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Zusammenfassung

Erste kiinstliche neuronale Netze wurden
um 1960 urspriinglich entwickelt, um die
Funktionsweise des menschlichen Gehirns
besser zu verstehen. Dieses Vorhaben erwies
sich als enorm schwierig und ist auch heute
noch lingst nicht abgeschlossen. Parallel
dazu wurden kiinstliche neuronale Netze be-
nutzt fiir Aufgaben aus Industrie und Tech-
nik, die kaum algorithmisch 18sbar sind, fiir
die aber Losungsbeispiele vorliegen. Klassifi-
kation, Mustererkennung und Prognose von
Zeitreihen sind typische Probleme, die sich
mit neuronalen Netzen gut 16sen lassen.
Nach einer historischen Einleitung wird
eine kurze Theorie des am hdufigsten einge-
setzten Netzwerk-Typs, des Multilayer-Per-
ceptrons prisentiert. Daran schliesst sich ein
Einblick in industrielle Projekte an, die an
der Hochschule fiir Angewandte Wissen-
schaften St.Gallen durchgefiihrt wurden.

1. Geschichte

Die Entwicklung der elektronischen Daten-
verarbeitung liest sich wie eine einzige grosse
Erfolgsgeschichte. Was im zweiten Weltkrieg
mit dem Versuch begann, deutsche Funk-
spriiche zu entschliisseln, ist zu einer Techno-
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logie geworden, die Beruf und Alltag in
einem Ausmass prégt, das damals unvorstell-
bar war. Anfanglich wurden die Rechner mit
elektromechanischen Relais aufgebaut, kurze
Zeit spater mit Elektronenrohren und ab
etwa 1960 mit integrierten elektronischen
Schaltungen. Entscheidend war dabei die Er-
findung des Transistors um 1947, die Shock-
ley, Bardeen und Brattain den Physik-No-
belpreis einbrachte. Rechengeschwindigkeit
und Zuverléssigkeit nahmen sprunghaft zu,
die Kosten ab. MOORE (1965) formulierte
die nach ihm benannte Regel, dass die Tran-
sistordichte sich alle 18 Monate verdoppelt.
Weshalb diese Regel volle weitere 40 Jahre
giiltig bleiben sollte, ist selbst fiir ihren Urhe-
ber unerklarlich.

In dieser Zeit hat sich die Rechnerleistung
(gemessen in Fliesskomma-Operationen pro
Sekunde) um den unglaublichen Faktor 107
vergrossert. Und der Nutzen? Bereits 1955
wurde von MCCARTHY, MINSKY, ROCHE-
STER UND SHANNON (1955) gefordert,
dass 10 Ménner (!) wiahrend 2 Monaten (!)
alle Aspekte des Lernprozesses und mensch-
licher Intelligenz beschreiben sollen, so dass
anschliessend intelligentes Verhalten auf
einem Rechner simuliert werden kann. Rech-
ner sollten nicht nur schneller, sondern auch
intelligenter werden. Die gleiche Gruppe hat
den Begriff <kiinstliche Intelligenz> geprégt.

2. Natiirliche Neuronale Netze:
biologische Vorbilder

Die Idee, gehirn-dhnliche Funktionen ver-
einfacht auf dem Rechner nachzubilden,
wurde schon 1943 von McCullochs und Pitts
gedussert (MCCULLOCH-PITTS 1943), wur-
de aber mangels technischer Moglichkeiten
nicht realisiert. Erst 1957 wurde ein erster
Rechner, dessen Architektur sich an biologi-
schen Vorbildern orientierte, zur Muster-
erkennung eingesetzt. Die Motivation ist ein-
leuchtend, denn das Gehirn selbst von
niederen Tieren erbringt erstaunliche Leis-
tungen: Eine Stubenfliege fliegt, weicht einem

Hindernis aus, pflanzt sich fort. Ein konven-
tioneller Rechner hingegen war gerade mal
in der Lage, zwei Speicherzellen zu addieren
und den Inhalt von einer Speicherzelle in die
andere zu verschieben — das allerdings sehr
schnell und zuverldssig. Offensichtlich nutzt
die Natur die beschrinkte Hardware sehr
effizient.

Schnell wurde klar, dass selbst das Stuben-
fliegengehirn viel zu komplex ist, um als
Ganzes auf einem Rechner abgebildet zu
werden. Es konnte also nur darum gehen,
Konzepte und Strukturen des biologischen
Vorbilds zu iibernehmen und daraus radikal
vereinfachte «<kiinstliche neuronale Netze»
zu entwickeln. Nichtsdestotrotz — die Paralle-
len zwischen kiinstlichen und natiirlichen
neuronalen Netzen sind frappant:

Wie das biologisches Gehirn ist auch das
kiinstliche neuronale Netz aus einfachen
Elementen — Neuronen - aufgebaut. Ein
Neuron bezieht Signale von Nachbarneu-
ronen, die mit thm verschaltet sind. Die Ein-
gangssignale werden zu einem Ausgangs-
signal verarbeitet, und das Ausgangssignal
wird an weitere Nachbarneuronen weiterge-
geben.

