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Zusammenfassung

Erste künstliche neuronale Netze wurden
um 1960 ursprünglich entwickelt, um die
Funktionsweise des menschlichen Gehirns
besser zu verstehen. Dieses Vorhaben erwies
sich als enorm schwierig und ist auch heute
noch längst nicht abgeschlossen. Parallel
dazu wurden künstliche neuronale Netze
benutzt für Aufgaben aus Industrie und Technik,

die kaum algorithmisch lösbar sind, für
die aber Lösungsbeispiele vorliegen. Klassifikation,

Mustererkennung und Prognose von
Zeitreihen sind typische Probleme, die sich

mit neuronalen Netzen gut lösen lassen.

Nach einer historischen Einleitung wird
eine kurze Theorie des am häufigsten
eingesetzten Netzwerk-Typs, des Multilayer-Per-
ceptrons präsentiert. Daran schliesst sich ein
Einblick in industrielle Projekte an, die an
der Hochschule für Angewandte
Wissenschaften St.Gallen durchgeführt wurden.

1. Geschichte

Die Entwicklung der elektronischen
Datenverarbeitung liest sich wie eine einzige grosse
Erfolgsgeschichte. Was im zweiten Weltkrieg
mit dem Versuch begann, deutsche
Funksprüche zu entschlüsseln, ist zu einer Techno-

Dr. Angela Fässler, NTB Interstaatliche Hochschule für Technik,
Campus Waldau, Schönauweg 4, CH-9013 St.Gallen
Dr. Marcel Loher, FHS Hochschule für Angewandte Wissenschaften, Tellstrasse 2, CH-9001 St.Gallen
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logie geworden, die Beruf und Alltag in
einem Ausmass prägt, das damals unvorstellbar

war. Anfänglich wurden die Rechner mit
elektromechanischen Relais aufgebaut, kurze
Zeit später mit Elektronenröhren und ab

etwa 1960 mit integrierten elektronischen
Schaltungen. Entscheidend war dabei die
Erfindung des Transistors um 1947, die Shock-
ley, Bardeen und Brattain den Physik-Nobelpreis

einbrachte. Rechengeschwindigkeit
und Zuverlässigkeit nahmen sprunghaft zu,
die Kosten ab. MOORE (1965) formulierte
die nach ihm benannte Regel, dass die
Transistordichte sich alle 18 Monate verdoppelt.
Weshalb diese Regel volle weitere 40 Jahre

gültig bleiben sollte, ist selbst für ihren Urheber

unerklärlich.
In dieser Zeit hat sich die Rechnerleistung

(gemessen in Fliesskomma-Operationen pro
Sekunde) um den unglaublichen Faktor 107

vergrössert. Und der Nutzen? Bereits 1955

wurde von MCCARTHY, MINSKY, ROCHESTER

UND SHANNON (1955) gefordert,
dass 10 Männer während 2 Monaten
alle Aspekte des Lernprozesses und menschlicher

Intelligenz beschreiben sollen, so dass

anschliessend intelligentes Verhalten auf
einem Rechner simuliert werden kann. Rechner

sollten nicht nur schneller, sondern auch

intelligenter werden. Die gleiche Gruppe hat
den Begriff <künstliche Intelligenz> geprägt.

2, Natürliche Neuronale Netze:
biologische Vorbilder

Die Idee, gehirn-ähnliche Funktionen
vereinfacht auf dem Rechner nachzubilden,
wurde schon 1943 von McCullochs und Pitts
geäussert (MCCULLOCH-PITTS 1943), wurde

aber mangels technischer Möglichkeiten
nicht realisiert. Erst 1957 wurde ein erster
Rechner, dessen Architektur sich an biologischen

Vorbildern orientierte, zur
Mustererkennung eingesetzt. Die Motivation ist
einleuchtend, denn das Gehirn selbst von
niederen Tieren erbringt erstaunliche
Leistungen: Eine Stubenfliege fliegt, weicht einem

Hindernis aus, pflanzt sich fort. Ein
konventioneller Rechner hingegen war gerade mal
in der Lage, zwei Speicherzellen zu addieren
und den Inhalt von einer Speicherzelle in die
andere zu verschieben - das allerdings sehr
schnell und zuverlässig. Offensichtlich nutzt
die Natur die beschränkte Hardware sehr
effizient.

Schnell wurde klar, dass selbst das

Stubenfliegengehirn viel zu komplex ist, um als
Ganzes auf einem Rechner abgebildet zu
werden. Es konnte also nur darum gehen,
Konzepte und Strukturen des biologischen
Vorbilds zu übernehmen und daraus radikal
vereinfachte <künstliche neuronale Netze>

zu entwickeln. Nichtsdestotrotz - die Parallelen

zwischen künstlichen und natürlichen
neuronalen Netzen sind frappant:

Wie das biologisches Gehirn ist auch das
künstliche neuronale Netz aus einfachen
Elementen - Neuronen - aufgebaut. Ein
Neuron bezieht Signale von Nachbarneuronen,

die mit ihm verschaltet sind. Die
Eingangssignale werden zu einem Ausgangssignal

verarbeitet, und das Ausgangssignal
wird an weitere Nachbarneuronen weitergegeben.

