Zeitschrift: Bericht über die Tätigkeit der St. Gallischen Naturwissenschaftlichen

Gesellschaft

Herausgeber: St. Gallische Naturwissenschaftliche Gesellschaft

Band: 78 (1961-1962)

Artikel: Beiträge zur Geomorphologie des östlichen Hörnliberglandes

Autor: Andresen, Hans

Kapitel: Die Morphogenese im Jungpleistozän

DOI: https://doi.org/10.5169/seals-832804

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

D DIE MORPHOGENESE IM JUNGPLEISTOZÄN

I Die Würmeiszeit

a) Die Gletscher

Zwei Gletscher haben das Untersuchungsgebiet außerhalb der Nunatakerregion bedeckt. In n Richtung stieß der Thurgletscher bis in den Raum Wil vor. Er erfüllte das Thurtal und drang von hier aus in die Seitentäler ein. Dem Ausmaß der fluvialen Zerschneidung entsprechend lag dabei das Schwergewicht w der Thur im e Hörnlibergland. Genährt wurde der Gletscher aus dem Churfirsten- und Säntisgebirge, dessen Gesteine zusammen mit solchen der Molasse fast ausschließlich in den Ablagerungen vertreten sind.

Dem alpinen Nährgebiet entstammen¹: Kieselkalk, Schrattenkalk, Seewerkalk, Valanginiankalk, Gaultsandstein u.a. Der größte Teil der Molassegesteine wurde vom Gletscher beim Vorrücken aufgenommen. Als Nährgebiet kommt ernsthaft nur der Speer in Frage. Außer Blöcken der subalpinen NF begegnet man Einzelgeröllen der NF wie ostalpinen Kalken und Dolomiten, seltener Radiolariten, Verrukano und Quarziten. Sandsteine und Süßwasserkalke sind wegen ihrer geringen Härte sehr selten oder nur lokal

bei geringem Transportweg angereichert.

An drei Stellen konnte der Thurgletscher von Nachbarn beeinflußt werden. Belege für ein Übergreifen des Rheingletschers über Wildhaus fanden sich im Untersuchungsgebiet nicht². Das steht in Übereinstimmung mit den Befunden A. P. Freys (1916), der die letzten Zeugen bei Starkenbach und Krummenau fand. Rhein-Linth-Gletscher und Thurgletscher trafen auf der Paßhöhe des Rickens zusammen. A. P. Frey fand noch Gerölle des ersteren im Hummelwald bei Pt. 764 in Grundmoräne. Die Funde A. Lupwigs³ in der Kiesgrube am Ausgang des Rickentobels sagen nicht viel aus, da sie nach dem Gletscherrückzug in den Bach gelangten. Auch die eigenen Untersuchungen ergaben keinen Hinweis auf einen nennenswerten Einfluß: Taveyannazsandstein im Dietfurtertal unterhalb Neugaden (243,6/720,81/775 m) und im Thurbett 150 m ne der Straßenbrücke Rickenbach-Schwarzenbach⁴; Melaphyr im Schlyffitobel e Fischingen; Sernifit habe ich selber nicht

¹ Nur die wichtigsten Arten sind aufgezählt. Weiteres siehe bei A.P. Frey 1916, E. Maurer 1952.

³ 1930, S. 530 Fußnote.

² Bündner Kristallin kommt im Bett von Aabach und Necker unterhalb der Aachsäge sowie im Thurbett ab Lütisburg vor (A. Ludwig 1930, S. 530). Sie stammen vom Goßauer Arm des Rheingletschers.

⁴ Bei einer Länge von 26 cm erscheint ein Transport von 20 km (ohne Berücksichtigung der Thurschlingen) zu groß. Es dürfte daher Gletschertransport vorliegen.

gefunden, doch treten auch solche auf; Amphibolit bei Pt. 779 Lindenboden e Dietfurt.

Das Vorkommen von Gesteinen fremder Herkunft wurde im allg. interpretiert als ein Beweis für sekundäre Ernährung des Thurgletschers durch Rhein- und Rhein-Linth-Gletscher. In diesem Fall müßten aber weit mehr und vor allem größere Stücke, die als Obermoräne transportiert wurden, zu finden sein. Daß überhaupt gebietsfremdes Material vorkommt, kann auch durch verschieden rasches Reagieren der ungleichen Kontrahenten erklärt werden. Mir scheint, daß die beiden großen Gletscher weit mehr die Funktion hatten, den Thurgletscher am Abfließen über die genannten Pässe zu hindern. Tatsächlich sind ja Fremdgesteine so selten, daß die von A.P. Frey 1916 gegebene Charakteristik der Thurgletschermoränen auch heute noch gilt. Die Ablagerungen des Thurgletschers zeichnen sich «durch das Fehlen von Gesteinen, die für die Moränen der umgebenden Gletscher bezeichnend sind» aus. Nur ausnahmsweise konnte, einem Gedanken von Prof. H. Boesch folgend, die Grenze zwischen Thur- und Rheingletscher mit Hilfe der Leitgesteine des Linthgletschers gezogen werden.

Fand an den beiden genannten Stellen ein Berühren der Gletscher nur über Pässe statt, so trafen Thur- und Rheingletscher im N des Untersuchungsgebietes längs eines Saumes zwischen Jonschwil und Fischingen zusammen. Wir werden darauf zurückkommen und dem Raum Bazenheid-Rickenbach ein eigenes Kapitel widmen. Auch von den Leitgesteinen des Rheingletschers seien nur die wichtigsten genannt²: Puntegliasgranit, Diorit, Gabbro, Syenit, Ophicalcit, verschiedene Gneise, Amphibolit, Ilanzer Verrukano, Seelaffe, Juliergranit.

1. Der Rheingletscher

Nachdem J.C. Deicke (1859), A. Gutzwiller (1883), J. Früh (1886 u.a.), J. Weber (1906), J. Hug (1907) u.a. Grundlagen zur Kenntnis des diluvialen Rheingletschers auf schweizerischem Boden gelegt hatten, konnte A. Penck (1909) erstmals ein umfassenderes und in seinen Grundzügen noch heute bemerkenswert richtiges Bild des Rheingletschers vorlegen. 1910 erschien die Dissertation C. Falkners, welcher im Abschnitt St.Gallen-Aadorf wichtige Teilprobleme zu lösen vermochte, so z.B. die Lage der einzelnen Zungen im Bereich der inneren Jungendmoränen. Eine zusammenfassende Darstellung für den schweizerischen Anteil folgte in Alb. Heims «Geologie der Schweiz». Bis in die jüngste Zeit, in der erst R. Hantke (1961) einen Überblick gab, beschränkte sich die Untersuchung mehr auf bestimmte Probleme, so die wichtigen

¹ Nach frdl. mdl. Mitt. von Prof. H. Boesch.

² Näheres bei Alb. Heim 1919, E. Geiger 1948.

Arbeiten E. Geigers (1930, 1948) zur petrographischen Schotteranalyse. Unsere Bearbeitung schließt sich in ihrer Methodik derjenigen C. Falkners an, wobei das Arbeitsgebiet auf den Bereich zwischen dem Wiler Thurbogen und Huggenberg s Aadorf eingeengt wurde.

Das Maximum

Das Interesse am N-Rand des Hörnliberglandes galt seit jeher besonders der Entstehung der großen Trockentäler¹, dagegen sind die glazialen Ablagerungen etwas zu kurz gekommen. So dürfen wir uns nicht wundern, daß die Kenntnisse und Vorstellungen darüber nicht nur lückenhaft, sondern z. T. falsch sind 2.

Nördlich des Weilers Steig (Bichelsee) beginnt gut 100 m oberhalb des Dorfes Bichelsee in 710 m ein Wall, der sich fast 300 m weit in nw Richtung verfolgen läßt. Gegen SW geht er in ein Schotterfeld3 über. Es liegt in 695 m und bedeckt gut 2,5 ha. Der SW-Abfall wird durch den jungen Steilabfall gegen den Sattelegibach gebildet. Von dem gegen NE abbrechenden Molasseberg Pt. 772,2 wird das Feld durch eine Mulde in knapp 600 m getrennt, welche

gegen Gupfental in die Luft ausstreicht.

Das Vorkommen wurde an seiner NE-Flanke ausgebeutet. Leider ist der größere untere Teil verschüttet, doch reichte die Grube bis auf 670 m herab, so daß sich eine Mächtigkeit von mindestens 35 m ergibt. Die oberen 10 m zeigen einen Wechsel von horizontalen Sand- und Kiesschichten, die oben von einem Blockhorizont abgeschlossen werden. Der Schotter weist deutlich rheinischen Einfluß auf, wenn auch nicht im gleichen Ausmaß wie im Gebiet von Eschlikon. Unter den am Fuße des Aufschlusses aufgestapelten Blöcken finden sich Diorite und Juliergranite.

Die Formen sind noch so frisch, daß nur eine Zuweisung zur Würmeiszeit möglich ist. Dazu treten weitere Ablagerungen n des Dorfes Bichelsee. Bei Unterloo beginnt in 690 m ein Wall, der sich westwärts über Pt. 697,7 hinaus verfolgen läßt. Morphologisch gehört auch die kleine Erhebung in 690 m nw Chienberg dazu. Unter Wald sind dem Wall Findlinge aufgelagert. Zwischen Neu- und Unterloo wurde 1959 n des Walles in 680 m eine Bohrung nieder-

gebracht:

— 4,00 m gelb-brauner, festgelagerter Lehm mit wenig Kies, einzelne große Bollen. Vermutlich handelt es sich um Grundmoräne. In

3,5 m traf man beim Aushub für den Brunnenschacht

auf ein Nest mit großen Blöcken.

² Vgl. Geol. Generalkarte 1950.

¹ J. Früh 1886, J. Eberli 1893, J. Hug 1907 u.a.

³ Nach Aussage der Bauern sehr trocken.

— 7,00 m Kies mit Sand, hart gelagert.

—12,20 m hart gelagerter grauer Lehm mit wenig Kies.

Die Gerölle sind häufig geschrammt. Grundmoräne.

-18,80 m Kies mit Sand.

—21,00 m grauer Mergel.

Wahrscheinlich Molasse.

Diorite und Juliergranite lassen an der Zuordnung nicht zweifeln. Das zeigt sich auch in den Lagebeziehungen Wall-Schotterfeld bei Steig und Wall-Zungenbecken bei Neuloo. Der Gletscher stand jeweils im NE. Das Profil deutet Oszillieren an einer Randlage an.

Im Gebiet Hackenberg-Tolenberg konnten keine entsprechenden Wälle gefunden werden. Dagegen häufen sich die Zeichen eines gleichaltrigen Standes nw des Bichelsees. Am Steilabfall s des Rüetschbergpasses liegt 150 m sw Pt. 669 eine verlassene Kiesgrube. Auch hier ist der untere Teil verschüttet, doch hat er die gleiche Beschaffenheit wie die oberen 4 m, wo horizontal geschichteter Schotter, durch Mergelbänder gegliedert, ansteht. In 680 m wird die mindestens 25 m mächtige Serie von Grundmoräne überdeckt. Am Kontakt zeigt der liegende Schotter glazialtektonische Beanspruchung durch Verschuppung, während die Grundmoräne durch Anreicherung von Geröllen auffällt. Der Schotter läßt sich Richtung Simen bis über die Straße Selmatten-Ettenhausen verfolgen, der ihm aufgesetzte Wall reicht im W bis Ristel. Findlinge auf dem Wall und n sind sehr selten, sie häufen sich zwischen Simen und Weidholz und füllen das Tobel w Rüetschberg streckenweise aus². Innerhalb der Moräne zeigen eine Reihe von Aufschlüssen Schotter, die als Rückzugsbildungen aufzufassen sind³. Nach diesen Beobachtungen wurde der Wall überfahren und läßt sich damit und auf Grund der Höhenlage mit jenem von Neuloo verbinden. Da die Moräne von Steig weiter gegen S vorgeschoben ist und höher liegt, sehen wir sie als äußerste und höchste Randlage der Würmeiszeit, die Wälle Neu Loo und Rüetschberg als etwas jüngere Phase des gleichen Stadiums an. Der morphologische Charakter der letzteren ist noch so gut gewahrt, daß sie wohl nur kurz, aber nicht bis zur Randlage von Steig überfahren wurden.

Auch e der Murg sind Zeugen hoher Randlagen erhalten geblieben. Ein deutlicher, nw streichender Wall beginnt s Brunberg bei Pt. 682,7⁴ und läßt sich an Hand von Findlingen und einem teil-

² Der größte wies einen Inhalt von mindestens 15 m³ auf.

¹ Nach Aussage des Besitzers.

³ Besonders schön sw Pt. 596 (258,56/709,38/620 m). Diese Schotter sind nirgends von Grundmoräne überlagert.

⁴ Vgl. die Karte C. Falkners 1910. Der Wall ist nicht durchgehend, wie auch Falkner angibt.

weise verkitteten Schotter ca. 100 m wsw Pt. 684 in 670–675 m verfolgen. Auch sw Pt. 684 sind Reste einer Gletscherrandlage in einer Häufigkeit vorhanden, die eine Einstufung in die Würmeiszeit nahelegen, so am Hang des Littenheider Tobelbaches in 650 m e Pt. 608, auf dem Rücken ne Oberschönau in 695–700 m einzelne Blöcke und etwas Schotter. Ein größeres Schottervorkommen in 700 bis-715 m liegt auf dem gleichen Rücken weiter w. Einige Findlinge, darunter ein Punteglias, fanden sich an der Kante oberhalb des Erosionstrichters von Wildemaa bis in 730 m, ein vereinzelter Block im Wäldchen bei Pt. 742 in 740 m. Diese höchsten Funde bringen wir mit Schotterresten bei Gründ (w Dietschwil) in 740 m in Zusammenhang, welche zwischen zwei Gletscherlappen abgelagert wurden, die von N (über Littenheid) und von E (über Dietschwil) vordrangen.

Damit zeichnen sich auch hier mehrere Randlagen ab. Die höchsten Vorkommen lassen sich bei Berücksichtigung eines E-W-Gefälles mit dem Wall von Lützelweid parallelisieren, die schlecht aufgeschlossenen Schotter n Oberschönau mit den Moränen von Neuloo und Rüetschberg, wobei es bisher leider nicht möglich war, die überfahrene Natur dieser Schotter nachzuweisen. Dies wäre hier allein auf stratigraphischem Weg möglich, da morphologisch infolge der hohen, exponierten Lage durch jüngere Abtragung allzuviel verwischt wurde. Sicher ist jedenfalls der Wall s Brunberg nicht überfahren worden. Vielmehr repräsentiert er einen etwas tieferen Stand, für den im Untersuchungsgebiet keine gleichaltrigen Wälle gefunden werden konnten, was damit zu erklären ist, daß weiter w in entsprechender Höhenlage sich steile, durch junge Erosion zerfurchte Hänge befinden, so am Chranzenberg, Wildemaa, Hackenberg, Haselberg und Blanket.

Ein undeutlicher Wallrest liegt ne Fischingen zwischen 670 und 680 m. Er verläuft parallel zum Hang und wies u.a. drei kleinere Blöcke Puntegliasgranit auf¹. Nach Lage und Höhe kann er nicht der Brunbergmoräne gleichgestellt werden, so daß nur einer der beiden höheren Stände in Frage kommt. Die besprochenen drei Randlagen, die wir wegen der relativ geringen Höhendifferenzen² einem einzigen Stadium zuweisen, gehören in das Würmmaximum, das davon keine Wallmoränen des Rheingletschers mehr vorhanden sind und der Anteil rheinischen Materials bald abnimmt.

Der 2. Rückzugshalt (= Andelfingen)

Am besten bekannt sind die inneren Jungendmoränen, für die sich – besonders aus den Untersuchungen J. Frühs (1886) und

¹ Durch Wegarbeiten aufgeschlossen.

² Ein geringes Oszillieren hat infolge der steilen Hänge bereits große Höhenunterschiede zur Folge.

C. Falkners (1910)¹ – eine Aufgliederung des sw Abschnittes in drei Teillappen ergibt:

1. Zunge Mörschwil-Goßau,

2. Zunge zwischen dem Tannenberg- und dem Nollenplateau,

3. Zunge zwischen dem Nollen- und dem Sonnenbergplateau, wobei sich die beiden letzteren bei Weinfelden trennten und das Nollenplateau umflossen. Bei Wil standen sie sich bis auf wenige Kilometer wieder gegenüber. In unserem Arbeitsgebiet haben wir es hauptsächlich mit der dritten Zunge zu tun, welche sich durch die Lauchetalung gegen SW vorschob, um sich – wie der Verlauf der Drumlins eindrücklich zeigt – bei Anetswil in einen s Lappen von Münchwilen und einen w Wittenwiler Lappen aufzuspalten. Die Teillappen des Zungenbeckens von Münchwilen schütteten die Wälle von Bronschhofen und Eschlikon, jene von Wittenwil die Endmoränen von Aadorf und Aawangen auf.