Das neuronale Netz enthilt freie Parame-
ter, die festlegen, wie das Eingangssignal zu
einem Ausgangssignal verarbeitet wird. Der
Vorgang, die Parameter zu bestimmen, wird
als <Lernen> bezeichnet. Das neuronale Netz
erhilt seine Funktionalitit nicht durch expli-
zite Programmierung, sondern durch Lernen
an Beispielen.

3. Mathematischer Hintergrund

Weil kiinstliche Neuronen auf sehr unter-
schiedliche Weise miteinander verbunden
werden konnen, ist eine uniibersehbare
Menge von Netzwerktopologien entstanden.
Meist werden diese eingeteilt in:
iiberwacht lernende und nicht iiberwacht
lernende sowie
= riickgekoppelte und nicht riickgekoppelte
neuronale Netze.
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Aus Platzgriinden beschrinkt sich diese Ar-
beit auf Multilayer Perceptrons (MLP),einen
Vertreter der iiberwacht lernenden, nicht x1
riickgekoppelten Netze. MLPs sind die am
besten untersuchten und am hiufigsten ein-
gesetzten neuronalen Netze. X2

In der oben erwihnten Arbeit von MC- | y
CULLOCH, PITTS (1943) arbeiteten zwei
Fachleute aus Neurophysiologie und Mathe-
matik zusammen, um nach dem Vorbild bio-
logischer Neuronen ein einfaches mathema-
tisches Neuron zu modellieren, welches mit
anderen solchen Neuronen via synaptische

Verbindungen kommunizieren kann. Abbildung 1:
Mathematisches Modell-Neuron.

x3

3.1 Netzarchitektur

In heutiger Darstellung (vergleiche zum Bei-
spiel HAYKIN (1995)) wird ein mathema-
tisches Modell-Neuron wie in Abbildung 1
veranschaulicht.

Inputs x,, x,, ..., x, von anderen Neuronen
werden verarbeitet zu einem Output y. Aller-
dings werden nicht alle Inputs gleich stark
gewichtet. Beschreibt man die Verarbeitung
mit Hilfe einer so genannten Aktivierungs-
funktion f (oft auch Transferfunktion ge-
nannt) und die Gewichtung mit Zahlen w, —t -
W,, ..., w, so lautet die mathematische Nota-
tion fiir dieses Neuronen-Verhalten:

y=fw,-x;+w, X, +...+w,-x,)

Abbildung 2:
Neuron-Aktivitit ab einer gewissen Grenze b.

In Anlehnung an das biologische Vorbild
soll das Modellneuron nur dann einen Aus-
gabewert liefern, wenn alle Inputs zusammen
eine gewisse Grenze (Schwellwert oder Bias
genannt) iiberschritten haben. Wie in Abbil-
dung 2 gezeigt, wird der Output des Neurons
erst dann zu Eins, wenn der Gesamtwert u y
aller Inputs den Wert b tibersteigt. [ _

In mathematischer Notation ausgedriickt: A
Fliru=w, - x, + w, - X, +... + w, - x,, ist

_10,wenn u<b
1, wenn u=>b

MCCULLOCH und PITTS nennen dies |
ein <Alles-oder-nichts>-Ereignis: Das Neuron | b
gibt einen Impuls weiter — oder nicht. u
Allerdings verursachen solche unstetigen

Abbildung 3:
Approximation der Neuron- Aktivitét.
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Abbildung 4:

Zusammengeschaltete mathematische
Modell-Neuronen.
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Abbildung 5:
Ein erstes vollstindiges Multilayer
Perceptron (MLP).
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Abbildung 6:
Messwerte aus einer geeignet vorbereiteten
Blutprobe (nach PURDIE et al. [1992]).

Funktionen Probleme, weil sie nicht ableit-
bar sind. Deshalb wird die oben eingefiihrte

Funktion angenédhert durch:
1

Y= [T oD

fiir eine geeignete Zahl c. Wie Abbildung 3
zeigt, wird diese Approximation mit ¢=50
schon recht gut — und umso besser, je grosser
¢ gewihlt wird. Oft ist ein gradueller Uber-
gang vom Funktionswert 0 auf 1 geradezu
erwiinscht. In solchen Fillen wird c als freier
Parameter betrachtet, der an die konkreten
Anforderungen angepasst wird.

Die eben verwendete Funktion heisst logis-
tische Funktion oder Fermi-Funktion:

1
)= 1——

In technischen Anwendungen wird die
Fermi-Funktion oft ersetzt durch y=tanh u,
da deren Punktsymmetrie in Bezug auf den
Koordinatenursprung mitunter als Vorteil
betrachtet wird.

Nun werden die einzelnen Neuronen zu
einem Netz zusammengeschaltet. Dabei
kann der Output eines Neurons an verschie-
dene andere Neuronen weitergegeben wer-
den. Je nach Art und Weise wie das geschieht,
entsteht eine andere so genannte Netzwerk-
architektur. Im Folgenden wird hier nur eine
Bauart betrachtet, die eines Multilayer-
Perceptrons (kurz: ML P): Neuronen werden
schichtweise angeordnet und jede Schicht
liefert ihre Outputs an die nichste Schicht
vorwirts wie in Abbildung 4 gezeigt. Die In-
put-Schicht enthélt hier 3 Neuronen, die
nichste — so genannte verdeckte Schicht — 5
Neuronen und die Output-Schicht 2 Neu-
ronen.

