilung
deutlich von der Verteilung von Benford und
Newcomb abhebt. Heute versucht man,
Steuersündern systematisch auf die Schliche zu
kommen, indem man diese spezifische
Verteilungen der Anfangsziffern von Zahlen
ausnützt.

Der genaue Grund der Verteilung ist bis
heute noch nicht erklärt! Es gibt nur Ideen
und Thesen, die mit <Offensichtlichkeit>
argumentieren. Das Problem dieser <neuen>

Verteilung ist, dass man bis noch vor Kurzem
die Normalverteilung im Gauss sehen Sinne
als stärkste und überwiegende Verteilung
betrachtet hat.

Es wird nun ein Modell betrachtet, das diesen

Sachverhalt veranschaulichen soll.

4. Urnenmodell

Ausgegangen wird von einem Topf, welcher n

Kugeln enthält. Die Kugeln sind von 1,2,3,4,
n numeriert. Es wird nun eine Kugel gezogen

und die Anfangsziffer der Kugelnummer
betrachtet. Gesucht ist die Wahrscheinlichkeit,

dass die gezogene Kugel die Anfangsziffer
1,2,3,..., 9 aufweist.

Die Lösung des Problems soll anhand der
Anfangsziffer 1 illustriert werden:

Die Idee zur Lösung des Problems ist, das
Intervall [l,n] in Teilintervalle zu zerlegen.
Die Teilintervalle werden so gewählt, dass in
den jeweiligen Teilintervallen alle aufeinander

folgenden Zahlen mit der Anfangsziffer
1 enthalten sind. Folgt auf eine Zahl mit der
Anfangsziffer 1 eine Zahl ohne diese
Anfangsziffer, bildet man das nächste Teilintervall

mit allen aufeinander folgenden Zahlen
ohne die Anfangsziffer 1. Das ergibt dann
folgende erste Teilintervalle:

1

[2,3,4,..., 9]
[10,11,12, ...,19]
[20,21,22, ...,99]
[100,101,102, ...,199]
usw.

Abbildung 2:

Die Wahrscheinlichkeitsfunktion hat
lokale Maxima und Minima.

Anfangsziffer Anzahl
Rel.
Häufigkeit

Urnenmodell Benford und
Newcomb

1 200 72.2% -16.7% -30.1%

2 39 14.1% -16.7% -17.6%

3 16 5.8% -16.7% -12.5%

4 14 5.1% -16.7% -9.7%

5 3 1.1% -16.7% -7.9%

6 5 1.8% -11.7% -6.7%

7 0 0.00% 0.00% -5.8%

8 0 0.00% 0.00% -5.1%

9 0 0.00% 0.00% -4.6%

Tabelle 3:

Wahrscheinlichkeiten der
Anfangsziffern von Flusslängen.

Hat man die Regelmässigkeit der
Teilintervalle erkannt, so ist es möglich, die
Wahrscheinlichkeit p(n), dass die Kugel eine Zahl
mit Anfangsziffer 1 trägt, in Abhängigkeit
von n zu berechnen. Aus der Grafik wird
ersichtlich (Abbildung 2), dass die
Wahrscheinlichkeitsfunktion p lokale Maxima und
Minima annimmt. Mit wachsendem n streben
die Minima gegen 1/9, die Maxima gegen 5/9.
Wählt man nun den Durchschnitt 2/3 der beiden

Grenzwerte, so liegt dieser Wert nahe
beim Wert gemäss dem Gesetz von Newcomb
und Benford.

p(l)=logI0(l+I)=0.301

Analog erhält man für die übrigen
Anfangsziffern (Siehe Tabelle 2).
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5. Zwei Beispiele zur Veranschaulichung der
seltsamen Gesetzmässigkeit

Es werden die Anfängsziffern der Länge
der 277 längsten Flüsse der Erde untersucht
(Tabelle 3). Die Verteilung der Anfangsziffern

gehorcht weder genau dem Gesetz von
Benford und Newcomb noch dem
Urnenmodell. Tendenziell ist aber doch eine
Ähnlichkeit mit dem Gesetz von Benford und
Newcomb erkennbar.

Im zweiten Beispiel wird die Fibonacci-
Folge betrachtet. Diese Folge lautet: 1,1,2,3,
5,8,13,21,...
Allgemein wird die n-te Zahl der Folge
berechnet, indem die Summe der beiden
vorhergehenden Zahlen gebildet wird. Die Zahl
5 erhält man aus 2 + 3.

Es werden die Anfangsziffern der ersten
300 Fibonaccizahlen betrachtet (Abbildung
5).

Bei den ersten 300 Zahlen der Fibonacci-
Folge findet man eine sehr gute Übereinstimmung

zwischen den ausgezählten Häufigkeiten

und der Verteilung von Benford und
Newcomb. Das Urnenmodell beschreibt die
relativen Häufigkeiten relativ gut für die
Anfangsziffern 6,7,8 und 9.
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Anfangsziffer Anzahl Rel
Häufigkeit

Urnenmodell Benford und
Newcomb

1 91 30.3% -50.0% -30.1%

2 53 17.7% -15.0% -17.6%

3 38 12.7% -5.0% -12.5%

4 27 9.0% -5.0% -9.7%

5 25 8.3% =5.0% -7.9%

6 19 6.3% -5.0% -6.7%

7 17 5.7% -5.0% -5.8%

8 17 5.7% -5.0% -5.1%

9 13 4.3% -5.0% -4.6%

Tabelle 4:

Wahrscheinlichkeiten der Anfangsziffern
der Fibonacci-Folge.
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