Das neuronale Netz enthält freie Parameter,

die festlegen, wie das Eingangssignal zu
einem Ausgangssignal verarbeitet wird. Der
Vorgang, die Parameter zu bestimmen, wird
als <Lernen> bezeichnet. Das neuronale Netz
erhält seine Funktionalität nicht durch explizite

Programmierung, sondern durch Lernen
an Beispielen.

3. Mathematischer Hintergrund

Weil künstliche Neuronen auf sehr
unterschiedliche Weise miteinander verbunden
werden können, ist eine unübersehbare
Menge von Netzwerktopologien entstanden.
Meist werden diese eingeteilt in:

* überwacht lernende und nicht überwacht
lernende sowie
rückgekoppelte und nicht rückgekoppelte
neuronale Netze.
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Aus Platzgründen beschränkt sich diese
Arbeit auf Multilayer Perceptrons (MLP), einen
Vertreter der überwacht lernenden, nicht
rückgekoppelten Netze. MLPs sind die am
besten untersuchten und am häufigsten
eingesetzten neuronalen Netze.

In der oben erwähnten Arbeit von
MCCULLOCH, PITTS (1943) arbeiteten zwei
Fachleute aus Neurophysiologie und Mathematik

zusammen, um nach dem Vorbild
biologischer Neuronen ein einfaches mathematisches

Neuron zu modellieren, welches mit
anderen solchen Neuronen via synaptische
Verbindungen kommunizieren kann.

3.1 Netzarchitektur

In heutiger Darstellung (vergleiche zum
Beispiel HAYKIN (1995)) wird ein mathematisches

Modell-Neuron wie in Abbildung 1

veranschaulicht.
Inputs xp x2,xn von anderen Neuronen

werden verarbeitet zu einem Output y. Allerdings

werden nicht alle Inputs gleich stark
gewichtet. Beschreibt man die Verarbeitung
mit Hilfe einer so genannten Aktivierungsfunktion

f (oft auch Transferfunktion
genannt) und die Gewichtung mit Zahlen wp

w2,..., wn so lautet die mathematische Notation

für dieses Neuronen-Verhalten:

y=f(wj xI + w2-x2 +... + wn xj
In Anlehnung an das biologische Vorbild

soll das Modellneuron nur dann einen
Ausgabewert liefern, wenn alle Inputs zusammen
eine gewisse Grenze (Schwellwert oder Bias
genannt) überschritten haben. Wie in Abbildung

2 gezeigt, wird der Output des Neurons
erst dann zu Eins, wenn der Gesamtwert u
aller Inputs den Wert b übersteigt.

In mathematischer Notation ausgedrückt:
Für u=Wj Xj + w2 x2 +... + wn xn ist

_ 0, wenn u<b
1, wenn u^b

MCCULLOCH und PITTS nennen dies
ein < Alles-oder-nichts>-Ereignis: Das Neuron
gibt einen Impuls weiter - oder nicht.

Allerdings verursachen solche unstetigen

Abbildung 1:

Mathematisches Modell-Neuron.

Abbildung 2:

Neuron-Aktivität ab einer gewissen Grenze b.

y

l
1 /c=8

c=50

t
u

Abbildung 3:

Approximation der Neuron- Aktivität.
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Abbildung 4:

Zusammengeschaltete mathematische
Modell-Neuronen.

Abbildung 5:

Ein erstes vollständiges Multilayer
Perceptron (MLP).

Funktionen Probleme, weil sie nicht ableitbar

sind. Deshalb wird die oben eingeführte
Funktion angenähert durch:

1_
y ~

1 + e~c ,"'b>

für eine geeignete Zahl c. Wie Abbildung 3

zeigt, wird diese Approximation mit c=50
schon recht gut - und umso besser, je grösser
c gewählt wird. Oft ist ein gradueller Übergang

vom Funktionswert 0 auf 1 geradezu
erwünscht. In solchen Fällen wird c als freier
Parameter betrachtet, der an die konkreten
Anforderungen angepasst wird.

Die eben verwendete Funktion heisst
logistische Funktion oder Fermi-Funktion:

f(u)= —^—
n 7

1 + er"

In technischen Anwendungen wird die
Fermi-Funktion oft ersetzt durch y=tanh u.
da deren Punktsymmetrie in Bezug auf den
Koordinatenursprung mitunter als Vorteil
betrachtet wird.