Die Anzahl der Neuronen pro Schicht ist
beliebig und es konnen auch mehrere solcher
verdeckter Schichten auftreten. In techni-
schen Anwendungen wird die Aktivierungs-
funktion in der ersten (und oft auch in der
letzten) Schicht abgedndert zur Identitdt
flu)=u.

Fir jede der gezeichneten synaptischen
Verbindungen existiert geméss obigen Aus-
fiihrungen eine Zahl, die fiir die Gewichtung
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dieser Verbindung zusténdig ist, und fiir jedes
Neuron der Input-Schicht sowie jedes der
verdeckten Schicht(en) eine Zahl, die den
zugehorigen Bias beschreibt. Zusammen mit
der Festlegung der Transferfunktionen ist
damit das MLP vollstindig festgelegt. Abbil-
dung 5 zeigt ein einfaches, rein theoretisches
Beispiel - sozusagen als Fingeriibung. Synap-
sen, welche von grau gezeichneten Neuronen
ausgehen, enthalten dabei die Bias-Werte.

Bezeichnet man die Fermifunktion mit f,
so lautet die rechnerische Vorschrift fiir
dieses einfache Netz schon recht kompli-
ziert:

y=01+4-f(2+0.5x, +7x,) -
2 - f(-1+3x, + 0.3x,)

4
=01+ — 2
14e 205575 {4el-3%03%,

3.2 Eine typische Aufgabenstellung fiir
Multilayer-Perceptrons

Obwohl das bisher dargestellte mathema-
tische Modell die Vernetzung biologischer
Neuronen nur sehr rudimentir erfasst, ist es
doch schon in der Lage, gewisse schwierige
Probleme der Praxis immerhin ndherungs-
weise zu 1osen. Mit dem Begriff <ndherungs-
weise> ist auch gleich angedeutet, dass Neu-
ronale Netze nur dann zur Anwendung
kommen sollen, wenn keine andere, exakte
Theorie zu einer Losung verhilft. Die fol-
gende Problemstellung zeigt eine typische
solche Situation:

In vielen Zusammenhéngen sind benotig-
te Messwerte nur sehr schwierig oder teuer
zu bekommen und man wiirde sich wiin-
schen, diese Werte rechnerisch voraussagen
zu konnen aus Messgrossen, welche auf ein-
facherem Weg, schnell und giinstig zu ge-
winnen sind. Matlab®, eine weit verbreitete
Software fiir die Simulation neuronaler
Netze, greift in ihrer Dokumentation (MAT-
LAB 2005) ein Beispiel von PURDIE et al.
(1992) auf: Es wird beschrieben, wie teuer
und zeitintensiv es damals war, Cholesterol-
Mengen im Blut eines Patienten zu messen.
Sie schlugen vor, diese Werte nidherungs-

weise zu berechnen aus dem Absorptions-
spektrum einer geeignet vorbereiteten Blut-
probe. Im Detail:

Von 264 Patienten wurde eine Blutprobe
entnommen und ein Absorptionsspektrum
(Abbildung 6) gemessen. Pro Person wurden
daraus bei 21 Wellenldngen Absorptionsko-
effizienten entnommen.

Gleichzeitig wurden von denselben Per-
sonen die Cholesterol-Werte auf die altbe-
kannte, aufwindige Art bestimmt. Es liegen
also zu jedem Spektrum auch die drei Werte
fiir very-low-densitiy, low-density und high-
density Cholesterol-Anteile vor. Gesucht ist
jetzt ein Neuronales Netz, welches aus 21
Eingingen des Spektrums drei Ausgidnge mit
den Cholesterol-Werten berechnet.

Man erkennt aus der Problemstellung so-
fort einen Teil der Netzarchitektur: 21 Ein-
ginge und 3 Ausgédnge. Die Anzahl der ver-
deckten Neuronen ist aber noch vollig
ungewiss, ebenso wie die richtige Wahl der
Gewichte und Bias-Werte. Letzteres ist das
Thema des nichsten Abschnittes. Uber die
richtige Anzahl verdeckter Neuronen hinge-
gen kann in diesem Rahmen nicht wirklich
eingegangen werden. Nur soviel: Fiir reale
Aufgabenstellungen muss sie experimentell
ermittelt werden mit Methoden der Statis-
tik.

3.3 Backpropagation

Backpropagation als Technik zur Bestim-
mung der Gewichte eines MLP beruht auf
dem in der Mathematik bekannten so ge-
nannten Gradientenverfahren. Im Umfeld
Neuronaler Netze wurde es vor allem geldu-
fig durch ein Paper von RUMELHART,
HINTON UND WILLIAMS (1986). Dieses
Gradientenverfahren soll hier anhand eines
moglichst einfachen Beispiels erklédrt werden
— so nimlich, dass die Uberlegungen gra-
phisch dargestellt werden konnen. Rein rech-
nerisch sind sie dann sehr einfach auf die all-
gemeine Situation iibertragbar: Anstelle von
zweidimensionalen Vektoren, wie sie hier
vorkommen werden, rechnet man mit hoch-
dimensionalen.
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Abbildung 7:

Trivialbeispiel eines Multilayer Perceptrons
(nur zu Demonstrationszwecken).