Bei Eschlikon sind zwei Endmoränen deutlich ausgebildet. Ein äußerer Wall mit dem Stockenholz in 580 m schiebt sich zwischen den Hiltenberg und die flache Erhebung von Taa, die beide aus Molasse bestehen. In einer Entfernung von max. 800 m verläuft der innere Wall von Chrinen bis Büfelden in 560 m. Zwischen beiden erkennt man einen dritten, sehr flachen Rücken von Farb bis Pt. 564,4. Eindeutig ist der innere Wall der jüngste, denn er zeigt nicht nur scharfe Formen, sondern von ihm aus wurde über die Mulde von Schalenwinkel eine mächtige Abfolge von Bändertonen in das zwischen äußerem Wall und Rücken gelegene Becken sedimentiert². Das Schmelzwasser verließ das Teilbecken durch die Senke im äußeren Wall bei Pt. 568. Sollte es sich bei dem Rücken um eine Moräne handeln³, so müßte sie überfahren worden sein, woraus sich die Reihenfolge

mittlere Moräne äußere Moräne innere Moräne

Farb–Pt. 564,4
Stockenholz
Chrinen

ergäbe.

Die Bändertone ⁴ zeigen, soweit aufgeschlossen, eine ausgezeichnete Wechsellagerung heller Frühjahrs- und dunkler Herbstschichten, welche eine Auszählung erlauben. Bei einer durchschnittlichen Mächtigkeit einer Warve von 4 bis 5 mm ergeben sich ca. 3500 Jahre, in welcher Zeit der Gletscher an der inneren Moräne lag. Dieser Betrag erscheint für das Verbleiben an einer einzigen Moräne in Anbetracht der Kürze des Hochglazials ⁵ zu lang. Tatsächlich ergab

¹ Vgl. die Karte bei C. FALKNER.

² Den Hinweis auf das Vorkommen verdanke ich Dr. A. von Moos, der mir auch einen Bohrkern überließ.

³ Sie ist nirgends aufgeschlossen.

⁴ Vgl. auch L. ROLLIER: 1907, S. 312 f.

⁵ Vgl. H. Gross 1958.

eine Prüfung des Bohrkerns, daß auch Unregelmäßigkeiten vorkommen, die auf zeitweise größere Gletschernähe schließen und die

Zeitdauer etwas zusammenschrumpfen lassen.

Weniger deutlich sind die Verhältnisse im e Teil des Beckens von Münchwilen, wo die Randlage durch den schon A. Gutzwiller (1883) bekannten Bronschhofner Wall markiert wird ¹. Gut ausgeprägt ist die Moräne beim Bergholz, wo sie sich sw Pt. 568 an den Sirnachberg anlehnt. Lediglich der Verlauf dieses Teilstückes macht einen ursprünglich weiter ostwärts ausschwingenden Bogen – entsprechend dem äußeren Eschlikoner Wall – möglich. Dieser würde erst bei Pt. 604 nw vom Ölberg wieder auf Molasse stoßen ². In diesem Fall müßte man den eigentlichen Wall von Bronschhofen der inneren Randlage zuweisen, wenn diese nicht noch weiter beckenwärts sw Bronschhofen bei Pt. 572,1 zu suchen wäre ³.

Östlich Wil hat C. FALKNER (1910) zwischen Vogelsberg und Oberstetten Moränenwälle beschrieben, deren Fortsetzung in das Thurbecken im Spätglazial durch die Erosion der Thur zerstört wurde, sich heute jedoch mit großer Genauigkeit rekonstruieren läßt. Bei Golden findet man im Thurbett zahlreiche bis 2 m³ große Blöcke. Sie wurden aus den jungen Akkumulationen der Thur, in welche sie durch Tieferschaltung hineingeraten waren, nach der Thurkorrektion herausgewaschen. Bei Vogelsang w Züberwangen erschloß eine kurzfristige Ausbeutung ein ganzes Feld mit Blöcken bis 4 m³, von denen einige kleinere prachtvoll geschrammt waren. Verbindet man diese Punkte, so ergibt sich ein regelmäßiger, gegen das e gelegene Zungenbecken offener Bogen. Durch eine größere Anzahl Bohrungen in der Thurau lassen sich deutlich Beckenfüllung von Moränen- und Schottermaterial abgrenzen. Der Wall Wiler Altstadt gehört also auf keinen Fall zum Moränenkranz von Oberstetten, wie C. FALKNER erwägt.

Zwischen den Endmoränen von Oberstetten und Bronschhofen wurde die Wiler Schotterplatte aufgeschüttet. Eine Anzahl Kiesgruben und zahlreiche Bohrungen zeigen einen Schotter bis max. 17 m, der von sandigen und z. T. tonigen Sedimenten unterlagert wird. Molasse wurde bisher an keiner Stelle – mit Ausnahme der Randzonen – angetroffen.

Der 1. Rückzugshalt

Zwischen den Höchststand und die Randlage von Andelfingen schiebt sich ein Gletscherhalt ein, der nur undeutlich ausgeprägt ist. Sowohl bei Ifwil als auch bei Balterswil liegen Schottermassen,

¹ Auf der Geol. Generalkarte 1950 nicht eingetragen.

² Eine Verbindung mit dem Wall Wiler Altstadt ist ausgeschlossen, da dieser mit 600 m zu hoch läge.

³ Die Verhältnisse sind also noch unklar. Eine Lösung wäre evtl. möglich durch Auszählung der Bändertone von Gloten. Vgl. J. Früн (in: Letsch 1907, S. 316 ff.).

welche diese Durchlässe plombieren. Die Aufschlüsse sind verfallen und geben nur noch das generelle Bild eines mittelkörnigen Schotters, der bei Ifwil teilweise verkittet ist¹. Doch erwähnt C. Falkner (1910) verschotterte Grundmoräne und einen geschrammten Block in der Enge von Balterswil. Nach Alb. Weber (1953) wurden durch eine Bohrung 9,7 m Schotter und darunter Molasse angetroffen.

Östlich der Murg finden wir in entsprechender Lage, also ca. 25 km vom äußeren Bronschhofer Wall, im Littenheider Tal e der, Anstalt (unterhalb Pt. 592,2) eine ursprünglich gut 20 m hohe Kiesgrube. Wie J. Früh² berichtet, wurden bei der Ausbeutung «viele bis 10 q schwere Blöcke aus dem Bündner und dem Säntisgebiet» angetroffen und beim weiteren Abbau Richtung Friedhof Kies angeschnitten. Heute zeigt die nur noch teilweise abgebaute Kiesgrube folgendes Profil von oben nach unten:

ca. 15 m verschüttet
0,6-0,8 m geschichteter Mergel, gelb-braun
1,8-2,0 m mittelkörniger Schotter, geschichtet
0,4 m Mergel, kryoturbat gestört
4,4 m mittelkörniger Schotter, geschichtet

Niveau der Straße Littenheid-Wiezikon
mittelkörniger Schotter, wovon die oberen 2 m
Deltaschüttung Richtung WNW zeigen

Eine Bohrung (1950) 3 ergab noch in 14 m unter dem Straßenniveau Schotter. Die Abfolge im Aufschluß zeigt typische Staubildungen, die sich leicht aus der lokalen Situation erklären lassen, da der Gletscher gleichzeitig murgaufwärts vorstieß und den Talausgang bei Anwil versperrte. Dabei muß es zu kleineren Schwankungen des Gletschers gekommen sein, denn die Verwürgungen im unteren Mergelband konnten nur subaerisch entstehen. Auch verlangen die horizontal geschichteten Schotter nach einem freien Abfluß. Beim Vorstoß räumte der Gletscher einen Teil des Schotters aus. Es kann keinem Zweifel unterliegen, daß die Schotter von Bußwil und von Ägelsee zum Littenheider Schotter zu rechnen sind, während das Delta an der W-Flanke des Wuhrenholzes⁵ etwas älter sein und in die Zeit unmittelbar nach dem Höchststand fallen muß, in welcher - evtl. durch schmelzendes Toteis - der Altbach genügend Wasser, aber auch Material führte. Das Vorkommen wurde beim neuerlichen Vorstoß überfahren, wie zahlreiche

² In: R. Weber 1920, S. 144.

³ Nach frdl. Mitt. von E. Lutz, Müllheim TG.

¹ C. Falkner 1910, S. 70. Leider läßt sich mit der Angabe Scherrers (Falkner, S. 70 Fußnote), der an einer Stelle Deltaschüttung gesehen hat, nichts anfangen.

⁴ Nach frdl. mdl. Mitt. von Alb. Weber, Frauenfeld, tritt hier nach 4,5–5 m Kies von unbekannter Mächtigkeit auf.

⁵ Nach C. FALKNER 1910, S. 66. Heute sind nur noch die obersten 4-6 m zugänglich.

bis m³-große Blöcke zeigen. Der Schotter von Hueb-Bußwil wurde dabei von Grundmoräne überdeckt, während der Aufschluß von Ägelsee keinen eindeutigen Beleg lieferte. Den von J. Früh (1886) angenommenen zusammenhängenden Wall Wil-Wilen-Vogelhärd, welcher durch eine von E kommende Rheingletscherzunge aufgeschüttet wurde, anerkennt C. Falkner (1910) nur unter Vorbehalt, weil die Hügel Vogelhärd und Hochbüel (= Steigbühl bei Falkner) im wesentlichen aus Molasse bestehen. In den Rahmen eines Littenheider Stadiums passen sich diese Formen zwanglos ein. Der Wall Wiler Altstadt wird zur Mittelmoräne zwischen den beiden von E und W andrängenden Rheingletscherzungen. Möglicherweise versteckt sich unter dem Erratikum eine osartige Bildung, zu der die bisher bekannten Tatsachen über den Bau nicht in Widerspruch stehen¹. Der unscharfe Wall Egg w Wilen erklärt sich als Seitenmoräne der Gletscherzungen, die den Hummelberg umflossen.

Im Murgtal stieß der Gletscher bis Oberwangen vor. Einige Findlinge s vom St.Martinsberg – u.a. Ilanzer Verrukano – belegen einen Gletscherhalt, der gleichzeitig durch seine Entwässerung beim St.Martinsberg zwei kleine randglaziale Rinnen schuf.

Das Alter des Littenheider Stadiums ergibt sich aus seinem Abstand von den inneren Jungendmoränen, welche mit 2,5–3 km dem Abstand des Altener Walles vom äußeren Wall von Andelfingen entspricht, womit sich eine ausgezeichnete Übereinstimmung mit den Verhältnissen an der Typlokalität ergibt.

Die randglaziale Entwässerung

Auf jeder Karte großen bis mittleren Maßstabes fallen am N-Rand des Hörnliberglandes mächtige Täler auf, welche – oftmals in weiten, mäanderartigen Schwingungen – generell E-W bis ESE-WNW verlaufen². Es handelt sich um die Trockentäler von Littenheid³ und Bichelsee⁴, denen J. EBERLI (1893) eine kleine Arbeit widmete und als Teilstücke eines ehemaligen präglazialen Thurtales interpretierte. Auch später (1900) bleibt er bei dieser Auffassung, wenn auch das «präglazial» durch «vor der letzten Eiszeit» ersetzt wurde. 1907 erst wird von J. Hug widersprochen, welcher die Täler als Schmelzwasserrinnen auffaßt. C. FALKNER (1910) teilt diese Auffassung, und A.P. FREY (1916) schreibt ganz

Nach J. Früh (1886, S. 115) befanden sich auf dem Wall zahlreiche kantige Findlinge des Rheingletschers, und beim Bau des Hydrantennetzes stieß man auf Sand und Kies, der seiner Bemerkung nach geschichtet war. Wie mir Baumeister J. Holenstein, Wil, mitteilte, traf er beim Bau des Luftschutzkellers beim Viehmarkt auf 7 m Kies und Sand in der Horizontalen.

² Entsprechende Täler gibt es in der Randzone des Napfberglandes. Siehe O. Frey 1907 und F. Nussbaum 1911.

³ Wilen-Littenheid-Anwil.

⁴ Dußnang-Itaslen-Bichelsee-Selmatten-Neubrunn-Oberhofen-Turbenthal.

klar über «neue Wasserstraßen», die sich in den Abschmelzgebieten der Gletscher bildeten. Auch H. Wegelin (1915), A. Weber (1930) und E. Hess (1946) teilen diese Auffassung, wobei letzterer bemerkt, daß die Schmelzwasserflüsse «durch irgendwelche Überläufe einen Ausweg nach Westen fanden» (S. 111). Dagegen greift W. Oertle (1954) den alten Gedanken J. Eberlis wieder auf und meint, erst später sei das Tal als Schmelzwasserrinne benutzt worden. Es war daher ein Teil meiner Aufgabe, der Entstehung dieser Täler nachzugehen.

Bei seiner Ausbreitung über den Bodensee hinaus schob sich der Rheingletscher der allgemeinen Abdachung entgegen aufwärts. Damit versperrte er den ne und n gerichteten Wasserläufen zwischen seiner Austrittsstelle aus den Alpen und etwa der Gegend Tößegg den angestammten Weg und zwang ihnen eine neue Richtung entlang dem Eisrand auf. An den Flanken des Thurgletschers spielte sich der gleiche Vorgang ab, nur in kleinerem Ausmaß. Zwangsläufig kam es dabei überall dort, wo in der neuen Richtung Schwellen den Abfluß hinderten, zunächst zum Stau von Seen, in welche Deltas geschüttet wurden.

Zugunsten der nach m.W. für das Untersuchungsgebiet erstmalig von J. Hug (1907) ausgesprochenen Auffassung randglazialer Täler sprechen mehrere Gründe:

- 1. Die Schüttungsrichtung beim Aufbau des Hörnlikegels verlief zentrifugal. Ihr folgen auch heute noch im großen und ganzen die Abdachung des Berglandes und seine Entwässerung. Ohne zwingenden Grund wird kein größerer Wasserlauf der periklinalen Richtung folgen. Für die Zeit, welche unmittelbar auf das Schüttungsende also Spätmiozän oder Pliozän folgt, ist diese Richtung unwahrscheinlich.
- 2. W. Oertle (1954) hält die Trockentäler von Littenheid und Bichelsee für älter als Mindel-Riß Interglazial. In diesem Fall müßte man aber annehmen, daß sich zu beiden Seiten ein weiter fortgeschrittenes verzweigtes System von Tributären entwickelt hat¹. Das ist nicht der Fall.
- 3. Vielmehr durchbrechen die Trockentäler reife Talsysteme, die sich leicht rekonstruieren lassen. Die Murg, deren schön entwickeltes Einzugsgebiet w Fischingen von geringen Störungen abgesehen noch vorhanden ist, fließt konsequent nach N und weist n des Trockentales eine direkte Fortsetzung auf, die sie auch heute benutzt. Im Gegensatz dazu wurde diejenige des Tanneggerbaches außer Funktion gesetzt. Der Paß von Hushalden liegt gut 20 m über dem Tußliger Feld, welches der Bach heute links liegen läßt, um in e Richtung einen direkteren Anschluß an die Murg zu

¹ W. Oertle arbeitet selber mit diesem Kriterium, ohne es aber auf diesen Fall anzuwenden.

finden. Seine ursprüngliche Mündung lag ssw Wiezikon, etwa bei Wis. Südlich der Ortschaft Bichelsee hat sich die Lützelmurg einen reif verästelten Oberlauf geschaffen. Wäre das Trockental von Bichelsee eine alte Rinne, so erschiene der Durchlaß von Balterswil unverständlich, hier aber bietet er sich als direkte Fortsetzung an. Westlich und sw Selmatten richten zwei Tobel ihre Achsen gegen NE und NNE, während das Tobel, welches e Selmatten bei Pt. 597,3 den heutigen Talboden trifft, in nw Richtung direkt auf den Paß von Rüetschberg zielt.

Die Rekonstruktion ergibt demnach im Raum Selmatten das geschlossene Einzugsgebiet eines Baches, wie es noch heute z.B. im Quellgebiet der Lützelmurg s Bichelsee besteht. Dann müssen wir aber zwischen Selmatten und Neubrunn eine alte Wasserscheide erwarten. Und darauf deuten tatsächlich die morphologischen Verhältnisse. Vergleichen wir die Furchen, welche die Hänge bei Wängestel und Nübrüch gliedern, mit den eben erwähnten Tobeln, so fällt ihre geringe Tiefe auf. Weisen die zu entwickelten Systemen gehörigen Tobel – z.B. Nidel, Cholholz, Speck usw. – breit ausladende Talschlüsse mit relativ geringem Gefälle auf, so nimmt das Gefälle bei Wängestel und Nübrüch zu. Kurz vor der Wasserscheide gehen sie in aktive NF-Wände über. Ihre Achsen stoßen senkrecht auf jene des Trockentales. Verlauf und Höhenlage der Wasserscheide sprechen für eine ehemalige Verbindung zwischen Höchegg und Pt. 823 n Chabishaupt. Auf der Karte gibt sich der Durchbruch durch eine deutliche, mehr oder weniger halbkreisförmige Geländekante zu erkennen, welche die charakterisierten Formen begrenzt. Für Nübrüch z.B. beginnt sie ne Neubrunn, setzt sich über die Punkte 815,1 und 823 fort und erreicht die Talsohle über Siggenbühl bei Selmatten.