Nun werden die einzelnen Neuronen zu
einem Netz zusammengeschaltet. Dabei
kann der Output eines Neurons an verschiedene

andere Neuronen weitergegeben werden.

Je nach Art und Weise wie das geschieht,
entsteht eine andere so genannte
Netzwerkarchitektur. Im Folgenden wird hier nur eine
Bauart betrachtet, die eines Multilayer-
Perceptrons (kurz: MLP): Neuronen werden
schichtweise angeordnet und jede Schicht
liefert ihre Outputs an die nächste Schicht
vorwärts wie in Abbildung 4 gezeigt. Die In-
put-Schicht enthält hier 3 Neuronen, die
nächste - so genannte verdeckte Schicht - 5

Neuronen und die Output-Schicht 2
Neuronen.

Die Anzahl der Neuronen pro Schicht ist

beliebig und es können auch mehrere solcher
verdeckter Schichten auftreten. In technischen

Anwendungen wird die Aktivierungsfunktion

in der ersten (und oft auch in der
letzten) Schicht abgeändert zur Identität
f(u)=u.

Für jede der gezeichneten synaptischen
Verbindungen existiert gemäss obigen
Ausführungen eine Zahl, die für die Gewichtung

0.8

Î.,' 0.6

S. 0.4-

0.2

450 500 550 600 650

Wellenlänge (nm)

yi
y2

Abbildung 6:
Messwerte aus einer geeignet vorbereiteten
Blutprobe (nach PURD1E et al. [1992]).
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dieser Verbindung zuständig ist, und für jedes
Neuron der Input-Schicht sowie jedes der
verdeckten Schicht(en) eine Zahl, die den

zugehörigen Bias beschreibt. Zusammen mit
der Festlegung der Transferfunktionen ist
damit das MLP vollständig festgelegt. Abbildung

5 zeigt ein einfaches, rein theoretisches
Beispiel - sozusagen als Fingerübung. Synapsen,

welche von grau gezeichneten Neuronen
ausgehen, enthalten dabei die Bias-Werte.

Bezeichnet man die Fermifunktion mit /,
so lautet die rechnerische Vorschrift für
dieses einfache Netz schon recht kompliziert:

y=0.1 + 4 f(2 + 0.5x, + Ixf) -
2 '/(-1+3X, + 0.3x,)

0.1+ 4 - 2_
\ _|_g-2-0.5xr7x, J +gl-3x1-0.3x,

3.2 Eine typische Aufgabenstellung für
Multilayer-Perceptrons

Obwohl das bisher dargestellte mathematische

Modell die Vernetzung biologischer
Neuronen nur sehr rudimentär erfasst, ist es

doch schon in der Lage, gewisse schwierige
Probleme der Praxis immerhin näherungsweise

zu lösen. Mit dem Begriff <näherungs-
weise> ist auch gleich angedeutet, dass
Neuronale Netze nur dann zur Anwendung
kommen sollen, wenn keine andere, exakte
Theorie zu einer Lösung verhilft. Die
folgende Problemstellung zeigt eine typische
solche Situation:

In vielen Zusammenhängen sind benötigte
Messwerte nur sehr schwierig oder teuer

zu bekommen und man würde sich
wünschen, diese Werte rechnerisch voraussagen
zu können aus Messgrössen, welche auf
einfacherem Weg, schnell und günstig zu
gewinnen sind. Matlab®, eine weit verbreitete
Software für die Simulation neuronaler
Netze, greift in ihrer Dokumentation (MATLAB

2005) ein Beispiel von PURDIE et al.

(1992) auf: Es wird beschrieben, wie teuer
und zeitintensiv es damals war, Cholesterol-
Mengen im Blut eines Patienten zu messen.
Sie schlugen vor, diese Werte näherungs¬

weise zu berechnen aus dem Absorptionsspektrum

einer geeignet vorbereiteten
Blutprobe. Im Detail:

Von 264 Patienten wurde eine Blutprobe
entnommen und ein Absorptionsspektrum
(Abbildung 6) gemessen. Pro Person wurden
daraus bei 21 Wellenlängen Absorptionskoeffizienten

entnommen.
Gleichzeitig wurden von denselben

Personen die Cholesterol-Werte auf die
altbekannte, aufwändige Art bestimmt. Es liegen
also zu jedem Spektrum auch die drei Werte
für very-low-densitiy, low-density und high-
density Cholesterol-Anteile vor. Gesucht ist
jetzt ein Neuronales Netz, welches aus 21

Eingängen des Spektrums drei Ausgänge mit
den Cholesterol-Werten berechnet.