Abbildung 8:

Messdaten fiir Eingang x und Zielgrosse t im

obigen Trivialbeispiel.

SSE

10 0 w2

Abbildung 9:
Summe aller Fehlerquadrate SSE als
Funktion der Gewichte

Angenommen, ein neuronales Netz habe
(wie in Abbildung 7 dargestellt) je einen Ein-
und Ausgang, ein verdecktes Neuron und
keine Bias-Werte.

Weiter seien Messdaten x,, x,, ..., X, gege-
ben fiir eine einfach zu messende Grosse x
und zugehorige schwierig zu messende Werte
t, t, ..., t, einer Zielgrosse ¢t (Target), von der
man weiss, dass sie von x abhéngig ist. Eine
graphische Darstellung davon kdnnte zum
Beispiel fiir Messungen, die leicht fehlerbe-
haftet sind, so aussehen wie in Abbildung 8.

Die Gewichte w, und w, im Trivialbeispiel
sollen nun so eingestellt werden, dass dieses
Netz die gegebenen Daten einerseits gut wie-
dergibt, aber auch die Messfehler einiger-
massen ausgleicht. Das Netz soll also die
Rolle eines Funktionsapproximators iiber-
nehmen. Das heisst, es soll y, = ¢, sein fiir
i=1, ..., n. Zu diesem Zweck wird fiir jeden
Messpunkt der Fehler y,— ¢, betrachtet, bezie-
hungsweise sein Quadrat und alle diese Feh-
lerquadrate werden aufsummiert zur Fehler-
quadratsumme (y, — 1,)* + ... +(y,o— t,0)*

Dieser Ausdruck ist sicher dann klein,
wenn alle Fehler klein sind. Umgekehrt:
Wenn die Summe klein ist, so miissen die ein-
zelnen Summanden klein sein, da jeder Sum-
mand nur positiv oder Null sein kann. Des-
halb setzt man sich jetzt das Ziel, diesen Term
zu minimieren. Aus mathematischer Sicht ist
die Fehlerquadratsumme (SSE genannt, fiir
sum squared error) eine Funktion der beiden
Variablen w; und w, deren Minimum gesucht
ist. Im Fall des obigen Trivialbeispiels kann
man die Fehlerquadratsumme graphisch dar-
stellen. Zu jedem Wertepaar (w,, w,) wird der
SSE in Richtung einer dritten Koordinaten-
achse aufgetragen. Die Abbildungen 9 und 10
zeigen die entstehende Flidche von zwei ver-
schiedenen Standpunkten aus. Weiter hat
Abbildung 10 in der w, w, -Ebene die zuge-
horigen Hohenlinien eingetragen (wie wenn
die dariiber liegende Fliche als Ausschnitt
aus einem Gebirge interpretiert wiirde mit
darunter liegender Karte im Massstab 1:1).

Wo liegt nun der Punkt (w,, w,) mit mini-
malem SSE-Wert? Die Frage ist gar nicht so
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einfach zu beantworten, da es kein exaktes
Verfahren gibt, das fiir alle je auftretenden
solchen Fliachen die Aufgabe 16st. Man ist auf
numerische Ndherungslosungen angewiesen.
Zudem sieht man in obigen Graphiken, dass
auch von Auge das Minimum nicht klar zu
finden ist: Wo in diesem <langen Tal> ist denn
der tiefste Punkt?

Um das erwihnte numerische Verfahren
zu verstehen, betrachten wir ein einfacheres
Beispiel, das nichts zu tun hat mit neuronalen
Netzen: In Abbildung 11 ist eine Flidche gege-
ben, von der man aus der Graphik die Mini-
malstelle sofort sieht — oder mindestens ver-
mutet.

Die Minimalstelle scheint bei w,=0,
w,=0 zu liegen. Das wird auch rechnerisch
sofort bestéatigt, da fiir diese spezielle Fldche
die z-Koordinate gerechnet wurde als
SSE=0.3 - w2+ w,”. Gesucht ist nun ein nu-
merisches Verfahren, mit dem der Computer
diese Stelle ebenfalls findet. Man verwendet
hier Ideen, die jedermann vom Lesen von
Landkarten her kennt: Wenn man sich auf
der Karte senkrecht zu den Hohenlinien ab-
wirts bewegt, so hat man den Weg des
steilsten Abstiegs gewdhlt. Mathematisch
wird diese Idee umgesetzt durch die Berech-
nung des Gradienten der Funktion
SSE(w,, w,): Man wiihlt eine beliebige Start-
stelle fiir den Punkt (w,, w,), geht ein Stiick
weit in” die Gegenrichtung des Gradienten
(also senkrecht zur ersten Hohenlinie) und
berechnet dann an der neuen Stelle wieder
den Gradienten. Dieser zeigt jetzt wahr-
scheinlich in eine leicht andere Richtung, und
man bewegt sich wieder ein (kleineres) Stiick
weit in die Gegenrichtung des neuen Gradi-
enten. Durch Wiederholung dieser Idee hofft
man, sich sukzessive der Minimalstelle zu na-
hern. Die Abbildungen 12 und 13 zeigen
dieses Vorgehen fiir den Startwert w,=-1.8,
w,=1.5, in Abbildung 12 die zugehorige 3D-
Darstellung, in Abbildung 13 nur noch das
Hohenlinienbild.