Mit den so gewonnenen Kriterien lassen sich nunmehr leicht einige weitere alte Wasserscheiden auffinden. Demnach querte die e Wasserscheide des rekonstruierten Selmattener Baches das Trokkental zwischen Pt. 811 (Gerstel) und Pt. 819,2 (Burstel). Die e Wasserscheide der oberen Lützelmurg verlief von Pt. 772,2 zum Hackenberg. Wohl am klarsten sind die Verhältnisse beim Durchbruch zwischen Grat und St. Iddaburg. Im Gegensatz zu den bisher beschriebenen Fällen wird dieses Tal heute durch einen aktiven Bach, die Murg, benutzt. Sie konnte sich so zwei ehemalige Tributäre des Gonzenbaches bei Tobel und Bennenmoos angliedern.

Die schönen «Mäander» des Littenheider Tales werden verständlich, wenn wir sie mit der scharfen Biegung des Bichelseetales vergleichen, in welcher der See liegt. Entsprechend dem Rüetschbergpaß finden sich auch hier an den nordwärts gerichteten Knien bei Weiherhof und Bußwil Pässe, wo sich ursprünglich die Tobel vereinigten. Die Wasserscheiden lagen zwischen Wildemaa und Luttenberg sowie zwischen Chranzenberg und Arenenberg. In die-

sem Zusammenhang soll noch kurz auf die Verhältnisse der beiden Tößquelläste hingewiesen werden. Der unmotivierte Bogen der Vordertöß erfährt zwanglos seine Erklärung, wenn wir uns vorstellen, daß der Rhein-Linth-Gletscher den Schmittenbach sperrte und so seinen ne Teilast zur unteren Laufstrecke des anderen, bei Schwämi entspringenden machte. Der Schmittenbach verlor damit seine beiden Quelläste, die sich bei Wolfsgrueb vereinigten. Die hintere Töß muß bei noch höherem Gletscherstand die Wasserscheide Tößstock-Dägelsberg durchbrochen haben. Tatsächlich führt über die Wasserscheide Höchhand (1314 m) – Habrütispitz (1274,5 m) bei Hand ein Paß (1003 m).

4. Weisen die eben skizzierten Verhältnisse auf eine deutliche Überlagerung junger und fremder Elemente auf ein altes, eingespieltes Entwässerungsnetz hin, so läßt sich der Vorgang selber an einem Beispiel darlegen. Zwischen der Dietschwiler Höchi (Pt. 771) und dem Littenheider Trockental¹ schaltet sich eine weitere, hangparallele Rinne ein, die sw Brunberg beginnt und zunächst in nw Richtung verläuft, um dann s Pt. 684 (Ebnet) in rechtem Winkel gegen SW abzubiegen. Ihr heutiger Boden liegt im

Querprofil durch die Urstromtäler von Ob.Schönau und Littenheid Ueberhöhung 2,5 x

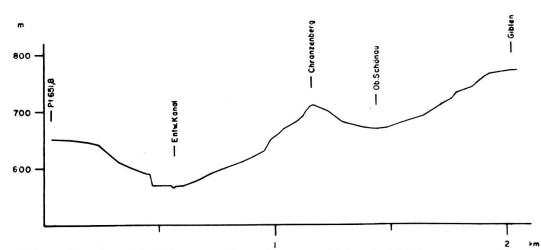


Abb. 11. Randglaziale Täler von Oberschönau und Littenheid (Entwässerungskanal).

Langenauwald in über 665 m und bei Oberschönau in 669 m. Der Eisrand verlief parallel dazu², und zwar in Höhenlagen zwischen 680 und 740 m. Auch weiter w, im Raum Bichelsee, hatten wir Zeugen des Würmmaximums in gleicher Höhenlage kennengelernt.

¹ Heutiges Niveau infolge Verlandung zwischen 560 und 570 m.

² Vgl. die Karte bei C. FALKNER 1910.

Wie der Wallrest bei Fischingen beweist, drang der Rheingletscher in das Murgtal ein und sperrte damit das obere Einzugsgebiet ab. In den Stausee wurde zwischen Fischingen und Buewil ein Delta (252,70/715,98/690 m) geschüttet, welches durch zwei übereinanderliegende Schüttungen einen Seespiegelanstieg von 696 m auf knapp 700 m dokumentiert. Die Basis wird von einem hellbraunen Seeton gebildet, der sich noch ca. 100 m gegen W fortsetzt und erst hier geschichtet ist. Die Schüttung erfolgte durch Lappen des Thurgletschers, welche von Schalkhusen her und über den Paß Pt. 834 nw Gähwil vorgestoßen waren. Die genaue Lage des Thurgletschers läßt sich nicht mehr festlegen, weil beim Rückzug Teile des Vorlandes zugeschottert wurden, wie aus dem mächtigen Schotter zwischen Buomberg und Feld 1 oder aus dem Schotter zwischen Oetwil und Sackgrütli² hervorgeht.

Entlang dem Eisrand vollzog sich die Entwässerung, deren Phasen sich verfolgen lassen. Während des höchsten Gletscherstandes wurden zunächst einzelne, höher gelegene Wasserscheiden durchbrochen, so zwischen Giblen (Dietschwiler Höchi) und Pt. 742. Erst dann konnte eine Rinne dem Eisrand entlang geschaffen werden, die mit jeder folgenden Abschmelzphase tiefer gelegt wurde. Die höchsten Schotter bei Gründ in 740 m verbinden wir mit dem Schotterfeld von Steig. Während der folgenden Phase ergoß sich das Schmelzwasser in den Stausee von Fischingen und verließ diesen beim Freihof nw Fischingen, wo die ehemalige Wasserscheide in 675–680 m lag und zuletzt bis auf 655 m durchsägt wurde. Dagegen bildete der Grat zwischen der Burgruine Tannegg und Niderwis einen Damm, der nirgends 720 m unterschreitet und daher bei Cheer nw Dußnang umflossen werden mußte.

Der geringe Seespiegelanstieg ließe sich mit dem kurzen Vorstoß über die Endmoränen von Neuloo und Rüetschberg in Zusammenhang bringen. Dagegen war die kleine Rinne von Steig in knapp 690 m schon während des Rückzuges vom Höchststand aufgegeben worden, wodurch das Schmelzwasser gezwungen wurde, sich neue Wege zu suchen, so w Lützelweid in 655 m. Mit dem Rückzug auf die Moräne von Brunberg setzte energische Tiefenerosion ein, wodurch die Rinne Langenau-Schönau bis auf die angegebenen Niveaus erniedrigt wurde³. Wie mehrere Niveaus zwischen Hunzenberg und Zimenberg von 640 bis 655 m zeigen, war der Ablauf im einzelnen komplizierter. Sehr wahrscheinlich bestand auch während dieser Phase ein See bei Fischingen. Auch dieser muß über den Freihof abgeflossen sein, woraus sich zuletzt ein Spiegel von 655 m ergibt. Im Bichelseetal finden sich keine

¹ Aufgeschlossen e Buewil (252,55/716,74/735 m).

² Aufgeschlossen e Buewil (252,25/717,96/760 m).

³ Geringfügige Differenzen erklären sich aus der Auflagerung von Hangschutt.

Rinnenteilstücke mehr in entsprechender Höhe, woraus geschlossen werden kann, daß der Schmelzwasserstrom von jetzt an das Tal unter fortwährender Tieferlegung benutzte. Mit dem endgültigen Rückzug vom Würmmaximum gab der Gletscher auch die linken Hänge der Littenheider Rinne frei.

Bevor wir jedoch darauf eingehen, müssen wir die Frage nach dem Alter dieser Täler stellen. Die Höhe der äußersten Würmmoränen verbietet einen Durchbruch der Wasserscheide zwischen Selmatten und Neubrunn, welche in ca. 800 m gelegen haben muß. Der noch zu besprechende Rißschotter von Wolfsgrueb in 810 m legt eine Entstehung während der Rißeiszeit nahe. Wäre der Durchbruch noch älter, so hätte der Rißgletscher bei seinem Vorstoß tiefer in den Abschnitt Selmatten-Neubrunn vordringen müssen und Spuren glazialer Erosion hinterlassen. Über das Ausmaß der rißzeitlichen Schmelzwassererosion gibt die Fortsetzung des Trockentales Dußnang-Bichelsee in nw Richtung über Huggenberg-Heurüti eine Vorstellung. Wiederum handelt es sich um eine Rinne, die von der alten, fluvialen Entwässerung gequert wird, deren rechter ne Hang aber fast völlig abgetragen wurde. Während der Würmeiszeit war sie funktionslos, wie der Wall Ristel-Simen beweist, oder doch nur kurz beim Rückzug in Betrieb. Es kommt also nur Riß in Frage, wobei wir in Analogie zu den Erkenntnissen in den für die Rißchronologie entscheidenden Gebieten ² annehmen, daß das Rinnenstück Dußnang-Heurüti vor dem Gletscherstand Wolfsgrueb angelegt wurde. Dafür spricht nicht nur die starke glaziale Überarbeitung im Gebiet Heurüti-Sennhof, sondern auch das Fehlen von würmzeitlichen Stauschottern, die vor Erreichen des Maximums abgelagert wurden. Das bedeutet, daß der Schmelzwasserstrom des Würmgletschers ungehindert durch die Rinne Selmatten-Turbenthal abfließen konnte. Das Niveau des Trockentales von Bichelsee lag demnach zur Zeit der Riß-II-Vorrückungsphase bei Rüetschberg etwa in der Höhe der Auflagerungsfläche des Schotters bei 655 m. Nicht nur die Entstehung des Bichelseetales fällt somit in die Rißeiszeit, sondern auch die Haupteintiefung, für welche nach dem Gesagten mit mindestens 150 m an der Wasserscheide Selmatten-Neubrunn gerechnet werden muß.

Damit kommen wir noch einmal auf die Entwicklung der Rinnen nach dem Höchststand der Würmvergletscherung zurück. Den ersten, bedeutenden Halt hatten wir bei Littenheid, Oberwangen, Balterswil und Ifwil festgestellt und mit dem Stadium von Alten parallelisiert. Wie die Verhältnisse im Littenheider Tal zeigen, war der Gletscher zunächst ein Stück weit, mindestens aber bis zum Wuhrenholz zurückgeschmolzen und dann gegen Littenheid vorgestoßen. Nur so lassen sich die starke Eintiefung unter den Schottern

¹ Vgl. u.a. E. Bugmann 1958, 1961.

dieses Stadiums bis mindestens 555–560 m beim Aufschluß Pt. 592,2 (Littenheid) 1 und die anschließende Aufschotterung bis 590 m erklären.

Die Rinne von Bichelsee hat während dieses Stadiums ihre endgültige Vertiefung erfahren und wurde anschließend stillgelegt. Das ergibt sich zwingend aus den Bohrresultaten. Schon J. Hug (1907) hatte eine Verbindung der beiden großen Trockentäler wegen der bedeutenden Höhendifferenz zwischen Anwil (560-565 m) und Dußnang (ca. 590 m) abgelehnt. Wäre das zu hohe Niveau von Dußnang allenfalls noch durch Aufschotterung von Murg und Tanneggerbach erklärbar gewesen, so bewiesen spätere Bohrungen hier eine Molasseschwelle 2 in ca. 580 m. Tatsächlich dürfte hier bei einer angenommenen Verbindung der Trockentäler die Molasse erst bei 550 m oder weniger für das Altener Stadium³ und ca. 540 m oder weniger für das Andelfinger Stadium bei Unterstellung eines Gefälles von 20/00 anstehen4. Eine durchgehende Verbindung ist also für beide Stadien völlig ausgeschlossen. Während der äußeren Randlage des Altener Stadiums war die Erosion im Littenheider Tal lahmgelegt, da es durch den bis Oberwangen vorgedrungenen Murglappen des Rheingletschers abgesperrt war. Die gestauten Wassermassen suchten sich einen Ausfluß über den Sporn Neuhunzenberg-Bürglen, wo sie e Pt. 633 eine Rinne bis auf etwa 628 m ausräumten, umflossen die Gletscherstirn bei Oberwangen am St. Martinsberg in ca. 600 und 590 m und betraten bei Dußnang das Tal von Bichelsee. Autochthones Wasser spielte jetzt eine größere Rolle und wurde durch Bründelbach und Murg bei Bichelsee durch die obere Lützelmurg zugeführt. Weiteren Zufluß erhielt der Strom durch die im Eschlikoner Becken liegende Gletscherzunge bei Balterswil, die gleichzeitig bei Ifwil Richtung Ettenhausen-Elgg entwässerte. Mit dem Rückzug wurde das Bichelseetal inaktiv, so daß der Tanneggerbach bei Dußnang im Verein mit der Murg aufschottern konnte, während im übrigen Teil des Tales das von den Hängen durch Solifluktion und Abschwemmung herangeführte Material liegenbleiben konnte.

Während des 2. Haltes bei den Moränen von Bronschhofen und Oberstetten wurde das Wiler Feld aufgeschottert. Der Abfluß erfolgte nur noch durch die Pforte von Sooret, wobei es noch einmal

¹ Vgl. S. 50.

³ Etwa in dieser Höhe lag die Molasse bei der Bohrung Oberhofen.

² Alb. Weber 1953, S. 99. Bei 254,35/715,27/ca. 582 m, also genau 100 m vom Fuß des Tolenberges, steht im Murgbett Molasse an, während sie bei der Bohrung «Einfang» s Oberwangen (ca. 715,4/254,02) erst in ca. 570 m angetroffen wurde und «Im Feld» (715,86/255,45) zwischen Oberwangen und Wiezikon bei 544,5 m nicht erreicht wurde.

⁴ Ausgangspunkt für die erste Bestimmung ist die Bohrung beim Aufschluß Pt. 592,2 bei Littenheid, für die zweite die Bohrung «Wilen-Egelsee» im Sooret (Alb. Weber 1953, S. 106).

zu Tiefenerosion kam. Über ihr genaues Ausmaß und das der anschließenden Aufschotterung¹ wissen wir nichts. Sicher ist nur, daß die Akkumulationen im Sooret mindestens 5 m tiefer reichen, als sie die Bohrung «Wilen-Egelsee» (Alb. Weber 1953) angibt².

Die Frage nach der Fortsetzung der Littenheider Rinne diskutierte erstmalig J. Weber³ und machte auf die Rinne s Hurnen-Wallenwil aufmerksam. Da ein Abfluß weder über Dußnang noch entlang der Stockenholzmoräne möglich war – er stößt bei Horben an NF (256,8/716,1) –, bleibt allein dieser Weg frei. Außer durch eine kleine Bohrung von 7,8 m sw Wallenwil (Alb. Weber 1953), die offensichtlich in den mächtigen, bis 585 m hinaufreichenden Akkumulationen des Waldbaches steckenblieb, sind wir über die Tiefe dieser Rinne nicht orientiert. Doch spricht der Talausgang des Moosbaches zwischen Wihalden und Hueb für die Webersche Auffassung, sind doch weder die Breite von 120 m noch die Steilhänge – bei Wihalden steht Molasse an – der Leistungsfähigkeit des Baches adäquat.

Auch diese Rinne muß älter angelegt sein. Südlich der beschriebenen Mündung wurde die ursprünglich breitere Rinne durch Moräne gesperrt. Der Stutz (Pt. 637,5), welcher mit dem Hackenberg verbunden war, ist heute ein glazial gerundeter, isolierter Molassehügel. Da die Rinne zur Würmeiszeit nur während des Andelfinger Stadiums und der Frühphase des Altener Stadiums funktioniert haben kann und für eine Entstehung während des Maximalstandes keine Anzeichen vorliegen, muß sie rißzeitliches Alter haben.

Die Breite des Littenheider Tales übertrifft jene ihrer Fortsetzung bei Wihalden gut um das Doppelte. Es stellt sich daher die Frage, ob diese Rinne in der Lage war, während des ganzen Stadiums die Wassermassen abzuleiten⁴. Eine endgültige Klärung kann nur durch Sondierungen erfolgen. Es soll aber schon hier auf eine andere Möglichkeit hingewiesen werden. Beim Vormarsch auf die Randlagen von Bronschhofen müssen wir mit drei Möglichkeiten der Entwässerung rechnen, die einander zeitlich folgten:

- 1. Schmelzwasserstrom Wil-Gloten-Sirnach-Eschlikon.
- 2. Beim weiteren Vorrücken berührte die Zunge zunächst den Sirnachberg, versperrte damit den Abfluß Nr. 1 und zwang den Strom in das Littenheider Tal. Zu dieser Zeit füllte die gegen Eschlikon vordringende Teilzunge ihr späteres Becken noch nicht aus, so daß der bei Anwil in das Murgtal mündende Strom tal-

¹ Der Schotter verrät sich beim Durchbohren des spätglazialen Seetons durch Austreten gespannten Wassers (R. Weber 1920).

² Der Schotter der Kiesgrube Pt. 558 (Rickenbach) ist horizontal geschichtet.

³ In: H. WEGELIN 1915.

⁴ Diese müssen gegenüber dem Maximum zugenommen haben, da sich Abschmelzen und periglaziales Einzugsgebiet vorgrößert haben.

abwärts fließen konnte, um dann in der Gegend von Büfelden westwärts abzubiegen¹. Für diese Auffassung sprechen:

Die Bohrung «Im Feld» nne Oberwangen blieb bei 544,5 m im Kies stecken². In der Murgaue s der Bahnlinie Eschlikon-Sirnach traf der Bohrer in 529 m auf Sandstein. Da die Murg zwischen Horben und Wiezikon epigenetisch in Molasse fließt, muß die Rinne w davon verlaufen³.