Man erkennt aus der Problemstellung
sofort einen Teil der Netzarchitektur: 21

Eingänge und 3 Ausgänge. Die Anzahl der
verdeckten Neuronen ist aber noch völlig
ungewiss, ebenso wie die richtige Wahl der
Gewichte und Bias-Werte. Letzteres ist das

Thema des nächsten Abschnittes. Über die

richtige Anzahl verdeckter Neuronen hingegen

kann in diesem Rahmen nicht wirklich
eingegangen werden. Nur soviel: Für reale

Aufgabenstellungen muss sie experimentell
ermittelt werden mit Methoden der Statistik.

3.3 Backpropagation

Backpropagation als Technik zur Bestimmung

der Gewichte eines MLP beruht auf
dem in der Mathematik bekannten so
genannten Gradientenverfahren. Im Umfeld
Neuronaler Netze wurde es vor allem geläufig

durch ein Paper von RUMELHART,
HINTON UND WILLIAMS (1986). Dieses
Gradientenverfahren soll hier anhand eines

möglichst einfachen Beispiels erklärt werden

- so nämlich, dass die Überlegungen
graphisch dargestellt werden können. Rein
rechnerisch sind sie dann sehr einfach auf die
allgemeine Situation übertragbar: Anstelle von
zweidimensionalen Vektoren, wie sie hier
vorkommen werden, rechnet man mit hoch-
dimensionalen.
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Angenommen, ein neuronales Netz habe

(wie in Abbildung 7 dargestellt) je einen Ein-
und Ausgang, ein verdecktes Neuron und
keine Bias-Werte.

Weiter seien Messdaten xp xv xw gegeben

für eine einfach zu messende Grösse x
und zugehörige schwierig zu messende Werte
tv Q..., tw einer Zielgrösse t (Target), von der
man weiss, dass sie von x abhängig ist. Eine
graphische Darstellung davon könnte zum
Beispiel für Messungen, die leicht fehlerbehaftet

sind, so aussehen wie in Abbildung 8.

Die Gewichte w1 und w2 im Trivialbeispiel
sollen nun so eingestellt werden, dass dieses
Netz die gegebenen Daten einerseits gut
wiedergibt, aber auch die Messfehler einiger-
massen ausgleicht. Das Netz soll also die
Rolle eines Funktionsapproximators
übernehmen. Das heisst, es soll yi ti sein für
i=l, n. Zu diesem Zweck wird für jeden
Messpunkt der Fehler yi- f; betrachtet,
beziehungsweise sein Quadrat und alle diese
Fehlerquadrate werden aufsummiert zur
Fehlerquadratsumme (yj -1,)2 +... +(yw - tw)2.

Dieser Ausdruck ist sicher dann klein,
wenn alle Fehler klein sind. Umgekehrt:
Wenn die Summe klein ist, so müssen die
einzelnen Summanden klein sein, da jeder
Summand nur positiv oder Null sein kann. Deshalb

setzt man sich jetzt das Ziel, diesen Term
zu minimieren. Aus mathematischer Sicht ist
die Fehlerquadratsumme (SSE genannt, für
sum squared error) eine Funktion der beiden
Variablen w, und w2 deren Minimum gesucht
ist. Im Fall des obigen Trivialbeispiels kann
man die Fehlerquadratsumme graphisch
darstellen. Zu jedem Wertepaar (vv„ w2) wird der
SSE in Richtung einer dritten Koordinatenachse

aufgetragen. Die Abbildungen 9 und 10

zeigen die entstehende Fläche von zwei
verschiedenen Standpunkten aus. Weiter hat

Abbildung 10 in der w1 w2 -Ebene die
zugehörigen Höhenlinien eingetragen (wie wenn
die darüber liegende Fläche als Ausschnitt
aus einem Gebirge interpretiert würde mit
darunter liegender Karte im Massstab 1:1).

Wo liegt nun der Punkt (wv w2) mit
minimalem SSE-Wert? Die Frage ist gar nicht so

Abbildung 9:

Summe aller Fehlerquadrate SSE als
Funktion der Gewichte

346

wl w2
x—- y=net(x)

Fermifkt. Identität

Abbildung 7:

Trivialbeispiel eines Multilayer Perceptrons
(nur zu Demonstrationszwecken).

2 Y
0 1 -

J
-2 1 0 2

X

Abbildung 8:

Messdaten für Eingang x und Zielgrösse t im
obigen Trivialbeispiel.

SSE
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einfach zu beantworten, da es kein exaktes
Verfahren gibt, das für alle je auftretenden
solchen Flächen die Aufgabe löst. Man ist auf
numerische Näherungslösungen angewiesen.
Zudem sieht man in obigen Graphiken, dass

auch von Auge das Minimum nicht klar zu
finden ist: Wo in diesem dangen Tab ist denn
der tiefste Punkt?