o
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Abbildung 10:
Summe aller Fehlerquadrate SSE
(aus neuem Blickwinkel).
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Abbildung 11:
Funktion mit leicht zu erratender
Minimalstelle.

Abbildung 12:
Gradientenverfahren zur Auffindung der Mini-

malstelle (3D-Darstellung).
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Abbildung 13:
Gradientenverfahren zur Auffindung der
Minimalstelle (2D-Darstellung).
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Abbildung 14:

Lerndaten zusammen mit dem Output des

trainierten Netzes.

Es bleibt nachzutragen, dass eine gewisse
Willkiir nicht nur in der Wahl des Start-
punktes liegt, sondern auch darin, wie weit
man in Gegenrichtung des Gradienten vor-
wirtschreitet. In den Abbildungen 12 und 13
wurden zuerst 95% der Gradientenlidnge,
dann 952%=90.25%,95°*%=85.74 % , usw. ge-
wihlt - mit dem vorrangigen Ziel, eine tiber-
sichtliche Graphik zu bekommen.

In mathematischer Notation lautet das
Gradienten-Verfahren:

Waihle einen Startwert fiir den Nédherungs-
vektor "1/;/(0):(‘4)1

W,
Wenn ein Niherungsvektor w® vorliegt, so
berechnet sich der néichste Niherungsvektor
durch wD=wp®_) - grad SSE (w™)

Die Zahl A\, heisst im Kontext Neuronaler
Netze Lernrate. (In obigen Beispiel war also
N,=0.957,=0.95% \,;=0.95%,...) Das Anpassen
der Gewichte wird Lernen genannt und die
obige Formel, die besagt, wie man aus w®
den nichsten Satz w™" von Gewichten be-
rechnet, Lernregel. Die Messdaten schliess-
lich, mit welchen der SSE als Funktion der
Gewichte berechnet wurde, heissen Lernmus-
ter oder Lerndaten. Ist das Gradienten-Ver-
fahren abgeschlossen, heisst das Netz trai-
niert. Hinter diesen Namensgebungen steckt
die Idee, dass auch der Mensch in vielen Fil-
len nur aufgrund von einzelnen Beispielen
lernt. Je mehr Beispiele vorliegen, desto bes-
ser ist (hoffentlich oder vielleicht) der Lern-
effekt.

Professionelle Neuro-Software hat raffi-
nierte Varianten des Gradientenverfahrens
implementiert und wihlt auch den Start-
vektor fiir die Gewichte nicht vollig nach
Zufallsprinzip. Setzt man zum Beispiel die
Neural Network Toolbox von MATLAB®
auf das oben eingefiihrte Trivialbeispiel
eines Netzes an, so erhélt man als Ergebnis
die in Abbildung 14 dargestellte Funktion
y(x). Die <Messdaten> (als Punkte gezeich-
net) wurden erstellt durch Verrauschen von
Funktionswerten der gestrichelten Kurve.
MATLAB findet daraus gemiss dem oben
besprochenen Vorgehen fiir die Gewichte
die Werte w,=3.3634, w,=1.0217 und die
durchgezogene Kurve stellt den Output des
damit gebauten Netzes dar, also die Funk-
tion y=net(x).

An diesem Beispiel sind schon die ersten
Schwierigkeiten erkennbar, welche bei det
Bestimmung der Gewichte auftreten:

Bei schlecht gewihlter Lernrate wird die LO-
sung nicht gefunden.
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Wenn die Funktion SSE (in Abhingigkeit
von den Gewichten und Biaswerten) meh-
rere lokale Minimas hat, kann es sein, dass
man — je nach Startwert — nur eine solche
Stelle findet und nicht das gesuchte absolute
Minimum der Funktion.

Zum Schluss dieses Abschnittes noch eine
Bemerkung zur Namensgebung: Im Kontext
Neuronaler Netze heisst das Gradienten-
Verfahren Backpropagation. Der Grund
dafiir liegt beim mathematischen Handwerk.
Um den Gradienten zu bilden, braucht man
die partiellen Ableitungen nach allen Varia-
blen, also auch nach den Gewichten der ers-
ten Schicht. Dabei muss die Kettenregel ver-
wendet werden: Man arbeitet sich beim
Ableiten von verschachtelten Funktionen
von aussen nach innen durch. Im Netz heisst
das, dass man von der Ausgangsschicht her
riickwiirts rechnet bis zum entsprechenden
Gewicht. Man <back-propagiert>.