Die Bohrungen im Zusammenhang mit dem Dammbruch der SBB-Linie s Eschlikon ergaben bis in 529 m noch keine Molasse.

Über den in mehreren Bohrungen im Wiler Feld angetroffenen Schottern folgen bis 9 m sandige Ablagerungen, welche nur als Stauseeablagerungen aufgefaßt werden können. Sie repräsentieren vermutlich jene Phase, in welcher durch Vordringen des Gletschers der Abfluß über Büfelden-Eschlikon gesperrt war. Erst mit der Öffnung des Tores von Wihalden setzte Überschotterung ein.

3. Mit dem weiteren Vormarsch auf die Randlagen Eschlikon-Bronschhofen wurde auch der Weg Nr. 2 geschlossen. Das Schmelzwasser floß nunmehr über Wilen-Littenheid-Anwil-Hurnen. Da in der Enge von Balterswil bereits in 567,7 m 4 Molasse ansteht, mußte es das Becken durch die Enge von Ifwil verlassen. Zu einer nennenswerten Aufschotterung kam es dabei nicht mehr. Beim Bahnhof Eschlikon waren 1961 ca. 3 m Schotter aufgeschlossen, und zwischen Wallenwil und Ifwil breitet sich Sumpfland aus, das von Seeton unterlagert wird. Auch bei Tänikon-Ettenhausen haben eine Reihe von Bohrungen unter Gehängelehm und max. 4 m Schotter grauen Seebodenlehm bis 8 m erschlossen.

Zusammenfassend kann gesagt werden, daß die vorliegenden Beobachtungen vollauf genügen, um die Trockentäler – nur wenige Teilstrecken werden heute noch benutzt, wie z.B. der Abschnitt Bruederwald (Grat-St.Iddaburg) durch die Murg – als randglaziale Abflußrinnen zu erklären. Für einzelne Rinnen läßt sich würmzeitliches Alter nachweisen (Langenauwald-Oberschönau), das große Trockental von Bichelsee dagegen ist eindeutig rißzeitlich entstanden und während des Würms weitergestaltet worden. Beim Littenheider Trockental sprechen die Befunde ebenfalls für rißzeit-

¹ Gerade diese Momente müssen für die Tiefenerosion besonders günstig gewesen sein, denn von den tiefliegenden Gletscherstirnen wurde zunächst das Vorfeld aufgeschottert – glazialtektonische Überschiebungen und Faltungen im Zungenbecken (Kiesgruben 300 m nnw Dreibrunnen in ca. 530 m deuten darauf hin), von Butzenloo erwähnt dies schon C. Falkner 1910, S. 63 –, so daß der in das Tal einmündende Strom nicht mehr durch Schutt überlastet war.

² Siehe Anm. 2, S. 57.

³ Vgl. Alb. Weber 1953, S. 87. Auch das Fehlen von Seeabsätzen deutet auf eine Rinne.

⁴ Nach Alb. Weber 1953 und erg. Mitt. bei 712,84/256,58. Nach Mitteilung von Einwohnern stieß man im ne Dorfteil beim Aushub auf «Fels».

liche Entstehung, zumal für dieses Tal im Würm nur die Zeit nach dem Rückzug von der Brunberger Phase bis zum Littenheider Stadium in Frage käme¹. Ähnliches gilt für die Talungen Eschlikon–Ifwil und deren w Fortsetzung, denn dort sind würmzeitliche Glet-

scherablagerungen in größerem Umfang gefunden worden.

Die außerordentliche Größe dieser Täler hat J. Eberli und W. Oertle vom hohen Alter überzeugt. Wie wir sahen, genügten dafür zwei Eiszeiten. Während des Hochglazials war wohl die Niederschlagssumme geringer, der Abfluß konzentrierte sich aber auf wenige Frühjahrs- und Sommermonate², und zum Gletscherschmelzwasser trat noch Wasser der Schneeschmelze aus dem periglazialen Bereich. Wie besonders die große Epigenese des Gonzenbaches zwischen Chrimberg und Lütisburg zeigt, waren sogar die Bäche im Spät- und Postglazial mit ihrer ausgeglicheneren Wasserführung zu bedeutender Tiefenerosion fähig³.

Auch die Gefällsverhältnisse müssen berücksichtigt werden. Die Bäche des Hörnliberglandes weisen – wenn auch mit einer stratigraphisch-petrographisch bedingten Abweichung – die Normalgefällskurve auf, welche im obersten Abschnitt bei geringer Wasserführung das steilste Gefälle aufweist. Sobald sich die gestauten Wassermassen über eine Wasserscheide hinweg ergossen, ergab sich eine Diskrepanz zwischen dem vorhandenen Gefälle und dem neuen

Wasserangebot, welches nach einem Ausgleich suchte 4.

Die Entstehung unserer randglazialen Entwässerungsrinnen entspricht bis in Einzelheiten jener der großen Urstromtäler am Südrand des skandinavischen Inlandeises. Unterschiede ergeben sich eigentlich nur in den Dimensionen. Dem Relief entsprechend wurden die Molasseurstromtäler wesentlich stärker eingetieft. Maximale Beträge werden bei Selmatten mit 250 m, bei Bruederwald mit fast 300 m erreicht. Dagegen beträgt die Breite bei Selmatten nur 350 m¹, also in der Größenordnung ¹/₁₀ bis ¹/₂₀ norddeutscher Talungen. Welche Bedeutung der randglazialen Zerschneidung zukommt, wird einem beim Betrachten etwa des Profils Wolfsgrueb–Eschlikon bewußt, welches auf 5 km sieben derartige Rinnen quert: Wolfsgrueb, Grund, Steig, Lützelweid, Bichelsee, Hurnen und Eschlikon. Im Raum Eschlikon, wo die Fortsetzung einer Rinne

¹ Das Andelfinger Stadium war lediglich für den letzten Teil der Eintiefung verantwortlich.

² Darauf wird verschiedentlich hingewiesen, im Zusammenhang mit unserem Thema u.a. P. Woldstedt 1950.

³ Vgl. S. 88 ff.

⁴ Aus diesem Grunde können die Beispiele I. Schaefers 1950 aus dem Bereich der europäischen Hauptwasserscheide n des Bodensees für seine Beweisführung allgemein starker frühglazialer Erosion nicht anerkannt werden.

¹ Das genaue Ausmaß kann nicht bestimmt werden, da die tieferen Hangpartien unter den jüngeren Akkumulationen verschwinden.

gegen E bei Hofen-Matthof-Gloten-Wil gesucht werden muß¹, hat glaziale Erosion die ursprünglichen Formen stark verwischt. Sie nimmt entsprechend der Ausdehnung des würmzeitlichen Gletschers in Richtung Wolfsgrueb kontinuierlich ab. Deutlich erkennbar in einem weniger weit fortgeschrittenen Stadium ist die Nivellierung der Landoberfläche im Raum Bütschwil-Dottingen zwischen Dietfurterbach und Chleinenberg. Die Beispiele mögen zeigen, wie im Wechsel randglazialer Eintiefung und glazialer Erosion die Abtragung lokal zur Peneplain führen kann.

2. Der Thurgletscher

Auf die Existenz eines Thurgletschers hat zum erstenmal J.C. Deicke (1868) aufmerksam gemacht. Er weist ihm den Rang eines Seitenarmes des Rheingletschers zu. Die erste umfassende Arbeit lieferte A. Gutzwiller (1873), worin er ihm Selbständigkeit zuerkennt. Darüber hinaus fällt ihm das Verdienst zu, die Ausdehnung des Gletschers bestimmt und eine erste Gliederung durchgeführt zu haben. Wesentlich detaillierter ist die Gliederung durch A. P. Frey (1916), der auch auf die randglaziale Entwässerung eingeht. Wichtig ist seine Rekonstruktion der Eisgrenze, er beschränkt sich allerdings auf das Haupttal. Die Vergletscherung des Säntisgebirges untersuchte W. TAPPOLET (1922), E. MAURER bearbeitete 1952 die Talgeschichte des obersten Toggenburgs. Sonst finden sich nur Angaben über Rand- oder Teilgebiete des Gletschers, so bei C. FALKNER (1910), A. LUDWIG (1930) und H. TANNER (1946). In meiner Arbeit kommt nur der Teil zur Sprache, der in der mittelländischen Molasse liegt.

Das Maximum

Die höchstgelegene Wallmoräne befindet sich sw Gähwil in knapp 880 m beim Weiler Chalchtaren. Das Material des Aufschlusses bei Pt. 878,4 ist typisch für den Thurgletscher und – soweit aufgeschlossen – geschichtet. Die einzelnen Kies- und Sandlagen fallen bergwärts gegen SW ein. Die Zurundung ist schlecht. Die gröbsten Blöcke haben eine Länge von 40 cm. Dagegen finden sich bis m³-große Blöcke in der verlassenen Kiesgrube 400 m w davon. Findlinge auf dem Wall² sind besonders im Wäldchen e Pt. 878,4 verstreut, ferner auf der Fortsetzung e der Straße Gähwil-Mühlrüti.

¹ Trotz zahlreicher Bohrungen in der Wiler Schotterplatte bis max. 20 m wurde bisher nirgends Molasse angetroffen. Weder am Ostabfall (Galgenrain) noch in der Senke von Gloten konnte sie anstehend gefunden werden. Dagegen besteht der Hügel Sunnenberg (= Mattrain) aus Molasse (vgl. J. Früh 1886). Da die Rinne innerhalb des inneren Jungendmoränenkranzes liegt, könnte sie während der Frühwürmphase funktioniert haben und beim Vormarsch auf die Randlagen von Bronschhofen erneut benutzt worden sein (vgl. S. 59).

² Diese waren auch A. Ludwig 1930 bekannt.

Bei Pt. 877,9 grenzt dieser an die Molasse des Hamberges, an dessen Nordflanke am Weg gegen Vordernord früher mehrere Kiesgruben ausgebeutet wurden.

Als Ganzes gesehen legt sich der Wall in einem gegen NNE konkaven Bogen zwischen Hamberg und die Molasseerhebung Pt. 881. Zwischen diesem Wall und dem über 900 m erreichenden Grat ese St.Iddaburg zieht sich eine ca. 70 m breite Senke hin, die von einem zur Murg entwässernden Bach aufgezehrt wird. Der Formkomplex Moränenwall-glazifluviale Entwässerungsrinne ist so deutlich ausgeprägt, die Formen selber so frisch, daß diese nur dem würmzeitlichen Thurgletscher zugeordnet werden können.

Dieser Befund steht damit in schroffem Gegensatz zur Auffassung A. Ludwigs (1930), welcher auf S. 518 schreibt: «Alles, was im Toggenburg an Erratikum nördlich von Wattwil liegt, rührt von der vorletzten oder großen Eiszeit her.» Schon A.P. Frey (1916) hat die Wälle von Bazenheid und Müselbach, welche nicht dem Maximum angehören, dem Würmgletscher zugeordnet. Dem kann man auf Grund des guten Erhaltungszustandes nur zustimmen. Die Ludwigsche Arbeit zeigt damit, wie fragwürdig eine Gliederung sein kann, die sich auf Berechnungen und nicht auf Feldbeobachtungen stützt.

Mit diesem Ergebnis stehen weitere Befunde in Einklang. Es sind dies Ablagerungen, Formen der glazialen Erosion und Störungen im Entwässerungsnetz. Moränenwälle des gleichen Standes konnten in den Einzugsgebieten von Gonzen- und Hörachbach nicht mehr gefunden werden. Doch treten andere Ablagerungen so häufig in diesem Gebiet starker Denudation auf, daß an der Datierung nicht gezweifelt werden kann. So erwähnt schon H. TANNER (1946) s Holenstein (2,5 km nw Mühlrüti) in 860 m Blöcke, weitere finden sich auf dem Rücken zwischen Mühlrüti und Senis beim Egghof in ca. 850 m. Durch Wegarbeiten werden immer wieder kleinere Kiesvorkommen angeschnitten, die allerdings morphologisch nicht hervortreten und selten noch in situ liegen. Als Beispiele seien solche sw Tobel in 780 m und am Hang n Vordersenis in 875 m genannt. Im obersten Gonzenbachtal trifft man auf Blöcke bis 2 m³ im Bachbett 300 m ne Moos in 755 m, gegen Eitobel bis in 765 m, wo auch Moräne durch den Bach angeschnitten wurde (e Pt. 817,6 in knapp 760 m). An sich müßte der Gletscher hier höher gelegen haben, doch ließen sich dafür keine Belege erbringen. Selbst die Aufschlüsse ne Stierenboden und bei Churzenegg mit mächtigem Solifluktionsschutt zeitigten ausschließlich Molassematerial¹.

Zeugen des randglazialen Abflusses finden sich bei Fürschwand, das in einer Rinne liegt, die aus der Wasserscheide Egg (Pt. 986) – Ricketschwendi herausgeschnitten wurde und bei Pt. 856 im Er-

¹ Vgl. dazu S. 79.

bachwald, wo infolge lokaler Stauung des Schmelzwasserabflusses Schotter abgelagert wurde. Auch die Rinnen Cholwis w Mühlrüti und bei Pt. 810 dürften dem gleichen Stadium, aber einer tieferen Phase zugehören¹. Auch hier erkennt man also verschiedene Niveaus der Entwässerung, die in Analogie zu den Befunden am Rheingletscher Randlagen zugeschrieben werden dürfen. Am eindrücklichsten ist der Durchbruch von Bruederwald, der ungewöhnlich frische Formen junger Abtragung – der Westhang endet bergwärts in einer über 100 m hohen Molassewand - zeigt, während die glaziale Erosion erst n davon bei Halden undeutliche Spuren hinterließ. Daher muß der eigentliche Durchbruch würmeiszeitlich sein, doch hat er in der Rißeiszeit einen Vorläufer besessen, da die ehemalige Wasserscheide zwischen dem Mühlrütiast des Gonzenbachs und der Murg für den Würmgletscher zu hoch lag². Diesen Vorläufer stellen wir uns in der Art der Pässe von Holenstein und Chaltenbrunnen vor.

Was die glazialen Formen anbetrifft, soll nur ergänzend zu früheren Feststellungen gesagt werden, daß die Übereinstimmung zwischen ihnen und der angegebenen Grenze fast ideal ist. Einige kleinere, weniger scharfe Terrassen ragen darüber hinaus³, so daß sie als rißeiszeitlich angesehen werden müssen.

Wie die Chalchtarenmoräne zeigt, hat der Thurgletscher auch die glazial stark überarbeitete Wasserscheide zwischen Hörachbach und Bründel-Altbach während des Würmhöchststandes in breiter Front überschritten. Tatsächlich finden sich n davon noch Findlinge, so im Bachbett zwischen Oetwil und Pt. 7654. Wichtig sind die Schotter zu beiden Seiten des Bründeltobels 5, die beweisen, daß der Thurgletscher dieses noch ausfüllte. Gegen W floß er über die Nebenwasserscheiden in das Ernsteltobel 6 und in das Schlyffitobel. Vermutlich schob sich das Eis murgabwärts noch ein Stück über Fischingen hinaus, wurde vom Rheingletscher gestaut und in die Seitentäler des Au- und Flobaches abgedrängt. Hier wird die Randlage dokumentiert durch einige kleinere Blöcke im Bett des Aubaches bei Balm sowie durch die beiden Epigenesen von Balm und Grüt, die durch die Steilheit ihrer Hänge auffallen. Die beiden Talbodenreste Neuschür in 683 m und Büel in 670 m sind noch gut erhalten.

Ebenso wie Vorkommen von Grundmoräne bei Mühlrüti und Schotter n Vordersenis und bei Eggsteig.

² Grat in 995,6, St.Iddaburg in 966 m.

³ Zu beiden Seiten von Ehratsrick in 905,0 und 936 m.

⁴ Viele Blöcke, auch s der Straße Oetwil-Schalkhusen, wurden zerstört, wie Bauern berichteten.

⁵ Nördlich: bei Gründ; s: 400 m ne Feld.

⁶ Siehe Geol. Generalkarte, Bl. 3, 1950. Moränenschutt wurde durch die Murg angeschnitten.

⁷ Hier fand sich s Pt. 672 in 690 m ein kleiner Malmblock.

Hier stellt sich noch die Frage, ob der über Mühlrüti vorgestoßene Gletscherarm den Paß von Holenstein in 890 m überschreiten konnte. Talaufwärts von Neuschür erhebt sich bei Pt. 689,7 eine Molasseterrasse 20 m über den heutigen Talboden. Anderwil liegt wie Neuschür auf einem Talbodenrest. Auffällig ist, daß diese Formen nur hier vorkommen, d.h. nur auf der Verbindungslinie zwischen Fischingen und Holenstein, sonst aber in keinem Tal. Da die Niveaus Neuschür–Au–Anderwil bei talauf abnehmendem Abstand vom heutigen Talboden sehr gut zusammenpassen, müssen wir die Frage bejahen, was bedeutet, daß der Thurgletscher noch w Tobel eine Höhe von über 890 m erreichte¹. Dagegen fanden sich keine Anzeichen für eine würmzeitliche Transfluenz über Chaltenbrunnen (922 m) ins Steinental und über die Hulftegg (ca. 960 m) ins Fuchslochtal².