Um das erwähnte numerische Verfahren
zu verstehen, betrachten wir ein einfacheres
Beispiel, das nichts zu tun hat mit neuronalen
Netzen: In Abbildung 11 ist eine Fläche gegeben,

von der man aus der Graphik die
Minimalstelle sofort sieht - oder mindestens
vermutet.

Die Minimalstelle scheint bei wl=0,
w2= 0 zu liegen. Das wird auch rechnerisch
sofort bestätigt, da für diese spezielle Fläche
die z-Koordinate gerechnet wurde als

SSE= 0.3 • w,2+w22. Gesucht ist nun ein
numerisches Verfahren, mit dem der Computer
diese Stelle ebenfalls findet. Man verwendet
hier Ideen, die jedermann vom Lesen von
Landkarten her kennt: Wenn man sich auf
der Karte senkrecht zu den Höhenlinien
abwärts bewegt, so hat man den Weg des

steilsten Abstiegs gewählt. Mathematisch
wird diese Idee umgesetzt durch die Berechnung

des Gradienten der Funktion
SSE(wv w2): Man wählt eine beliebige Startstelle

für den Punkt (wv w2), geht ein Stück
weit in die Gegenrichtung des Gradienten
(also senkrecht zur ersten Höhenlinie) und
berechnet dann an der neuen Stelle wieder
den Gradienten. Dieser zeigt jetzt
wahrscheinlich in eine leicht andere Richtung, und
man bewegt sich wieder ein (kleineres) Stück
weit in die Gegenrichtung des neuen Gradienten.

Durch Wiederholung dieser Idee hofft
man, sich sukzessive der Minimalstelle zu
nähern. Die Abbildungen 12 und 13 zeigen
dieses Vorgehen für den Startwert Wj=—1.8,

w2=1.5, in Abbildung 12 die zugehörige SD-

Darstellung, in Abbildung 13 nur noch das

Höhenlinienbild.

Abbildung 10:

Summe aller Fehlerquadrate SSE

(aus neuem Blickwinkel).

37

2.

SSE

1 -

o\
w2

-2 -2 wl

2

Abbildung 11:

Funktion mit leicht zu erratender
Minimalstelle.

Abbildung 12:

Gradientenverfahren zur Auffindung der
Minimalstelle (3D-Darstellung).
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Abbildung 13:

Gradientenverfahren zur Auffindung der
Minimalstelle (2D-Darstellung).

Abbildung 14:

Lerndaten zusammen mit dem Output des
trainierten Netzes.

Es bleibt nachzutragen, dass eine gewisse
Willkür nicht nur in der Wahl des

Startpunktes liegt, sondern auch darin, wie weit
man in Gegenrichtung des Gradienten vor-
wärtschreitet. In den Abbildungen 12 und 13

wurden zuerst 95% der Gradientenlänge,
dann 952% 90.25 %, 953% 85.74 %, usw.
gewählt - mit dem vorrangigen Ziel, eine
übersichtliche Graphik zu bekommen.

In mathematischer Notation lautet das

Gradienten-Verfahren:
Wähle einen Startwert für den Näherungsvektor

Wenn ein Näherungsvektor vv(n) vorliegt, so
berechnet sich der nächste Näherungsvektor
durch vv^n+ü—w>(n)— \n grad SSE (w(n))

Die Zahl \n heisst im Kontext Neuronaler
Netze Lernrate. (In obigen Beispiel war also

\,=0.95, \2= 0.952, \}=0.953,...) Das Anpassen
der Gewichte wird Lernen genannt und die
obige Formel, die besagt, wie man aus w(n>

den nächsten Satz vv(n+1) von Gewichten
berechnet, Lernregel. Die Messdaten schliesslich,

mit welchen der SSE als Funktion der
Gewichte berechnet wurde, heissen Lernmuster

oder Lerndaten. Ist das Gradienten-Verfahren

abgeschlossen, heisst das Netz
trainiert. Hinter diesen Namensgebungen steckt
die Idee, dass auch der Mensch in vielen Fällen

nur aufgrund von einzelnen Beispielen
lernt. Je mehr Beispiele vorliegen, desto besser

ist (hoffentlich oder vielleicht) der
Lerneffekt.