4. Industrielle Anwendungen

4.1 Herstellung von Nanopartikeln

Nanopartikel sind feste Teilchen mit Abmes-
sungen zwischen 1 nm und 100 nm. Im Ver-
gleich zum Volumen haben sie eine grosse
Oberfliache: Silizium-Pulver erreicht zum Bei-
spiel eine spezifische Oberfliche von weit
tiber 100 m*/g. Nanopartikel sind deshalb
enorm reaktionsfahig und haben vollig andere
chemische und physikalische Eigenschaften
als der Basiswerkstoff. Sie sind Ausgangs-
material fiir eine uniiberblickbare Anzahl
Anwendungen in Medizin, Werkstofftechno-
logie, Oberflichentechnologie und als Kataly-
satoren in der Chemie. Seit etwa 2004 werden
allerdings vermehrt Risiken thematisiert —
unter anderem, weil Nanopartikel wegen
ihrer Kleinheit die Blut-Hirnschranke durch-
brechen kénnen. (BUNDESAMT FUR GE-
SUNDHEIT 2006)

Zur Herstellung von Nanopartikeln sind
eine Reihe von Verfahren entwickelt worden
(siche PASCHEN, COENEN, FLEISCHER
(2004)). Hohe Produktionsraten —im Bereich

EMPA_Thun 3.0kV 2.2mm x70.0k SE(U)

Abbildung 15:
Elektronenmikroskopische Aufnahme von
Silizium-Nanopulver (Aufnahme: EMPA Thun).

Gramm pro Minute — werden in heissen
Flammen erreicht. In einem Forschungspro-
jekt optimieren die EMPA in Thun und die
Fachhochschule St.Gallen den Herstellpro-
zess fur  Silizium-Nanopartikel (LE-
PAROUX, LOHER, SCHREUDERS, SIEG-
MANN 2007). In einer Versuchsanlage wird
ein Gasstrom aus Argon und Wasserstoff
durch Einstrahlung eines HF-Signals (13
MHz) auf 3000° C aufgeheizt und ionisiert. In
den Plasmastrom eingebrachtes Silizium-Pul-
ver (urspriinglicher Durchmesser um 45 Mi-
krometer) schmilzt und verdampft. Nach
einer Flugstrecke von wenigen Zentimetern
kondensiert Silizium zu kleinen Partikeln.
Ziel ist, Nanopartikel mit hoher spezifischer
Oberfliche (gemessen in in g/m? im Fol-
genden als y bezeichnet), mit eng verteilten
Abmessungen und méglichst hoher Produk-
tionsrate zu erzeugen. Es wurden 27 Ver-
suche durchgefiihrt, bei denen die Prozesspa-
rameter

x1: Ar-H, Gasstrom-Stirke

x2: Feedrate des Si-Pulvers

variiert wurden. Die Feedrate bezeichnet die
Masse des Pulvers, das pro Zeiteinheit in den
Gasstrom eingeschossen wird. In jedem Ex-
periment wurde die spezifische Oberfldche

500nm
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Abbildung 16:

Prozessflidche erzeugt durch lineare Regression
mit signifikanten quadratischen Regressoren.
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Abbildung 17:
Prozessflache erzeugt durch ein MLP
mit 2 verdeckten Neuronen.

gerade
Kugellaufflichen

7 ! %
Kugelkifig Kugelstern Kugelschale

Abbildung 18:
Einsatz einer Kugelnabe in
einem Kugelgelenk.

flow rate [slpm] |

in m?/g gemessen. Mit diesen Daten wurden
einerseits lineare Regressionsmodelle berech-
net und anderseits ein Multilayer-Perceptron
trainiert.

Lineare Regression

Die lineare Regressionsrechnung benutzt den
Ansatz

Y=ty %24 B2F G %y X tby 4By e
y spezifische Oberfliche [m?%g]

x, Gasstromstirke [Standardliter/min]

X, Pulver-Forderrate [g/min]

Die insgesamt 6 Koeffizienten a,, a,,a,,,b,.b,,
und c werden nach der Methode der kleinsten
Fehlerquadrate bestimmt: Die quadrierte
Abweichung zwischen Rechnung und Expe-
riment, summiert iiber alle 27 Datenpunkte,
soll minimal sein. Anschliessend werden alle
Summanden gestrichen, deren Koeffizient
auf einem 95 %-Signifikanzniveau nicht von
null verschieden sind. Das fiihrt zu folgender
Prozessfliche:

y=13.6 - x,> + 0.473 x, - 82.1 - x, + 208.9 - x,

Es ist zu beachten, dass die lineare Regres-
sionsrechnung eine nichtlineare und somit
gekriimmte Regressionsflidche erzeugt — dies
wegen des quadratischen Terms in der Pro-
zessfldche. Der Begriff <linear> bezieht sich
auf die 6 unbekannten Koeffizienten a;, b,
und c.