Gelingt es im Raum Fischingen relativ leicht, eine Grenze zwischen den hier sich berührenden Gletschern zu ziehen, da Blöcke rheinischer Herkunft noch auftreten und gleichzeitig die Schotter noch deutlich kristallines Material führen, so mehren sich die Schwierigkeiten thurwärts. In der großen Kiesgrube von Wisgraben³ e Dietschwil konnten trotz mehrfachen Besuches keine Blöcke des Rheingletschers gefunden werden, während der Schotter noch eine Auswahl führt. Doch vermindert sich der Anteil ostwärts auch hierin. Nördlich des erwähnten Aufschlusses beschrieben C. Falk-NER (1910) und A.P. Frey (1916) s der Wiler Schotterplatte heute verfallene Aufschlüsse mit auffallend geringem rheinischem Anteil. Diese Beobachtungen werden ergänzt durch die zahlreichen, z.T. mehrere Kubikmeter großen Blöcke, die beim Gut Lampertschwil freigelegt wurden und bis auf eine Ausnahme dem Helvetikum und der Molasse angehören 4. Weiter unten soll auf diese Frage näher eingegangen werden.

Das Stadium von Oberbazenheid

Am klarsten sind die Verhältnisse an der Randlage, ⁵ welche die Ortsteile Unter- und Oberbazenheid trennt. Sie ist als Doppelwall entwickelt, wovon der äußere mit einem mächtigen Rücken s Pt. 662,5 (e Nuetenwil) bis auf 673 m ansteigt, sich in der Kuppe

¹ Freilich wird damit die Diskrepanz gegenüber Eishöhe im oberen Gonzenbachtal noch größer.

² Die schon von A. Gutzwiller 1873 erkannte Transfluenz muß also in die Rißeiszeit fallen.

³ 253,50/720,33/680 m.

⁴ Dem Besitzer, Herrn W. Riegg, und Herrn Hui danke ich für Auskünfte. Beim einzigen rheinischen Gestein, einem kleinen Puntegliasblock, konnten sie den Fundort nicht mehr angeben.

⁵ A. Gutzwiller kartierte sie z.T. 1873, ihm folgte C. Falkner 1910. In der Freyschen Karte (1916) ist sie nicht eingetragen, doch wird sie im Text als 4. Wall erwähnt (S. 80).

Pt. 639,6 fortsetzt und 100 m nw der Kirche endet. Das innere Teilstück ist nur in zwei Resten erhalten, einer erreicht e Pt. 662,5 644 m, der zweite trägt die Kirche. Zwischen diesem Bogen und dem prachtvoll erhaltenen Doppelwall e Müselbach wurde die Verbindung beim Rückschmelzen des Gletschers vom Hörachbach durchbrochen. Das gleiche gilt für das Teilstück bei Bäbikon, wo der Gonzenbach sich epigenetisch eingeschnitten hat. Wir treffen wieder auf einen Wall w Lütschwil in 695 m. Es ist dies gleichzeitig der südlichste, eindeutig diesem Stadium zuzuweisende Wall, auf dessen Funktion wir kurz zurückkommen werden.

Trotzdem ist es möglich, die Randlage weiter gegen S festzulegen. Südlich Pt. 705 (nw Oberwinklen) ist ein typisches Delta aufgeschlossen, von A. Gutzwiller (1873) bereits erwähnt und richtig gedeutet. Der See von Winklen wird weiterhin belegt durch Seetone zwischen Dreien und Freihof in ca. 695 m sowie zwischen Winklen und Feld in ca. 660 m. Im Delta fehlt leider ein Überguß, doch läßt sich die Seespiegelhöhe einigermaßen bestimmen. Verfolgt man den Talboden n Mosnang, der durch junge Zerschneidung in Terrassen zerlegt wurde, so gelangt man auf ein Niveau zwischen 703 und 705 m, das sich als breite Terrasse gegen das Gonzenbachtal vorschiebt. Die Deltaschrägschichten des erwähnten Aufschlusses, welcher der Terrasse aufliegt, reichen bis 712 m hinauf. Beide Niveaus repräsentieren Seespiegelhöhen, was folgende Überlegung zeigen mag. Schüttet ein Fluß ein Delta in einen See, dessen Spiegel sich plötzlich und rasch um einen bestimmten Betrag absenkt, so muß ein Teil des Deltas wieder abgetragen werden, und zwar bis auf das Niveau des neuen Seespiegels. Die entstandene Fläche wird sich dann in den meisten Fällen aus einem Erosionsniveau und einem anschließenden Akkumulationsniveau zusammensetzen.

Da ein Überguß fehlt, können wir also mit drei Seespiegelhöhen rechnen:

- 1. Ein unbekanntes oberes Niveau zur Zeit der Ausbildung der Übergußschichtung.
 - 2. Ein Niveau ca. 712 m, repräsentiert durch eine Erosionsfläche.
- 3. Ein Niveau ca. 704 m, in der zuvor angegebenen Weise aufgebaut.

Dieses ruckweise Absinken des Seespiegels muß auf Grund der Gletscheroszillationen während des Stadiums von Oberbazenheid, welches für die Absperrung des Gonzenbachtales verantwortlich ist¹, geradezu erwartet werden. Dem Niveau 1 entspricht vermutlich eine Randlage, von der Andeutungen bei Müselbach und 400 m ne der Kirche Bazenheid vorhanden sind. Während der

¹ Der Wall zieht von Pt. 693,1 über Pt. 691 gegen NE bis 400 m nnw Lütschwil (s. a. A.P. Frey 1916). Er entspricht nach Funktion und vermutlich auch Aufbau einem Queros, wie es A. von Moos 1943 von Hurden beschrieben hat.

Doppelwallphase floß das Wasser zwischen Bäbikon und Müselbach in knapp 680 m ab, wobei ein Stück des äußeren Walles abgetragen wurde, zwischen Chamm und Nuetenwil sind Rinnenreste w vom Rücken Pt. 662,5 und zwischen diesem und dem inneren Wallrest erhalten geblieben, wobei der äußere Wall zwischen

Pt. 662,5 und 639,6 zerstört wurde.

Da das Delta von Winklen von S her aufgeschüttet wurde, kommt als zuführende Rinne nur das Trockental Mosnang-Winklen in Frage, nur das e Teildelta wurde von der Rinne Vorderbitzi–Hinterbitzi aufgeschüttet. Das Trockental Winklen-Mosnang setzt sich gegen S in den Trockentälern Mosnang-Aufeld und Rafeldingen-Dietenwil fort. Ihre Niveaus sind damit eindeutig dem Oberbazenheider Stadium zuzuordnen¹. Schotter können nachgewiesen werden im Teilstück Mosnang-Winklen 2 sowie bei Dietenwil e Pt. 782, wo randglazialer Schotter in 770 m mit einigen Blöcken und geschrammten Geröllen aufgeschlossen ist. Das Gefälle von hier bis zum Delta von Winklen beträgt 23%. Wenn man mit diesem Wert den Anstieg gegen S konstruiert, so kommt man damit auf fast 855 m oberhalb Loh, d.h. an den Beginn der Trockentalung von Chrinäuli (bei Krinau). Auch diese Rinne kann demnach dem Stadium von Oberbazenheid zugewiesen werden, entgegen der Auffassung von A.P. Frey (1916), welcher ihre Fortsetzung in der Rinne zwischen Pt. 760,6 und Weid n des Dietfurterbaches in 715 m suchte. Dieser Auffassung widerspricht die Größe des Tales von Chrinäuli, welche zur Bedeutung des Bütschwiler Stadiums³ in grobem Mißverhältnis steht, erreicht doch die Eintiefung in die Wasserscheide zwischen Holderen und Halden über 150 m. Ferner ist ein Gefälle von 63⁰/₀₀ unwahrscheinlich, selbst wenn man sich den Ausgang des Krinauer Tales durch Eis versperrt vorstellt. Eine Seespiegelhöhe von 855 m ist ausgeschlossen, weil der Gletscherrand während des Bütschwiler Stadiums bei Weid zu tief lag⁴. Unsere Auffassung wird bestätigt durch mehrere große Findlinge beim Schulhausneubau von Krinau 1959. Vermutlich lag der Gletscherrand etwas höher als 805 m, wie aus einem Vergleich der Randlagen während des Oberbazenheider Stadiums hervorgeht:

¹ A.P. Frey 1916, S. 107 f.

² J. Hug 1945, S. 2.

³ Siehe S. 83 f.

⁴ Gletscherrand bei Weid in ca. 720 m. Im Krinauer Tal, wo die Lage nicht festgestellt werden konnte, muß eine Höhe von 730 bis 740 m angenommen werden.

Tabell	e	Höhe ü. M. m	Gefälle $^{0}/_{00}$
	Bazenheid	619	23,3 6,0 20,3 10,8
	Müselbach	690	
	Lütschwil	699	
	Dietenwil	770	
	Krinau	805	

Dazu ist zu bemerken, daß die genaue Randlage innerhalb des Stadiums, der Abstand der Randlage von der Achse des Eisstromes im Thurtal und die seither erfolgte Abtragung von Wällen unberücksichtigt bleiben mußten. Gerade die Kenntnis der beiden letzten Punkte würde eine starke Angleichung der Werte herbeiführen.

Nördlich des Teilstückes von Chrinäuli fehlt zwischen Dietfurterund Taabach ein ausgeprägtes Verbindungsglied. Auf Grund der Höhenlage und der Andeutung einer Rinne dürfte es bei Pt. 779 (Lindenboden) liegen. In der s Fortsetzung möchte ich die Pässe von «Egg» in 866 m und «Stämisegg» in 939 m diesem System zurechnen. Südlich des Rotenbaches lassen sich keine weiteren Teilstücke mehr feststellen, d.h., daß das Oberbazenheider Stadium auf eine Strecke von 12 km – im n Drittel durch Wallmoränen mit z. T. erhaltenen Schmelzwasserrinnen, im s Teil an Hand der randglazialen Entwässerung – klar verfolgt werden kann. In beiden Abschnitten ist das durchschnittliche Gefälle mit 20–25% gleich. Bestimmt man das Gefälle der Rinnenteilstücke für sich, so ergeben sich Unterschiede, die zwischen 32% (Dietenwil-Aufeld) und 20% (und 20%) (Aufeld-Delta von Winklen) schwanken. Bei Berücksichtigung von Gletscheroszillationen - die Denudation im Spät- und Postglazial war hier schwach – muß die Differenz als geringfügig angesehen werden. Auffällig dagegen ist die Diskrepanz in den Werten von Gletscherrand und randglazialer Abflußrinne. Darin äußert sich die gegen N zunehmende Wassermenge, während im nördlichsten Teilstück die Tiefenerosion an das Niveau des Stausees gebunden war.

Die beschriebenen Verhältnisse beziehen sich ausschließlich auf das Gebiet w der Thur. Es ist auffallend, wie geringfügig die Zeugen nicht nur dieses Stadiums, sondern auch diejenigen der anderen einschließlich der maximalen Ausdehnung e der Thur sind. Schon A. Gutzwiller (1873) und später eingehender A. P. Frey (1916) haben ein Überfließen der Wasserscheide Thur-Necker während des Höchststandes als sicher angenommen. Unsere Ergebnisse aus dem w Verbreitungsgebiet des Gletschers bestätigen dies. Dagegen

ist die Eisgrenze für das 1. Rückzugsstadium bei A.P. Frey zu tief

eingezeichnet.

Rinnen der randglazialen Entwässerung treten erst n der Neckermündung auf. Es handelt sich um eine äußere zwischen Steig und Unterrindal und eine innere se Haslen in knapp 605 m. Sie sind den Phasen des Oberbazenheider Stadiums zuzuordnen. Ihre Größe entspricht jener der Rinnen des gleichen Standes auf der linken Talseite. Unverständlich ist zunächst das Fehlen s der Neckermündung¹. Ein Überlauf von Schmelzwasser über die Wasserscheide Thur-Necker kommt für das Oberbazenheider Stadium nicht in Frage. Daher muß das zur Verfügung stehende Wasser sehr gering gewesen sein. Ein Vergleich der Einzugsgebiete der Thur zeigt von Wattwil bis Ganterschwil ein krasses Übergewicht der w Tributäre. Die e Zuflüsse sind sehr schwach entwickelt und haben höchstens eine Länge von 3 km, der einzige bedeutende Seitenfluß ist der Necker. Wir ziehen daraus den Schluß, daß ein bedeutender Teil des in den randglazialen Rinnen abfließenden Wassers aus dem periglazialen Raum stammt.

Das ehemalige Zungenbecken der Randlage von Oberbazenheid wurde zugeschottert und bildet eine Terrasse in 595 m, auf welcher Oberbazenheid liegt. Die zugehörige Stirnmoräne fehlt, doch sind Teile der Seitenmoräne w Bräägg (Pt. 612,3) und e der Thur bei Haslen und Pt. 601,7 erhalten geblieben. Diese Stillstandslage rechnen wir noch zum Oberbazenheider Stadium.

Die Moränenwälle im Raum Bazenheid, also in jenem Bereich, in welchem sich Thurgletscher und Rheingletscher berührten und vereinigten, sind so zahlreich und dicht gestaffelt, daß eine genaue Korrelation nur mit Hilfe der Terrassen möglich ist. Doch auch hier stößt man auf Schwierigkeiten, da bei der Vielzahl der vertikale Abstand der Terrassen oft sehr gering ist, zum anderen gerade an einer neuralgischen Stelle durch einen weitausholenden Thurmäander e des Fetzwaldes die Zusammenhänge unterbrochen wurden. Die sicherste Verbindung läßt sich zwischen dem Stadium von Oberbazenheid und dem e Rheingletscherlappen durchführen.

An die nördlichste, eindeutig selbständige Moräne, dem beschriebenen Doppelwall, schließt gegen N ein Schotterfeld² an, welches bis Zwizach von 610 bis auf 595 m abfällt. Das Feld wurde an mehreren Stellen in großer Breite von W her in flache Mulden nachträglich zerlegt. Nördlich Zwizach kann die Terrasse noch bis auf die Höhe von Pt. 607,3 verfolgt werden, wo sie in 590 m liegt. Auf der rechten Thurseite beginnt nw Jonschwil in 590 m eine

¹ Allenfalls ließe sich das Tälchen zwischen Roßfallen und Ganterschwil in seiner Anlage als solche auffassen.

² Hier wurden nach frdl. Mitt. von Herrn L. Stehrenberger, Rickenbach, ca. 200 bis 250 m n Pt. 617,6 in einem Schacht noch in 33 m – also in 575 m – Schotter angetroffen

Terrasse, welche zwischen Jonschwil und Grueben etwas ansteigend sich an einen deutlichen Moränenwall anlehnt (Pt. 600,1). Damit ist die Gleichaltrigkeit des Doppelwalles von Oberbazenheid mit der Randlage von Jonschwil, welche dem Zürichstadium angehört¹, sichergestellt.

Bei Pt. 600,1 endet der Wall von Jonschwil, gleichzeitig setzt eine tiefere Terrasse in 586 m ein, die sich über Pt. 583 bis Lee verfolgen läßt und nur mit der Bräägger Terrasse verbunden werden kann. Die lokalen und stratigraphischen Verhältnisse weisen auf eine Akkumulationsterrasse. Gegen E geht sie längs eines bogenförmigen Randes in ein unruhiges, z.T. vertorftes Becken über, der Westrand ist als scharfausgeprägter Terrassenabfall entwickelt und an drei Stellen aufgeschlossen. Dabei zeigt sich auf 570 m ein übereinstimmendes Profil: Das Hangende besteht aus einem geschichteten Schotter von 4 bis 6 m, der schwach gegen N bis NW einfällt. Nach unten wird er durch einen Blockhorizont abgeschlossen, welcher diskordant einem 8–10 m mächtigen Komplex aus Schotter und Sandbändern aufliegt. Dieser weist bisweilen unruhige Schichtung mit manchmal deltaähnlicher Struktur auf. Ich fasse ihn als gletschernahe Basisschüttung des Oberbazenheid-Jonschwiler Schotterfeldes auf. Beim Rückzug schnitten sich die Schmelzwasser ein und reicherten Blöcke zu einem Horizont an. Der erneute Vorstoß des Thurgletschers auf die Bräägger Randlage führte zur Akkumulation der Hangendschotter. Das e anschließende Zungenbecken des Rheingletschers beweist, daß während der Erosions- und Akkumulationsphase noch Toteis vorhanden war.

Das Stadium von Unterbazenheid

Nachdem Chalchtaren als Würmmaximum erkannt und Oberbazenheid mit dem 2. Rückzugshalt des Rheingletschers parallelisiert wurde, erhebt sich die Frage nach dem 1. Rückzugshalt des Thurgletschers. Wir beginnen mit den Verhältnissen bei Unterbazenheid, wo sich n der Ortschaft bei Zwizach ein unregelmäßig geformter, über 20 m hoher Wallrest erhebt. Im Aufschluß findet sich neben z. T. gestauchten Sanden und Kiesen sehr viel grobes Material des Thur-, aber auch des Rheingletschers. In Richtung Äspis schließt sich eine Terrasse an, deren Niveau von 610 m auf 605 m im N fällt, wo e Pt. 603 Schotter aufgeschlossen war. Nördlich des Baches setzt sich das Niveau als schmale Verflachung über Cholberg fort und endet zwischen Fetzwald und dem kleinen SE-NW streichenden Hügel Pt. 609, wo bei Grabarbeiten Kies gefördert wurde.