Professionelle Neuro-Software hat
raffinierte Varianten des Gradientenverfahrens
implementiert und wählt auch den
Startvektor für die Gewichte nicht völlig nach

Zufallsprinzip. Setzt man zum Beispiel die
Neural Network Toolbox von MATLAB®
auf das oben eingeführte Trivialbeispiel
eines Netzes an, so erhält man als Ergebnis
die in Abbildung 14 dargestellte Funktion
y(x). Die <Messdaten> (als Punkte gezeichnet)

wurden erstellt durch Verrauschen von
Funktionswerten der gestrichelten Kurve.
MATLAB findet daraus gemäss dem oben
besprochenen Vorgehen für die Gewichte
die Werte ^=3.3634, w2= 1.0217 und die

durchgezogene Kurve stellt den Output des

damit gebauten Netzes dar, also die Funktion

y=net(x).
An diesem Beispiel sind schon die ersten

Schwierigkeiten erkennbar, welche bei der

Bestimmung der Gewichte auftreten:
Bei schlecht gewählter Lernrate wird die

Lösung nicht gefunden.
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Abbildung 15:

Elektronenmikroskopische Aufnahme von
Silizium-Nanopulver (Aufnahme: EMPA Thun).

Wenn die Funktion SSE (in Abhängigkeit
von den Gewichten und Biaswerten) mehrere

lokale Minimas hat, kann es sein, dass

man - je nach Startwert - nur eine solche
Stelle findet und nicht das gesuchte absolute
Minimum der Funktion.

Zum Schluss dieses Abschnittes noch eine
Bemerkung zur Namensgebung: Im Kontext
Neuronaler Netze heisst das Gradienten-
Verfahren Backpropagation. Der Grund
dafür liegt beim mathematischen Flandwerk.
Um den Gradienten zu bilden, braucht man
die partiellen Ableitungen nach allen Variablen,

also auch nach den Gewichten der ersten

Schicht. Dabei muss die Kettenregel
verwendet werden: Man arbeitet sich beim
Ableiten von verschachtelten Funktionen
von aussen nach innen durch. Im Netz heisst
das, dass man von der Ausgangsschicht her
rückwärts rechnet bis zum entsprechenden
Gewicht. Man <back-propagiert>.

4. Industrielle Anwendungen

4.1 Herstellung von Nanopartikeln

Nanopartikel sind feste Teilchen mit Abmessungen

zwischen 1 nm und 100 nm. Im
Vergleich zum Volumen haben sie eine grosse
Oberfläche: Silizium-Pulver erreicht zum
Beispiel eine spezifische Oberfläche von weit
über 100 m2/g. Nanopartikel sind deshalb
enorm reaktionsfähig und haben völlig andere
chemische und physikalische Eigenschaften
als der Basiswerkstoff. Sie sind Ausgangsmaterial

für eine unüberblickbare Anzahl
Anwendungen in Medizin, Werkstofftechnologie,

Oberflächentechnologie und als
Katalysatoren in der Chemie. Seit etwa 2004 werden
allerdings vermehrt Risiken thematisiert -
unter anderem, weil Nanopartikel wegen
ihrer Kleinheit die Blut-Hirnschranke
durchbrechen können. (BUNDESAMT FÜR
GESUNDHEIT 2006)

Zur Herstellung von Nanopartikeln sind
eine Reihe von Verfahren entwickelt worden
(siehe PASCHEN, COENEN, FLEISCHER
(2004)). Hohe Produktionsraten - im Bereich

Gramm pro Minute - werden in heissen
Flammen erreicht. In einem Forschungsprojekt

optimieren die EMPA in Thun und die
Fachhochschule St.Gallen den Herstellpro-
zess für Silizium-Nanopartikel (LE-
PAROUX, LOHER, SCHREUDERS,
SIEGMANN 2007). In einer Versuchsanlage wird
ein Gasstrom aus Argon und Wasserstoff
durch Einstrahlung eines HF-Signals (13

MHz) auf 3000° C aufgeheizt und ionisiert. In
den Plasmastrom eingebrachtes Silizium-Pulver

(ursprünglicher Durchmesser um 45

Mikrometer) schmilzt und verdampft. Nach
einer Flugstrecke von wenigen Zentimetern
kondensiert Silizium zu kleinen Partikeln.
Ziel ist, Nanopartikel mit hoher spezifischer
Oberfläche (gemessen in in g/m2, im
Folgenden als y bezeichnet), mit eng verteilten
Abmessungen und möglichst hoher
Produktionsrate zu erzeugen. Es wurden 27
Versuche durchgeführt, bei denen die Prozessparameter

xl: Ar-H2 Gasstrom-Stärke
x2: Feedrate des Si-Pulvers
variiert wurden. Die Feedrate bezeichnet die
Masse des Pulvers, das pro Zeiteinheit in den
Gasstrom eingeschossen wird. In jedem
Experiment wurde die spezifische Oberfläche
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in m2/g gemessen. Mit diesen Daten wurden
einerseits lineare Regressionsmodelle berechnet

und anderseits ein Multilayer-Perceptron
trainiert.