Abbildung 16 zeigt, dass grosse spezifische
Oberflichen (und damit kleine Partikelgros-
sen) bei niedriger Pulver-Forderrate und
hoher Gasstrom-Stirke auftreten. Das Er-
gebnis deckt sich mit der Erwartung: Je tiefer
ist die Produktivitdt in g/min, desto kleiner
fallen die Partikel aus und desto hoher wird
die spezifische Oberfliache in g/m®.

Multilayer-Perzeptron

Wie oben diskutiert ist die erste Aufgabe bei
der Berechnung eines MLP die Festlegung
der Architektur. Die schwierigste Aufgabe
besteht darin, die Schicht mit den verdeckten
Neuronen zu dimensionieren. Je grosser die
Zahl der Neuronen in der einzigen ver-
deckten Schicht eines MLP gewihlt wird,
desto kleiner wird die Abweichung zwischen
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Rechnung und Experiment. Allerdings sollte
vermieden werden, dass Eigenheiten der
Lerndaten zwar sehr gut, neue Daten aber
schlecht dargestellt werden. Dieses Phino-
men wird als <Overfitting> bezeichnet und
kann auftreten, wenn zu viele freie Parame-
ter angepasst werden. Allerdings besteht
keine theoretisch unterlegte, allgemein giil-
tige Regel, wie viele Datensitze fiir einen
freien Parameter erforderlich sind. Als heuris-
tische Regel niitzlich ist die Forderung, dass
bei normalverteilten Abweichungen zwi-
schen Messung und Rechnung deren Stand-
ardabweichung grosser sein muss als die
Standardabweichung des Messfehlers. Sa-
lopp: Es macht keinen Sinn, priziser zu mo-
dellieren als gemessen worden ist. Overfit-
ting kann mit einem Resampling-Verfahren
vermieden werden. Dabei hat sich gezeigt,
dass fiir die vorliegenden Daten ein MLP mit
n=2 Neuronen in der verdeckten Schicht op-
timal ist.

Im Vergleich zwischen den beiden durch
lineare Regression und durch ein MLP er-
zeugten Prozessflichen fillt auf, dass die
Grobstruktur gleich ist: eine, grosse spezi-
fische Oberfliche wird in erster Linie mit
kleinen Forderraten und in zweiter Linie mit
grossen Gasstromen erreicht. Die mit einem
MLP erzeugte Prozessfliche (Abbildung 17)
zeigt aber entscheidende zusitzliche De-
tails: -

1. Tiefe Forderrate fithren zu grossen spezi-
fischen Oberflachen, aber unterhalb von
1.5 g/min hiingt das Ergebnis nicht mehr
entscheidend von der Forderrate ab.

2. Je grosser die Gasstromstirke, desto gros-
ser die spezifische Oberfliche. Zwischen
10 slpm und 60 slpm vergrossert sich die
spezifische Oberfldche um 10 %.

3. Bei hoher Gasstromstédrke und ganz tiefer
Forderrate (rechte hintere Ecke in Abbil-
dung 17) zeigt die Prozessfliche ein vom
Gesamtbild abweichendes Verhalten. Bei
der jetzigen Datenlage ist zu vermuten,
dass es sich dabei um einen statistischen
Artefakt handelt. Nur ein zusitzliches Ex-
periment konnte Klarheit schaffen.

4.2 Kaltumformen von Kugelnaben

Eine Kugelnabe ist Teil eines Kugelgelenks
(Abbildung 18), das bei einem frontangetrie-
benen Fahrzeug das Drehmoment von der
Vorderachse auf die gelenkten und gefe-
derten Réder iibertrigt. Der weltweite Markt
fiir Kugelnaben hat eine Volumen von etwa
110 Mio/Jahr. Solche hoch beanspruchten,
komplex geformten Teile (Abbildung 19) in
grosser Stiickzahl prozesssicher und prézis zu
fertigen ist eine grosse Herausforderung —
insbesondere am Standort Mitteleuropa und
gegen weltweite Konkurrenz in einem at-
traktiven und entsprechend hart umkampften
Markt.

Bei der Firma ThyssenKrupp Presta in
Eschen/LI werden Kugelnaben mit einem
Kaltmassiv-Umformverfahren einbaufertig
hergestellt. Dabei wird ein Rohling, ein Stahl-
zylinder mit 30 mm Durchmesser und etwa
50 mm Linge in ein Werkzeug eingelegt, das
eine Hohlform definiert. Mit einer Kraft von
40 MN (400 t) wird das Metall innerhalb von
etwa 0.2 Sekunden in die endgiiltige Form
gebracht.

Die Abmessungen der fertigen Kugelnabe
sind qualitétsrelevant. So ist der Abstand ge-
geniiberliegender gekriimmter Flichen auf
+/-0.01 mm toleriert. Primér ist fiir die Form-
gebung das Werkzeug verantwortlich. Inner-
halb gewisser Grenzen haben Prozesspara-
meter Auswirkung auf die Teilegeometrie.

Abbildung 19:
Einbaufertige Kugelnabe.
Foto: Christoph Battaglia, NTB.
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Abbildung 20:
Links der Rohling, rechts unterschiedlich
ausgepresste Kugelnaben.

Foto: Christoph Battaglia, NTB.
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Abbildung 21:
Black-Box-Sicht des Kaltumform-Prozesses.