Der Wall Zwizach liegt etwa in der Mitte zwischen dem Doppelwall Oberbazenheid und der Jonschwiler Moräne. Die glazialtek-

¹ C. Falkner 1910, S. 31. Von R. Hantke 1961 bestätigt.

tonischen Verstellungen und das Auftreten auch gröberen rheinischen Materials legen den Schluß nahe, hier die Naht zwischen beiden Gletschern zu suchen. Selbstverständlich nicht streng stationär, sondern im Sinne schwacher Oszillationen mit bald besseren, dann wieder schlechteren Abflußverhältnissen. Das Fehlen einer Terrasse gleichen Niveaus auf der rechten Thurseite spricht für diese Auffassung, wodurch die Äspisterrasse zur Randterrasse des Rheingletschers wird. Westlich Pt. 609 mündete die randglaziale Entwässerung auf die Platte in 600 m s Wuerenholz.

Entsprechend den Ausführungen auf S. 50 müssen wir auch im Raum Bazenheid Spuren eines etwas jüngeren und höheren Gletscherstandes fordern. Nördlich Unterbazenheid schiebt sich ein Wall mit scharfem Rücken gegen die Talmitte vor (Pt. 632,8). An seinem Nordostende befindet sich ein 18 m hoher Aufschluß, welcher mächtige, gegen N einfallende Sandschichten, von wenigen Schotterlagen unterbrochen, zeigt. Verwerfungen in den Basisschichten weisen auf ein Absinken der n Randpartien hin. Überdeckt ist der Sand von einer völlig unsortierten, bis 1 m mächtigen Lage von Geröllen, die grundmoränenartig in Sand eingehüllt sind.

Ich möchte die Situation folgendermaßen interpretieren. Der wachsende Rheingletscher drückte den Thurgletscher um ca. 300 m südwärts. Die Entwässerung, welche bei Zwizach noch am Rande und zwischen beiden Gletschern funktionierte, wurde hier in einen Eistunnel gezwungen. Beim Rückzug, den der Thurgletscher rascher ausführte, dehnte sich der Rheingletscher noch etwas aus, wobei er Sand und Schotter zu Grundmoräne verarbeitete. Diese Auffassung wird gestützt durch die Kameterrasse Pt. 655,0 s Jonschwil auf der rechten Thurseite.

Wesentlich schwieriger ist die Festlegung des 1. Rückzugshaltes im inneren Bergland, wo eindeutige Zeugen fehlen. Da hierfür die Kenntnis der Verhältnisse im Raum Unterbazenheid-Lampertschwil nötig sind, kommen wir nach deren Behandlung darauf zurück.

Die Verhältnisse im Raum Unterbazenheid-Lampertschwil

Nördlich Wolfikon liegt bei Pt. 689 eine große Kiesgrube, die folgendes Profil zeigt: In den unteren 12 m herrscht geschichteter Kies vor mit dünnen Sandbändern. Einige Schotterpartien sind verkittet. Die einzelnen Lagen fallen mit max. 20° gegen NW ein, ohne daß man sie als Deltaschichten ansprechen könnte. Darüber folgen diskordant mehrere Kies- und Sandschichten von zusammen 4 bis 5 m, die untereinander geringe Diskordanzen zeigen. Sie fallen im NW-Teil des Aufschlusses mit ca. 10° gleichsinnig wie das liegende Schotterpaket ein, die Oberfläche im spitzen Winkel schneidend. Gegen SE jedoch biegen sie parallel zum Hang um, d.h. mit SE-Fallen, was auch in der e anschließenden kleinen Grube beobachtet werden kann.

Es handelt sich trotz der guten Rundung der Gerölle und der Seltenheit an Schrammen um eine eisrandnahe Bildung. Dafür sprechen die Lage auf der Wasserscheide zwischen Altbach und Thur und das Auftreten vereinzelter großer Blöcke im sonst gleichmäßig mittelkörnigen Schotter. Das Material zeigt im ganzen die Merkmale des Thurgletschers, wenn auch vereinzelt rheinisches auftritt.

Der Aufschluß bildet den sw Abschluß eines 15–20 m hohen Walles, der sich in leichtem, gegen SE konkavem Bogen ca. 450 m hinzieht. An seiner Basis beträgt die Breite im SW etwa 100 m und verjüngt sich dann gegen ENE bis auf die Hälfte. Der scharfe Kamm verläuft in den ersten 300 m in ca. 685 m leicht wellig und sinkt dann bis auf 660 m ab. Die Außenseite ist gleichmäßig steil, während der Hang zum Zungenbecken nur geringes Gefälle aufweist. Rein morphologisch sucht man die Fortsetzung im Taaholz (Pt. 692), doch ist der Bogen e Pt. 674,6 durch NF unterbrochen.

Die Deutung der Verhältnisse ist sehr verschieden, z.T. stehen sich die Ansichten diametral gegenüber. Wir wollen uns kurz damit befassen. Auf der Karte von C. Falkner ist der geschilderte Wall als Teilstück eines Moränenbogens eingetragen, der vom Fetzwald 4 kommend sich in weitem Bogen bis zum Taaholz erstreckt. Leider geht Falkner im Text nicht näher darauf ein, doch rechnet er ihn offenbar dem Thurgletscher zu². Auf der Generalkarte wird der Wall zu einem Moränenbogen geschlagen, welcher ein Zungenbecken von Lampertschwil – mit dem unsrigen nicht völlig übereinstimmend – umschließt. A.P. Frey (1916) rechnet alle Wälle sw Fetzwald zum Thurgletscher. Auf seiner Karte erkennt man einen etwa E-W streichenden Wall, was auch im Text erwähnt wird. Das ist sicher nicht richtig. Tatsächlich zieht von Pt. 6823 (Altbach) über Pt. 675 ein wenn auch nicht sehr kräftig ausgebildeter Wall hin. Er setzt sich ne Chalchbüel - wahrscheinlich ein Nagelfluhrundhöcker – auf der anderen Straßenseite parallel zum Wall Pt. 689 fort und wendet sich gegen den w Fetzwald. Aufschlüsse sind heute nirgends mehr erhalten. Doch handelt es sich um eine Schottermoräne 5. Während von den zahlreichen bei Lampertschwil gefundenen Blöcken nur ein einziger – und dazu noch unsicher (S. 53) – für den Rheingletscher typisch ist, findet man auf dem Wall's davon auch rheinische Gerölle. Der Wall umschließt ein typisches Zungenbecken, dessen Form auf eine Gletscherzunge weist, die von N her vorstieß. Wir verbinden diese Moräne mit der-

¹ So ein 2 m langer, kantiger, säuliger Kalk, der senkrecht stand.

² Siehe seine Bemerkungen S. 67.

³ Leider ist dieser NE-SW streichende Hügel nur schlecht aufgeschlossen. In einer aufgegebenen kleinen Grube auf der NE-Seite in 670 m wurde Kies abgebaut. FREY kennzeichnet die Erhebung als Rundhöcker, also Molasse.

⁴ Auf der Höhe des Fetzwaldes gibt es keinen Wall, hier steht unter Grundmoräne Molasse an.

⁵ Ehemaliger Aufschluß se Pt. 675 (A.P. FREY S. 79).

jenigen s Oberbrunberg (682,7). Nach unserer Auffassung liegen also zwei getrennte Wälle vor. Die Chalchbüelmoräne umschließt das Zungenbecken von Lampertschwil und ist gegen N geöffnet, der Wall Taaholz Pt. 689 umfaßt ein Zungenbecken, das sich gegen ENE öffnet.

Die verschiedenen Versuche zur Interpretation der Gletscherrandlagen im Raum n Kirchberg – im ganzen also jetzt vier ¹ – sind verständlich, wenn wir an die Komplikationen denken, welche dadurch entstanden, daß hier der Thurgletscher auf den bedeutend größeren Rheingletscher traf. Verschiedene Möglichkeiten sind denkbar.

- 1. Bei einer kräftigen und plötzlichen Klimaverschlechterung muß der Thurgletscher weit vorstoßen. Der vorrückende Rheingletscher drängt ihn ein Stück zurück. Dadurch hebt sich das Eisniveau des Thurgletschers im Zungenbecken.
- 2. Beide Gletscher werden an der Berührungsfront einer Gleichgewichtslage zustreben. Hebt sich nun die Schneegrenze um einen Betrag, welcher den Thurgletscher zum Rückzug zwingt, dem Rheingletscher aber ein Halten der Eishöhe erlaubt, so wird dieser entsprechend seiner Mächtigkeit ein Stück weit in den verlassenen Thurgletscherraum vorrücken.
- 3. Die Hebung der Schneegrenze kann einen Wert erreichen, welcher auch den Rheingletscher zum Rückschmelzen bringt. Eine neuerliche Klimaverschlechterung kann ihm, sofern der Rückzug kein zu großes Ausmaß angenommen hat, einen Vorsprung sichern².

Eine weitere Folge der Vereinigung beider Gletscher war die Störung der Entwässerung im Nunatakergebiet e des Thurgletschers, was sich in Aufschotterung, z.T. in Form von Delten, äußerte.

Unter Berücksichtigung dieser Verhältnisse soll folgende Interpretation versucht werden. Orographisch bildet der Wall Pt. 689 zusammen mit dem Taaholz³ eine Einheit. Wie der große Aufschluß bei Pt. 689 erkennen läßt, wurde zunächst gegen NW geschüttet, was mit Richtung und Form des Walles an dieser Stellsübereinstimmt. Schwierigkeit bereitet jedoch die Deutung des Moränenhalbkreises, der von einem Gletscherlappen aus ENE aufgeworfen wurde, während das Material nur geringe Einflüsse des Rheingletschers verrät. Der Widerspruch löst sich bei Annahme der unter 1 angegebenen Möglichkeit.

An der erwähnten Diskordanz wird eine Änderung der Schüttungsrichtung erkennbar:

¹ Gutzwiller kannte nur die Bazenheider Moränen.

² Vgl. die Verhältnisse beim nordamerikanischen und skandinavischen Inlandeis im Spätglazial (H. Graul 1959 u.a.).

³ Aus glazialem Material aufgebaut, wie der sandige Ausraum zahlreicher Fuchsbauten an der S-Seite oberhalb des Weges zwischen 660 und 670 m zeigt.

im unteren Komplex von einem Gletscher gegen NW; im oberen Komplex mehrfacher Richtungswechsel, der im ganzen auf eine Schüttung NE-SW hinausläuft.

Das läßt sich bei den gegebenen orographischen Verhältnissen kaum anders erklären als mit dem Anrücken eines Gletscherarmes aus der Richtung Lampertschwil, womit schließlich der gesamte Wall von Eis flankiert, ja sogar überdeckt wurde. Nur der sw birnenförmig erweiterte Teil lag außerhalb. Damit stehen in Einklang die Schüttungsrichtung, das Fehlen von Erratikum auf diesem Kopf – sowohl dem Hangenden im Aufschluß eingelagert, als auch auf der Oberfläche – und die Form.

Im NW-Teil des großen Aufschlusses hat sich dem Hangendkomplex diskordant eine Packung unsortierten Materials aufgelagert. Die einzelnen bis 40 cm langen Blöcke sind kantengerundet bis kantig und liegen in einer ungeschichteten sandigen Grundmasse. Die sonst nur durch kleine, nicht durchziehende Verwerfungen gestörten Sand- und Kiesbänder sind hier in der ganzen Höhe der 8-9 m betragenden Wand verstellt worden, in den oberen 4 m längs einer Verwerfung, die nach unten in eine Flexur übergeht. Unterhalb der Blockpackung wurden ganze Lagen sandigtonigen Materials als starre Pakete eingedrückt und z. T. bis in gegenläufiges Einfallen verstellt. Da sie nicht verkittet sind, können sie nur als oberflächlich gefrorener Boden in nichtgefrorenen lockeren Untergrund gepreßt worden sein. Es kann sich nach den vorliegenden Beobachtungen nicht um ein passives Absinken beim Abschmelzen von Toteis, sondern nur um ein aktives Einpressen von Obermoräne durch einen Gletscher, welcher eindeutig aus dem n Quadranten, d. h. aus der Richtung Lampertschwil vorstieß, handeln. Diesem Vorstoß folgte ein kurzer Rückzug auf die Randlage um das Lampertschwiler Zungenbecken.

Innerhalb des Bogens Pt. 689-Taaholz zeichnet sich diese Oszillation ebenfalls ab. Bei Pt. 643,9 beginnt unvermittelt ein Wall, der SW streichend auf das Taaholz stößt. Durch den Abbau wurde er bereits um ca. 100 m, das ist die Hälfte seiner ursprünglichen Länge, zurückverlegt. Der an seiner Basis ca. 60 m breite Wall mit steilen Seitenwänden reicht bis 667 m.

Das Profil des quer aufgeschlossenen Walles (Abb. 13) beginnt mit 9 m Schotter von ungleicher Korngröße bis hinauf zu einzelnen Blöcken. Die Schichtung ist unruhig, jedoch nicht eistektonisch bedingt. Gegen SE verzahnt sich der Schotter mit Sandbändern. Darüber folgen 14–15 m bis 3 m mächtige Sandbänke, horizontal geschichtet und in die Luft ausstreichend. Ihnen sind einzelne Bänke mit schlecht sortiertem gröberem Material eingelagert, meist mehr oder weniger gerundet, manche mit Schrammen. Im se Teil des Aufschlusses tritt noch ein Kieshorizont mit Deltaschichtung auf, dessen Kontakt leider verschüttet ist. Hier durchsetzen auch zahl-

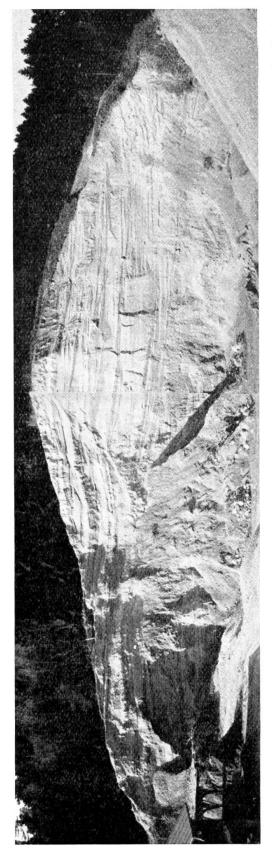


Abb. 13. Os bei Pt. 643.9 nw Unterbazenheid. Blick gegen SW. Der Aufschluß biegt zu beiden Seiten gegen den Betrachter zu ein. In der Bildmitte Verwerfung, links Deltaschrägschichten. Die Entwässerung verlief vom Beschauer weg gegen das Taaholz und wandte sich dann nach rechts.

reiche Brüche die Wand, welche zusammen ein System bilden: An der Grenze zum Hangenden, ohne dieses zu durchsetzen, beginnen zwei Verwerfungen, die sich nach unten flexurartig in kleine Brüche auflösen, bis sie als antithetische Bruchschollentreppe der Horizontalen sich nähernd ihr Ende finden. Das ganze System fällt gegen das Thurtal zu ein, gegen welches der durch das System getrennte Teil um ca. 3 m abgesenkt wurde. Das Hangende wird durch eine bis 4 m mächtige Blockpackung gebildet.

Auch in diesem Aufschluß überwiegt der Thurgletscher eindeutig im Material, die Blöcke entstammen ausschließlich seinem Einzugsgebiet. Doch treten vereinzelt Gerölle des Rheingletschers auf,

und zwar Amphibolite und Diorite.

Der in sw Richtung gegen das Taaholz streichende Wall setzt sich an dessen N-Flanke in Form eines völlig ebenen Bandes – die Oberfläche des Walles ist leicht dachförmig nach den Seiten zu geneigt – mit Steilhang gegen das Beckeninnere fort. Diese Fläche – zunächst 30 m, dann 80 m breit – kann man mit geringem Gefälle gegen den Einschnitt zwischen Pt. 676,6 und 689 verfolgen.

Der beschriebene Wall läßt sich nicht als Moräne erklären. Dem widersprechen Lage und Richtung senkrecht zum Gletscherrand. Dagegen besteht eine gute texturelle Übereinstimmung mit Osern, wie sie aus dem nordischen Vergletscherungsraum beschrieben wurden 1. Die randlichen Verwerfungen können nicht mit dem Abschmelzen von Toteis zusammenhängen, da sie nicht das Liegende durchsetzen. Aus der Beschreibung geht vielmehr hervor, daß der seitliche Druck nachgelassen hat, was bei der Sachlage nur durch ein geringfügiges Zurückweichen der begrenzenden Eiswand zu erklären ist. Denn die Sedimentation ging über der abgesunkenen Partie noch weiter. Es muß sich um ein subglaziäres Os handeln, wofür das freie Ausstreichen der Schichten spricht. Die das Dach bildende Obermoräne kann keinem neuerlichen Vorrücken entsprechen. Dagegen sprechen die gute Erhaltung der Osfortsetzung sowie das völlige Fehlen glazialtektonischer Beanspruchung. Das Schmelzwasser verließ kurz vor dem Taaholz das Gletschertor und floß nun zwischen jenem und dem Gletscherrand. Das Os geht also in eine Kameterrasse² (Randterrasse) über.