Lineare Regression
Die lineare Regressionsrechnung benutzt den
Ansatz

y=al xt2 + a2 • x22 + a12 • xx x2 + £>, • xl + b2 x2+ c

y spezifische Oberfläche [m2/g]

x, Gasstromstärke [Standardliter/min]
x2 Pulver-Förderrate [g/min]

Die insgesamt 6 Koeffizienten al5 a2, al 2, b^b,,
und c werden nach der Methode der kleinsten
Fehlerquadrate bestimmt: Die quadrierte
Abweichung zwischen Rechnung und
Experiment, summiert über alle 27 Datenpunkte,
soll minimal sein. Anschliessend werden alle
Summanden gestrichen, deren Koeffizient
auf einem 95 % -Signifikanzniveau nicht von
null verschieden sind. Das führt zu folgender
Prozessfläche:

y 13.6 • x22 + 0.473 xx - 82.1 • x2 + 208.9 • xx
Es ist zu beachten, dass die lineare

Regressionsrechnung eine nichtlineare und somit
gekrümmte Regressionsfläche erzeugt - dies

wegen des quadratischen Terms in der
Prozessfläche. Der Begriff <linear> bezieht sich
auf die 6 unbekannten Koeffizienten aj. bj
und c.

Abbildung 16 zeigt, dass grosse spezifische
Oberflächen (und damit kleine Partikelgrössen)

bei niedriger Pulver-Förderrate und
hoher Gasstrom-Stärke auftreten. Das
Ergebnis deckt sich mit der Erwartung: Je tiefer
ist die Produktivität in g/min, desto kleiner
fallen die Partikel aus und desto höher wird
die spezifische Oberfläche in g/m2.

Multilayer-Perzeptron
Wie oben diskutiert ist die erste Aufgabe bei
der Berechnung eines MLP die Festlegung
der Architektur. Die schwierigste Aufgabe
besteht darin, die Schicht mit den verdeckten
Neuronen zu dimensionieren. Je grösser die
Zahl der Neuronen in der einzigen
verdeckten Schicht eines MLP gewählt wird,
desto kleiner wird die Abweichung zwischen

Abbildung 18:

Einsatz einer Kugelnabe in
einem Kugelgelenk.
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Abbildung 16:

Prozessfläche erzeugt durch lineare Regression
mit signifikanten quadratischen Regressoren.

quenching gas
powder feed rate flow rate [slpm]
[g • nun ]

Abbildung 17:

Prozessfläche erzeugt durch ein MLP
mit 2 verdeckten Neuronen.

gerade

Kugeln Kugellaufflächen
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Rechnung und Experiment. Allerdings sollte
vermieden werden, dass Eigenheiten der
Lerndaten zwar sehr gut, neue Daten aber
schlecht dargestellt werden. Dieses Phänomen

wird als <Overfitting> bezeichnet und
kann auftreten, wenn zu viele freie Parameter

angepasst werden. Allerdings besteht
keine theoretisch unterlegte, allgemein gültige

Regel, wie viele Datensätze für einen
freien Parameter erforderlich sind. Als heuristische

Regel nützlich ist die Forderung, dass

bei normalverteilten Abweichungen
zwischen Messung und Rechnung deren
Standardabweichung grösser sein muss als die
Standardabweichung des Messfehlers.
Salopp: Es macht keinen Sinn, präziser zu
modellieren als gemessen worden ist. Overfit-
ting kann mit einem Resampling-Verfahren
vermieden werden. Dabei hat sich gezeigt,
dass für die vorliegenden Daten ein MLP mit
n=2 Neuronen in der verdeckten Schicht
optimal ist.

Im Vergleich zwischen den beiden durch
lineare Regression und durch ein MLP
erzeugten Prozessflächen fällt auf, dass die
Grobstruktur gleich ist: eine, grosse
spezifische Oberfläche wird in erster Linie mit
kleinen Förderraten und in zweiter Linie mit
grossen Gasströmen erreicht. Die mit einem
MLP erzeugte Prozessfläche (Abbildung 17)

zeigt aber entscheidende zusätzliche
Details:

1. Tiefe Förderrate führen zu grossen
spezifischen Oberflächen, aber unterhalb von
1.5 g/min hängt das Ergebnis nicht mehr
entscheidend von der Förderrate ab.

2. Je grösser die Gasstromstärke, desto grösser

die spezifische Oberfläche. Zwischen
10 slpm und 60 slpm vergrössert sich die
spezifische Oberfläche um 10%.

3. Bei hoher Gasstromstärke und ganz tiefer
Förderrate (rechte hintere Ecke in Abbildung

17) zeigt die Prozessfläche ein vom
Gesamtbild abweichendes Verhalten. Bei
der jetzigen Datenlage ist zu vermuten,
dass es sich dabei um einen statistischen
Artefakt handelt. Nur ein zusätzliches
Experiment könnte Klarheit schaffen.