Abmessungen

Projektidee

Intuitiv einleuchtend und experimentell be-
stdtigt ist, dass eine hohere Einpresskraft zu
grosserem Teiledurchmesser fiihrt. Allgemei-
ner besteht die Projektidee darin, gezielt ge-
wisse Teileabmessungen durch Variation der
Einflussgrossen zu steuern. Um das zu errei-
chen, muss die Beziehung zwischen Einfluss-
grossenund Zielgrossen (hier: Abmessungen)
bekannt sein. Eine solche Beziehung wird als
Prozessmodell bezeichnet und hier in Form
eines neuronalen MLP realisiert (Abbildung
21).

Mit einem solchen Modell im Hintergrund
konnen Storungen im Prozess (z.B. durch
veranderte Werkstoffeigenschaften einer
neuen Materialcharge) auskorrigiert werden.
Dabei wird in Kauf genommen, dass diese
Storungskorrektur schrittweise erfolgt.

Projektidee war, mit 13 Versuchen ein
grobes Prozessmodell fiir 4 verschiedene
Einflussgréssen zu erstellen und die Storungs-
kompensation schrittweise durchzufiihren.

Ergebnis

Abbildung 22 zeigt, dass die Projektidee rea-
lisierbar ist: Die blaue Kurve ist die Ideal-
kontur. Nach einer Stérung ergeben sich
Teile mit der griinen Kontur. Eine erste Kom-
pensation liefert Teile mit der roten Kontur.
Nach der zweiten Kompensation sind die
Teile wieder masshaltig.
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Abbildung 22:

Die drei Diagramme zeigen, dass die schrittweise
Korrektur mit Hilfe eine Prozessmodells funktio-

niert. Bereits nach zwei Schritten ist die Storung
kompensiert. Die Idealkontur ist dunkelblau.
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Ausgangpunkt ist eine Sollkontur, die als
Abweichung von einer Referenzflache defi-
niert ist. Auf Grund einer Stérung liefert die
gleiche Maschineneinstellung ein verédn-
dertes Produkt (Abbildung 22a). Das Pro-
zessmodell liefert einen korrigierten Satz von
Einflussgrossen, der geméss aktuellem Pro-
zessmodell voraussichtlich die Stérung kom-
pensiert. Die Durchfithrung des Versuchs
zeigt (Abbildung 22, rote Kurve), dass die
Storungskompensation noch nicht vollstdn-
dig erfolgt ist. Nach einem weiteren Schritt
ist das Ergebnis zufrieden stellend (Abbil-
dung 22c, hellblaue Kurve). Verglichen mit
einer manuellen Prozessoptimierung ist das
modellgestiitzte Verfahren sehr effizient. Bei
4 freien Parameter ist ein intuitives Vorgehen
fast aussichtslos. Die Methode, jeweils nur
einen einzigen Parameter zu verédndern, er-
fordert gegeniiber dem hier vorgestellten
Verfahren ein Mehrfaches an Versuchen.

Literaturverzeichnis

BUNDESAMT FUR GESUNDHEIT (2006): http:/
www.bag.admin.ch/themen/chemikalien/00228/
00510/index.htm]?lang=de

HAYKIN, S. (1998): Neural Networks: A Compre-
hensive Foundation. — Prentice Hall.

LEPAROUX,M.,LOHER,M.,SCHREUDERS, C.,
SIEGMANN, S. (2007): Thermal Plasma Produc-
tion of Si-Nanoparticles: Process Optimization
with Neural Networks. Zur Publikation eingerei-
cht beim Journal of Powder Technology.

MATLAB® (2005): Neural Network Toolbox. — The
MathWorks, Inc.

MCCARTHY,J., MINSKY,M. L., ROCHESTER,N,,
SHANNON, C.E. (1955): A proposal for the Dart-
mouth summer research project on artificial intel-
ligence. http://www-formal.stanford.edu/jmc/hi-
story/ dartmouth/dartmouth.html

MCCULLOCH, W.S., PITTS, W. (1943): A logical cal-
culus of the ideas immanent in nervous activity.
- Bulletin of Mathematical Biophysics, vol.5,
pp.115-133.

MOORE,G.E. (1965): Cramming More Components
on Integrated Circuits. — Electronics (38)8, pp.
114-117.

PASCHEN, H., COENEN, C., FLEISCHER, T.
(2004): Nanotechnologie — Forschung, Entwick-
lung, Anwendung. - Springer-Verlag; ISBN:
3-540-21068-7.

PURDIE, N., LUCAS, E.A., TALLEY, M.B. (1992):
Direct measure of total cholesterol and its distri-
bution among major serum lipoproteins. - Clinical
Chemistry, vol. 38, no. 9, pp. 1645-1646.

RUMELHART, D.E., HINTON, G.E., WILLIAMS,
R.J. (1986): Learning internal representations by
error propagation. — Parallel Distributed Proces-
sing: Exploratations in the Microstructure of Co-
gnition, Vol.1, Cambridge, MA: MIT Press.



354




	Industrielle Anwendungen künstlicher neuronaler Netze