Aus dieser Sicht soll noch einmal kurz auf die beiden Wälle Pt. 689 und Taaholz eingegangen werden. Da das Taaholz selber keine Aufschlüsse besitzt, welche einen Einblick in Textur und Material gewähren – nur Fuchsbauten zeigen, daß bedeutende Sandlagen vorhanden sein müssen –, können sichere Aussagen nicht gemacht werden. Immerhin deutet die Lage im Winkel zweier Gletscherlappen, welche die flankierenden Zungenbecken n und

¹ G. Keller 1952. S. 128.

² Eine weitere Kameterrasse findet sich e Aadorf (Foren) und s Jonschwil (Pt. 655,0).

s des Taaholzes ausfüllten, auf ein Kame. Auch hier ist ein Übergang von Oser zu Kame denkbar. Das e Taaholz weist einen gratförmigen Rücken auf, hier finden sich vereinzelt Blöcke, während die plateauartige w Fortsetzung frei davon ist. Ähnlich liegen die Verhältnisse bei Pt. 689. Nur begann hier die Entwicklung mit der Schüttung gegen NW, um erst mit dem Anwachsen der Gletscher in die Richtung entlang den Eisrändern umgelenkt zu werden.

Fassen wir die Ergebnisse zusammen. Im betrachteten Raum können deutlich Gletscherrandlagen beobachtet werden, die aber abweichend von der bisherigen Deutung nicht als Moränenwälle, sondern auf Grund ihrer Textur, ihrer Morphologie und ihren Lagebeziehungen als Formen des Schmelzwasserabflusses interpretiert werden. Ganz eindeutig sind die Verhältnisse bei Pt. 643,9, aber auch das Taaholz und der Wall Pt. 689 ordnen sich damit am besten dem Gesamtbild ein. Die Form der Zungenbecken und der sie umrandenden Wälle zeigen Gletscherlappen an, die von N (Lampertschwil), von ENE (Aspis und n Taaholz) und E (Breiti s Taaholz) vordrangen. Die zuerst genannten Richtungen zeigen den Einfluß des Rheingletschers. Da aber das Material mit wenigen Ausnahmen für den Thurgletscher charakteristisch ist, müssen wir schließen, daß der Thurgletscher weit über Bazenheid hinaus bis in den Wiler Raum vorgestoßen war und vom langsamer vorrückenden Rheingletscher zurückgedrängt wurde. Der Eisstau muß so bedeutend gewesen sein, daß er sich auch in den Seitentälern des inneren Berglandes ausgewirkt haben dürfte.

Südwärts hören die Zeugen dieses Gletscherstandes bald auf. Erhöht man das Niveau der Moränen von Müselbach um 60–70 m, was dem Abstand der Oberbazenheider Moränen bis zum Taaholz entspricht, mußte der Gletscher im Hörachtal die Wasserscheide bei Tüfrüti (ca. 740 m) überschreiten. Schon A. P. Frey hatte hier einen Wall sw des Hasenberges mit dem kleinen vertorften Zungenbecken erkannt. Nördlich schließt sich eine Rinne an, die heute vom Altbach benutzt wird und bei Altbach Richtung Langenauwald umschwenkt, womit die Gleichaltrigkeit der Teilstücke der Randlage von Oberbrunberg bestätigt wird.

Auch auf diesem Umweg kommen wir also zum Schluß, daß die Schotter von Gründ (w Dietschwil) würmeiszeitlich sind, und zwar können sie auf Grund ihrer Lage nur als Kame angesprochen werden. Nach einem kurzen Halt bei Pt. 706,1 (e Dietschwil) mit dem Zungenbecken von Wisgraben zog sich der Gletscher auf die Randlage von Oberbrunberg zurück.

Schwierigkeiten bereitet noch die Deutung des großen Walles¹, der von Breiti (zwischen Oberbazenheid und Wolfikon) thurwärts

¹ Der 3. Wall A. P. FREYS 1916, S. 80.

sich verfolgen läßt und bei 640 m steil abfällt. Der w Aufschluß zeigt in einer Mächtigkeit von über 25 m steil südfallende Sand- und Kieslagen, in welche Blöcke bis ca. 10 m³ eingelagert sind. Es kann sich also nicht um eine Rückzugsmoräne des Thurgletschers handeln, wie A.P. Frey meinte, der Wall kann auch nicht während der Bazenheider Stadien entstanden sein, wogegen die Höhenlage von über 670 m und der Verlauf des Walles sprechen, vielmehr muß er älter als diese sein, da seine e Fortsetzung überfahren wurde. Es kommen zwei Möglichkeiten in Betracht: ein Os als Zeuge der Querentwässerung während einer Phase des Maximums, wofür die rückenartige Form sprechen würde, oder ein Queros mit Deltaschüttung in einen Bazenheider See mit dem großen Delta vom Ebenhof (1,5 km se Unterbazenheid), das einen Seespiegel von 670 m anzeigt. In diesem Fall wäre der Wall in den beginnenden Rückzug von der Phase Oberbrunberg einzureihen. Eine definitive Entscheidung wird erst mit dem weiteren Abbau in die n Hälfte des erwähnten Aufschlusses möglich sein.

Die reiche Gliederung des Maximalstandes im Gebiet zwischen Bazenheid und Bichelsee läßt entsprechende Phasen auch im inneren Bergland erwarten. Bei der Erwähnung randglazialer Abflußrinnen hatten wir darauf hingewiesen. Tatsächlich trifft man überall dort, wo die Schmelzwasser der in die Seitentäler eingedrungenen Gletscherlappen zu einem murgwärts gerichteten Abfluß gezwungen wurden, entsprechende – wenn auch morphologisch undeutliche – Zeugen. Südwestlich Gähwil liegt das Trockental Auen, entsprechend trifft man an dessen Beginn zwischen Eggsteig und Seeli Schotter. Das gleiche gilt für Senis, wo der teilweise fest verkittete Schotter w Pt. 787 aufgeschlossen ist. Das kleine Zungenbecken zwischen Mühlrüti und Bennenmoos wird bei Pt. 771,9 gegen die Murg durch einen breiten Wall abgeschlossen, aus dem beim Aushub u.a. mehrere Blöcke zum Vorschein kamen. Alle diese Vorkommen liegen in 770-780 m und sind auf das Niveau des Schmelzwasserabflusses eingestellt. Es muß sich daher um eine ausgesprochene Gletscherrandlage handeln, die noch zum Maximum gehört, aber etwas älter als Oberbrunberg ist. In diese Randlage würden auch die Blöcke bei Ehratsrick am besten passen.

Die Gliederung der Würmeiszeit im Untersuchungsgebiet (ohne Frühwürm)

Allg. Gliederung	Rheingletscher	Kontaktzone	Thurgletscher
Maximum (Rüdlingen)	Steig	Gründ Dietschwil	Chalchtaren Mühlrüti-Senis- Eggsteig
	Loo-Rüetschberg	Brunberg	Tüfrüti
1. Rückzugshalt (Alten)	Wuhrenholz– Wiler Altstadt Littenheid–Ober- wangen–Balterswil– Ifwil	Zwizach (Unterbazenheid) Unterbazenheid (Pt. 632,8)	Zwizach (Unterbazenheid) Unterbazenheid (Pt. 632,8)
2. Rückzugshalt (Andelfingen)	Jonschwil–Oberstetten– Bronschhofen–Eschlikon		Oberbazenheid Bräägg
1. Rückzugshalt im Spätglazial (Konstanz)	Chistenmüli		Lütisburg-Loh Bütschwil

b) Periglaziale Formen und Ablagerungen

In zunehmendem Ausmaß haben in den letzten Jahrzehnten die Erscheinungen der periglazialen Zone die Aufmerksamkeit auf sich gezogen. Sowohl Formen als auch Ablagerungen wurden – in wechselseitiger Anregung durch Beobachtungen einerseits aus dem aktiven Bereich der Arktis und der Hochgebirge, andererseits aus den periglazial fossilen Gebieten – in großer Fülle und Ausdehnung erkannt und in das System der Klimamorphologie eingebaut. Nach frühen Ansätzen¹ begann man sich erst in jüngster Zeit in der Schweiz wieder dafür zu interessieren². So wurden aktive Blockströme (J. Domaradzki 1951) und Frostmusterböden (G. Furrer 1954) aus dem Engadin beschrieben. Fossile Formen in der Nordschweiz wurden durch E. Bugmann (1956) und Alb. Leemann (1958) bekanntgemacht, während G. Furrer (1955) eine Arbeit über fossile Frostbodenstrukturen veröffentlichte.

1. Beobachtungen im Hörnlinunataker w der Wasserscheide Thur/Töß

Der bedeutendste Teil des würmzeitlich eisfreien Gebietes liegt w der Wasserscheide Thur/Töß. Da die Formen hier besonders schön entwickelt sind, sollen zunächst darüber einige Beobachtun-

¹ C. Tarnuzzer 1909 u.a.

² G. Furrer gab 1956 einen kurzen Überblick über den damaligen Stand in der Schweiz.

gen mitgeteilt werden. In den größeren Seitentälern der Töß, besonders oberhalb Turbenthal, dem Steinental, dem Tal des Fuchslochbaches und dem Tößtal oberhalb Breitenmatt fällt eine Terrasse auf, die sich 10–15 m über der heutigen Bachsohle erhebt und talauf immer mehr ausklingt. Nur selten sind gut ausgebildete Terrassenflächen vorhanden. Von den Hängen ziehen mächtige Hangschleppen herab, welche vor den Seitenbächen zu Schwemmkegeln anschwellen. Nach dem Aussetzen der Akkumulation wurden diese kräftig zerschnitten, ein Vorgang, der heute noch anhält. Zwei Aufschlüsse im Steinental ließen erkennen, daß es sich um einen autochthonen Schotter mit viel lehmig-sandigem Zwischenmittel handelt. Wir schließen daraus auf eine beachtliche periglaziale Akkumulation, die merkwürdigerweise im Hörnlibergland bisher als solche weder erkannt noch bearbeitet worden ist¹.

2. Beispiele aus dem e Hörnlibergland

Im eigentlichen Arbeitsgebiet konnten verschiedene einwandfreie Vorkommen gefunden werden, von denen eines im Rotener Seitenast des obersten Gonzenbaches aufgeschlossen ist und als Beispiel beschrieben werden soll. Etwa 200 m ne Stierenboden mündet ein Bach, welcher aus dem linken Hang ein tiefes Tobel herausgeschnitten hat. Der Mündung ist der Rest eines Kegels² vorgelagert, dessen Oberfläche in 810 m liegt, d.h. ca. 15 m über dem Talboden. Der ehemalige Kegel wurde zerschnitten, nur auf der linken, ne Seite blieb ein Teil erhalten, während gegenüber NF ansteht. Der Schotter, dessen Gerölle ausschließlich der NF entstammen, ist völlig ungeschichtet. Die einzelnen Gerölle sind oft kantig, die zersprungenen Teile wurden vor oder während des Transportes voneinander getrennt. Manchen haftet noch verkittetes, sandiges NF-Zwischenmittel an, Eindrücke sind meist vorzüglich erhalten. Selten berühren sich die Gerölle, im allg. liegen sie im sandig-tonigen Zwischenmittel eingebettet. Ein zweiter Aufschluß befindet sich am Weg Ehratsrick-Schnebelhorn bei Churzenegg im Gonzenbachtal (244,34/717,28/830 m). Er liegt 40 m oberhalb des heutigen Bachlaufs. Das Material, welches dem eben beschriebenen vollständig gleicht, baut hier einen Sporn auf. Es handelt sich um den Rest einer Solifluktionsmasse, die ursprünglich den Boden des Tobels in einer Mächtigkeit von mindestens 8 m ausfüllte und später durch zwei seitliche Rinnen isoliert wurde. Die beiden Bäche vereinigen sich 25 m unterhalb des Weges. Als Beispiel für ein gesichertes, würminnermoränisches Vorkommen³ sei die Schuttmasse

¹ Auf der Geol. Karte des Kantons Zürich 1:150 000 (H. SUTER 1939) sind die Schotter des Steinentales als Niederterrasse eingetragen.

² 245,12/716, 92.

³ Vgl. S. 62. Die Schuttmasse führt u.a. helvetisches Material.

genannt, die 300 m ne Müli¹ (e Mühlrüti) in 800 m, also 80 m oberhalb des Hulfteggbaches, aufgeschlossen ist. Dieser Solifluktionsschutt, der z.T. verkittet ist, füllte den Seitenast eines Tobels aus. Die anschließende Ausräumung erfaßte auch hier nur einen Teil, obwohl das Hanggefälle 22° beträgt. Zweifellos handelt es sich bei diesen Funden² nicht um die einzigen. Besonders Solifluktionskegel sind noch an verschiedenen Stellen erhalten, während durchgehende Terrassen nicht auftreten, was mit dem kleinen Einzugsgebiet und dem schmalen Talboden zusammenhängen dürfte.

Die Tobel, welche ohne jeden Zweifel schon vor der Würmeiszeit bestanden, dienten unter den periglazialen Bedingungen als Sammler und Ableiter des Solifluktionsschuttes, wobei sich ihr Querprofil sicherlich im Sinne der neuen Transport- und Erosionsart änderte. Ihrer Funktion nach waren es damals Korrasionstäler. Die Steilheit und der praktisch undurchlässige Untergrund sind die Ursache für die neuerliche Umgestaltung zu echten Tobeln nach Einsetzen des fluvialen Regimes. Auch der Solifluktionsschutt wurde entfernt, sofern die Erosionskraft ausreichte, um die Hänge zu unterspülen. Bei geringer Wasserführung, also kleinem Einzugsgebiet, können jedoch selbst hier Schuttreste sich erhalten, wie die Beispiele 2 und 3 zeigten.

Bei den bisherigen Beispielen handelte es sich um Tobel, deren Entstehung zweifelsfrei präwürmisch oder wesentlich älter ist. Ihr ganzer Charakter weist auf eine Bildung unter warmzeitlichen Verhältnissen. Daneben gibt es Erosionsformen, die während der Kaltzeiten entstanden sind und heute nicht zurückgebildet werden.

250 m wnw Pt. 762 (Bennenmoos bei Mühlrüti) beginnt in 800 m eine Hangfurche, die sich in leichtem Bogen mit 20° Gefälle bis 765 m hinab fortsetzt. Hier ist ihr tropfenförmig³ eine ca. 15 m hohe Schuttmasse vorgelagert, die bei den Koordinaten 248,34/715,94/750 m ca. 4 m hoch aufgeschlossen ist. Auch hier weist das Material die schon erwähnten Eigenschaften auf. Das kleine, bei anhaltend trockenem Wetter versiegende Bächlein weicht der Schuttmasse aus, wobei es sich bisher nicht einzutiefen vermochte. Derartige Formen sind an Hängen, die nur ein kleines Einzugsgebiet darstellen, also eine geringe vertikale oder horizontale Ausdehnung besitzen, relativ häufig. Das Gefälle ist ganz verschieden, so ergaben Messungen s Pt. 810 (w Mühlrüti) im Durchschnitt 29°, bei Oetwil⁴, wo zwei Furchen parallel mit einem Abstand von 80 m von Pt. 852 in nnw Richtung bis auf 760-770 m hinabziehen, oben 11-12° und unten

^{1 248,10/717,45.}

² Eine Ausbeutung in größerem Stil lohnt wegen der Kornzusammensetzung nicht.

³ Ein Vergleich mit den von J. HÖVERMANN 1953 kurz beschriebenen Schutttropfen ist wohl nicht möglich, da auf Grund der guten Durchmischung des Materials mit kontinuierlicher Akkumulation gerechnet werden muß.

⁴ Ein deutlicher Schuttwulst fehlt hier.

6-7°. Auch die S. 13 f. beschriebenen Hangfurchen können nur unter periglazialem Klima entstanden sein. Das Vorkommen im jungvergletscherten Gebiet beweist die Jugendlichkeit der Formen, die Akkumulation von Periglazialschutt die Art der Entstehung unter solifluidalen Verhältnissen, so daß man von Dellen sprechen kann. Ihre Erhaltung muß, wie schon gesagt, dem geringen Einzugsgebiet zugeschrieben werden, wodurch eine Umformung verhindert wurde.

In zwei Aufschlüssen, in denen Schotter abgebaut wird, konnte geschichteter Periglazialschutt¹ beobachtet werden. An der Straße Mühlrüti–Gähwil zeigt n Vordersenis ein Aufschluß (249,05/717,0/ 790 m) an seiner Westwand folgendes Profil: Das Liegende besteht aus einem groben, ungeschichteten Schotter mit oft gespaltenen Geröllen. Die einzelnen Gerölle sind kalzitisch verkittet, die Zwischenräume schlecht ausgefüllt. Diese Schuttmasse wird direkt von 1¹/₂ bis 2 m schwach geschichtetem, z.T. kantigem Kies mit viel Zwischenmaterial und einigen Sandschnüren durchsetzt, überlagert, welcher hangparallel gegen die Straße zu mit 18-20° einfällt. Es ist ausgeschlossen, daß hier Material nach Beginn der Ausbeutung abgeschwemmt wurde, denn die Oberfläche fügt sich dem Hang eines hier vorspringenden Spornes zwanglos ein, und von einer älteren Abbauwand ist nichts zu erkennen. Das Fehlen von Brandspuren im Liegenden der geschichteten Bank und die Kornverteilung, welche für die Feinerdefraktion einen Anteil des Materials $< 20 \mu \text{ von } 27^{\circ}/_{\circ}$ ergab, sprechen für periglazialen Wanderschutt. Genau die gleichen Verhältnisse findet man in der Kiesgrube se Anwil (255,23/716,76/570 m).