4.2 Kaltumformen von Kugelnaben

Eine Kugelnabe ist Teil eines Kugelgelenks
(Abbildung 18), das bei einem frontangetriebenen

Fahrzeug das Drehmoment von der
Vorderachse auf die gelenkten und
gefederten Räder überträgt. Der weltweite Markt
für Kugelnaben hat eine Volumen von etwa
110 Mio/Jahr. Solche hoch beanspruchten,
komplex geformten Teile (Abbildung 19) in

grosser Stückzahl prozesssicher und präzis zu
fertigen ist eine grosse Herausforderung -
insbesondere am Standort Mitteleuropa und

gegen weltweite Konkurrenz in einem
attraktiven und entsprechend hart umkämpften
Markt.

Bei der Firma ThyssenKrupp Presta in
Eschen/LI werden Kugelnaben mit einem
Kaltmassiv-Umformverfahren einbaufertig
hergestellt. Dabei wird ein Rohling, ein
Stahlzylinder mit 30 mm Durchmesser und etwa
50 mm Länge in ein Werkzeug eingelegt, das

eine Hohlform definiert. Mit einer Kraft von
40 MN (4001) wird das Metall innerhalb von
etwa 0.2 Sekunden in die endgültige Form
gebracht.

Die Abmessungen der fertigen Kugelnabe
sind qualitätsrelevant. So ist der Abstand
gegenüberliegender gekrümmter Flächen auf
+/- 0.01 mm toleriert. Primär ist für die
Formgebung das Werkzeug verantwortlich. Innerhalb

gewisser Grenzen haben Prozessparameter

Auswirkung auf die Teilegeometrie.

Abbildung 19:

Einbaufertige Kugelnabe.
Foto: Christoph Battaglia, NTB.



352 ANGELA FÄSSLER UND MARCEL LOHER

Abbildung 20:
Links der Rohling, rechts unterschiedlich
ausgepresste Kugelnaben.
Foto: Christoph Battaglia, NTB.
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Abbildung 21:
Black-Box-Sicht des Kaltumform-Prozesses.
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Projektidee
Intuitiv einleuchtend und experimentell
bestätigt ist, dass eine höhere Einpresskraft zu
grösserem Teiledurchmesser führt. Allgemeiner

besteht die Projektidee darin, gezielt
gewisse Teileabmessungen durch Variation der
Einflussgrössen zu steuern. Um das zu erreichen,

muss die Beziehung zwischen Einflussgrössen

und Zielgrössen (hier:Abmessungen)
bekannt sein. Eine solche Beziehung wird als
Prozessmodell bezeichnet und hier in Form
eines neuronalen MLP realisiert (Abbildung
21).

Mit einem solchen Modell im Hintergrund
können Störungen im Prozess (z.B. durch
veränderte Werkstoffeigenschaften einer
neuen Materialcharge) auskorrigiert werden.
Dabei wird in Kauf genommen, dass diese
Störungskorrektur schrittweise erfolgt.

Projektidee war, mit 13 Versuchen ein
grobes Prozessmodell für 4 verschiedene
Einflussgrössen zu erstellen und die
Störungskompensation schrittweise durchzuführen.

Ergebnis
Abbildung 22 zeigt, dass die Projektidee
realisierbar ist: Die blaue Kurve ist die
Idealkontur. Nach einer Störung ergeben sich
Teile mit der grünen Kontur. Eine erste
Kompensation liefert Teile mit der roten Kontur.
Nach der zweiten Kompensation sind die
Teile wieder masshaltig.

Abbildung 22:
Die drei Diagramme zeigen, dass die schrittweise
Korrektur mit Hilfe eine Prozessmodells funktioniert.

Bereits nach zwei Schritten ist die Störung
kompensiert. Die Idealkontur ist dunkelblau.
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Ausgangpunkt ist eine Sollkontur, die als

Abweichung von einer Referenzfläche
definiert ist. Auf Grund einer Störung liefert die
gleiche Maschineneinstellung ein verändertes

Produkt (Abbildung 22a). Das
Prozessmodell liefert einen korrigierten Satz von
Einflussgrössen, der gemäss aktuellem
Prozessmodell voraussichtlich die Störung
kompensiert. Die Durchführung des Versuchs

zeigt (Abbildung 22, rote Kurve), dass die

Störungskompensation noch nicht vollständig

erfolgt ist. Nach einem weiteren Schritt
ist das Ergebnis zufrieden stellend (Abbildung

22c, hellblaue Kurve). Verglichen mit
einer manuellen Prozessoptimierung ist das

modellgestützte Verfahren sehr effizient. Bei
4 freien Parameter ist ein intuitives Vorgehen
fast aussichtslos. Die Methode, jeweils nur
einen einzigen Parameter zu verändern,
erfordert gegenüber dem hier vorgestellten
Verfahren ein Mehrfaches an Versuchen.
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