Von besonderem Interesse waren die Strukturen, welche in den unteren beiden geschichteten Mergelbändern der großen Kiesgrube von Littenheid aufgeschlossen waren. Nachdem das horizontal gelagerte 40 cm mächtige Band mit einem Messer glatt angeschnitten worden war, wurden Verknetungen² sichtbar, wie sie z.B. A. Stee-GER (1944) veröffentlichte. An der kryoturbaten Natur kann nicht gezweifelt werden. Fältelung etwa durch überlagernden Druck und damit verbundenes seitliches Abgleiten kommt nicht in Frage, da die Strukturen weitgehend symmetrisch sind und das Mergelband selber keinerlei Faltung zeigt. Zudem ist die Schichtung des oberen, 60 cm dicken Mergelbandes von gleicher Kornzusammensetzung, völlig ungestört, obwohl es noch von etwa 8 m Schotter überlagert wird. Wie frostgefährdet dieses Material ist, erwiesen die Tage um Neujahr 1957, als sich in abgebrochenen Stücken, die am Boden des Aufschlusses lagen, bis 11 mm dicke Linsen aus fast reinem Eisgebildet hatten, welche die über einen Meter langen Brocken durchsetzten.

¹ Schichtung in periglazialem Wanderschutt wird in der Literatur selten erwähnt. С. Schott 1931.

² Sie wurden im Sommer 1953 anläßlich einer Exkursion des Geogr. Instituts Zürich demonstriert.

Zusammenfassung

Aus den geschilderten Verhältnissen ergibt sich eine bedeutende Wirkung des periglazialen Klimas im Molasseland. Im Gegensatz zu den jungen Massenbewegungen wurde das ausgezeichnet sortierte Ausgangsmaterial – Mergel, NF, Sandstein – während der Wanderung vollständig durchmischt. Nur im geschichteten Solifluktionsschutt, der von Schottern abstammt, ließen sich Sandbänder feststellen. Das dürfte mit dem kurzen Transportweg zusammenhängen.

Westlich der Wasserscheide trifft man die mächtigsten Akkumulationen mit Terrassen, Hangschleppen und Kegeln. Im würmzeitlich vergletscherten Gebiet zeugen Wanderschuttdecken und Kegel für intensive Solifluktion auch nach dem Maximalstand. Mit dem Rückzug vom 1. Gletscherhalt scheint die Intensität merklich abzusinken¹. Wie noch ausgeführt wird (S. 85 f.), kam es im Spätglazial nochmals – wenn auch abgeschwächt – zu Solifluktion. An Erosionsformen ließen sich vereinzelt Dellen nachweisen.

Die tiefeingeschnittenen Täler begünstigten Solifluktion an sonnenexponierten Hängen. Sämtliche Aufschlüsse liegen dort, in den E-W gerichteten Tälern mit breitem Talboden w der Wasserscheide (Steinental, Tal des Fochslochbaches) hat diese Bevorzugung zu einem Abdrängen der Bäche gegen den Schattenhang geführt. In engen Kerbtälern entfernte die aktive junge Hangabtragung die Zeugen des periglazialen Klimas.

c) Die Entwicklung im Spät- und Postglazial

1. Der beginnende Gletscherrückzug im Spätglazial

Die Gleichsetzung des Oberbazenheider Stadiums mit Andelfingen ermöglicht die Abtrennung der älteren spätglazialen Gletscherstände. Während der Rheingletscher erst am Doppelwall von Chistenmüli²haltmachte – er entspricht dem Konstanzer Stadium –, weist der agilere Thurgletscher eine größere Zahl von Rückzugshalten auf. Mit dem Rückzug von der Bräägger Randlage wurde das zugehörige Zungenbecken eingeschottert, wobei kleineren Gletscherrandlagen keine eigenen Schotterfelder zugeordnet werden können, diese vielmehr mit dem Freiwerden der größeren, mit Stauschottern erfüllten Seitentäler – besonders Necker- und Dietfurtertal – in Zusammenhang gebracht werden können und daher mehr den Charakter langgestreckter Schwemmkegel besitzen. Diese wurden offenbar in sehr kurzer Zeit gebildet und anschließend sofort wieder zerschnitten, wobei die Erosionsniveaus weiterverfolgt werden können. So läßt sich das Niveau des Brääggfeldes

¹ Die betreffenden Funde sind noch zu unsicher, um gültige Aussagen zu machen.

² Vgl. auch R. HANTKE 1961.

(576 m) über Allmend (570 m, e Bazenheid) bis zur Degenau gut verfolgen. Westlich der Thur setzt sich das zuletzt genannte Teilstück nicht fort, denn die Terrasse von Bleiken liegt etwas zu tief. Auch diese führt noch in die Littenheider Rinne, mit ihrer Zerschneidung wird jene außer Funktion gesetzt, die Thur fließt von jetzt an in Richtung Bischofszell. Wo der Thurgletscher in jenem Zeitpunkt stand, läßt sich mit Sicherheit nicht angeben. Auf jeden

Fall hatte er die Neckermündung freigegeben.

Westlich Lütisburg werden von A. P. Frey (1916) Rückzugsendmoränen angegeben. Dies ist für die n Langenrain gelegenen Kuppen unsicher, sie machen eher den Eindruck überfahrener Moränen. Dagegen repräsentiert der Wall, welcher bei Pt. 602 beginnt, einen echten Rückzugshalt. Er setzt sich s der Gonzenbachmündung bei Loh fort. Einen weiteren Halt finden wir 3,5 km s dieser Lütisburger Phase bei Bütschwil. Nördlich Pt. 627 beginnt ein frischer Wall, der sich e Riet und s des Dorfbaches fortsetzt. Mit einer kleinen randglazialen Abflußrinne, die bei Weid (1,8 km wsw Dietfurt) beginnt und sich über Chromen bis Riet verfolgen läßt, stellt die Moräne den ausgeprägtesten Rückzugshalt dar, weshalb wir ihn zunächst mit dem Konstanzer Stadium parallelisieren. Aber auch diesem Gletscherhalt läßt sich kein eigenes Schotterfeld zuordnen, vielmehr wurde die Stirnmoräne beim folgenden Rückzug vom Schmelzwasser durchbrochen. A.P. Frey (1916) verlegt sein Bütschwiler Stadium s des Innerfeldes, von welchem dann auch die Aufschotterung des Inner- und Aufeldes erfolgte. Doch fragen wir uns, ob diese Phase des Bütschwiler Stadiums, deren Zeugen¹ sehr geringfügig sind, dazu imstande war. Auf jeden Fall legt die Lage an der Mündung des Dietfurterbaches den Gedanken nahe, daß ein Teil der Schotter von dort stammt. Südlich Dietfurt gibt es keine Schotter dieser Höhenlage. Nördlich Bütschwil läßt sich das Feld bis Gemeinwerk verfolgen, wo Molasserundhöcker (Pt. 614,0 und nw Sägenbach) die Grenze bilden, während e davon die Thur eine etwaige Fortsetzung abgetragen hat.

2. Der Abbau des glazialen Formenschatzes

Die wichtigsten Epigenesen

Eine weitere Folge dieser Rückzüge – besonders vom Oberbazenheider Stadium – waren Epigenesen, die z.T. bedeutsame Änderungen im Landschaftsbild hervorriefen.

Über das Zweigbecken von Lütschwil floß präwürmisch der Gonzenbach Richtung Thur. In diese Talöffnung legte sich der Thur-

¹ Rechts der Thur n der Ruine Rüdberg bei Pt. 612,7 die Andeutung eines randglazialen Abflusses, bei Bächli grober Kies mit einigen Blöcken, bei Schwendi ein kleiner Wallrest und n Ritzentaa Schotter.

gletscher und zwang den Gonzenbach in das randglaziale Entwässerungssystem. Dabei wurde die Wasserscheide zwischen Gonzenbach und Hörachbach e Pt. 722 (bei Burg) bereits durchstoßen. Beim Rückzug aus dem Zweigbecken von Neutal (e Müselbach) durchbrach der Gonzenbach die noch vorhandene innere Moräne und schüttete in einen Rückzugsstausee ein Delta (Bäbikon) mit dem Niveau 670 m. Der Abfluß erfolgte über Neutal-Säge, wo die Seitenmoräne abgetragen und das scheinbar unmotiviert breite, blind endigende Tal geschaffen wurde. Erst mit dem weiteren Abschmelzen von diesem kurzen Halt, dem der kleine Moränenrest¹ bei Pt. 662 ese Bäbikon (Bräägger Phase) entspricht, fand der Gonzenbach seinen Weg über Hammer, womit die Bildung der imponierendsten jungen Epigenese im Untersuchungsgebiet begann².

Ähnlich verlief die Entwicklung des Hörachbaches. Zwischen Müselbach und Säge hat er sich n des Moränenzuges eingetieft. Er durchbricht dann die Moräne bei Pt. 604. Durch den ersten kurzen Rückzugshalt mit der Moräne bei Pt. 612,3, welcher dem Stadium von Oberbazenheid folgte, behält er – im Gegensatz zum Gonzen-

bach - die Richtung bis kurz vor Oberbazenheid bei.

Durch eine erst Anfang März 1961 eröffnete Kiesgrube sw Lütschwil (248,5/721,88 in ca. 675 m) wurde auch in diesem Zweigbecken ein Rückzugsdelta sichtbar. Es zeigt, wie das gestaute Wasser an verschiedenen Stellen über die absperrenden Moränen hinweg abfloß, bis sich eine Rinne schließlich durchsetzte.

Die nichtglazigenen Terrassen des Thurtales

Bei Lichtensteig verläßt die Thur das weite Becken von Wattwil und durchbricht in einem nur wenige 100 m schmalen Talabschnitt auf 2 km den aufgerichteten Südrand der mittelländischen Molasse, welche zwischen Dietfurt und Bütschwil allmählich ausklingt. Bei Dietfurt öffnet sich das Tal plötzlich bis auf 1,5 km Breite. In direkter Fortsetzung der Engtalstrecke fließt die Thur nunmehr auf der rechten Talseite, von wo sie, außer vom Necker, nur geringfügige Zuflüsse erhält. Die linke Talseite zeigt einen anderen Charakter. Von Bazenheid bis Dietfurt wird sie von den genannten Schotterflächen eingenommen, die nur auf einigen Strecken von welligem Gelände unterbrochen werden.

Im Gegensatz zur parallel fließenden Töß ist das Thurbett zwischen St.Loretto (Lichtensteig) in ca. 595 m und Schwarzenbach in ca. 514 m in Molasse eingetieft. In zahlreichen Mäandern mit aktiven Prallhängen fließt sie ca. 20 m unterhalb der Molasseoberkante, manche Prallhänge des Ostufers stürzen bis 60 m senkrecht ab³

¹ Wall mit typischer Blockpackung.

² Wir kommen darauf nochmals zurück.

³ Bei Pt. 541 n Lütisburg u.a.

und gewähren einen ausgezeichneten Einblick in die Molassestratigraphie. Das Einschneiden erfolgt im ganzen gesehen überall, vorhandene Steilen spielen im Längsprofil nur eine untergeordnete Rolle. Sie werden infolge der bedeutenden Erosionskraft der Thur rasch zerschnitten. Das äußert sich auch im Gefälle, welches auf der ganzen Strecke von 20 km zwischen 3 und $4^{0}/_{00}$ schwankt. Nur im Abschnitt Schieb-Dietfurt ist eine Steilstrecke mit 110/00 eingeschaltet, die gegen die Soorbrücke langsam ausläuft.

Rund 20–25 m über dem heutigen Thurbett ist eine Terrasse ausgebildet, welche sich in verschiedener Hinsicht von den hochund spätglazialen Rückzugsterrassen unterscheidet. Sie läßt sich mit Sicherheit von der «Halbinsel» Äuli bei St.Loretto in zahlreichen Flächenresten über Schwarzenbach hinaus bis Oberbüren (Bruggwisen), möglicherweise sogar bis in den Raum Bischofszell

(Chatzensteig) verfolgen.

Von St. Loretto bis Niederstetten handelt es sich um ein Erosionsniveau, welches in die Rückzugsterrassen und auch z.T. in Molasse eingelassen ist. Sie wird hier von einem dünnen Kiesschleier überdeckt. Von Niederstetten an treffen wir auf der rechten Talseite auf ein Akkumulationsniveau. Die Terrasse läßt sich mit keiner Endmoräne verbinden. Zwar gibt A.P. Frey (1916) Seitenmoräne in 710 m am Ausgang der Rickeneinsattelung an, doch ist dieses Vorkommen etwas fragwürdig. Morphologisch¹ ist wenig zu sehen, und das von ihm beschriebene Material ist nicht eindeutig. Da nach den bisherigen Bearbeitungen des Gebietes oberhalb des Wattwiler Beckens² – jungspätglaziale Endmoränen, bei denen eine Verknüpfung mit durchziehenden Terrassen schwierig ist - keine Gletscherstände der ausgehenden Würmeiszeit vorhanden sind, muß eine Datierung mit anderen Kriterien vorgenommen werden. Tatsächlich läßt sich das gut durchführen, wobei dem Raum Niederstetten-Bischofszell besondere Bedeutung zukommt.

Auf Grund ihrer Stellung zu den Rückzugsterrassen ist das Niveau eindeutig jünger als das Bütschwiler Stadium, welches wir mit dem Konstanzer Stadium parallelisiert hatten. Die Lage von 20 bis 25 m über dem heutigen Thurlauf weist auf eine Phase verminderter oder fehlender Tiefenerosion im Spät- oder Postglazial hin. Diese Einstufung wird nun durch die Verhältnisse im Thurtal zwischen Niederstetten und Bischofszell bestätigt und präzisiert. Bei Schwarzenbach nimmt unsere Terrasse die Flächen Salen, Fören und Langäcker zwischen 540 und 535 m ein. Wie der Aufschluß bei Pt. 528 (Straßenbrücke) zeigt, ist die Terrasse in das

¹ Desgleichen A. Ludwig 1930, S. 519.

² A. P. Frey 1914, W. Tappolet 1922. E. Maurer 1952. Auf die völlig abwegigen Auffassungen A. Ludwigs (1930, S. 519) über die Altersstellung der von A. P. Frey (1914) kartierten Moränen am Ausgang des Tales der weißen Thur kann hier nicht eingegangen werden.

Delta Schloß Schwarzenbach eingeschnitten. Eine Übergußschichtung ist nicht vorhanden. Bei Niederstetten durchbricht die Terrasse die Moräne von Oberstetten und mündet damit in das Zungenbecken dieses Stadiums. Und von hier an ändern sich, wie eine Reihe von Aufschlüssen und zahlreiche Bohrungen belegen, innere Struktur, Lagerungsverhältnisse und Genese der Terrasse vollständig. Wir finden keine Deltaschichtung mehr, sondern nur noch horizontal geschichtete, sandreiche Schotter. Diese werden – von Henau ab mit Sicherheit – von mächtigem Bänderton unterlagert, der sich genetisch mit dem Delta von Niederbüren verbinden läßt. Dieser See von Niederbüren wurde vom Rheingletscher gestaut, wofür nur die Randlage in Frage kommt, welche das Tal bei Chistenmüli sperrte. Der See wurde durch Schmelzwasser des Thurgletschers, welcher bei Bütschwil lag, und des Rheingletschers gespeist, von welchem Schmelzwasser hauptsächlich durch die Hauptwiler Rinne zugeführt wurde. Auch nichtglazigenes Wasser war beteiligt, doch kann dessen Anteil nicht groß gewesen sein, wie die grauen Bändertone zeigen. Der Abfluß erfolgte über die randglaziale Rinne Buhwil-Mettlen-Dußnang. Ob bei der Einmündung derselben in das Frauenfelder Thurtal der dortige große Stausee noch bestand, müßte abgeklärt werden.

Nach diesen Ausführungen ergibt sich, daß der Terrassenschotter jünger ist als das Konstanzer Stadium. Für seine genauere Einordnung sind die Ergebnisse von Datierungen aus dem süddeutschen und schweizerischen Raum maßgebend. Wie aus den pollenanalytischen Untersuchungen W. Lüdis an einem Bohrkern vom Untergrund des Zürichsees zwischen Herrliberg und Oberrieden 2 hervorgeht, war dieser während der Älteren Tundrenzeit bereits eisfrei. Leider war eine Vollgliederung des Spätglazials nicht möglich, was vielleicht daran liegt, daß die entsprechenden Sedimente gar nicht erfaßt wurden. So wurden bei dieser Bohrung nach H. Züllig (1955) die liegenden, glazialen Ablagerungen – vermutlich Grundmoräne – nicht erreicht. In bezug auf den würmzeitlichen Eisrückzug kann der Greifensee mit dem unteren Zürichsee gleichgestellt werden. Eine pollenanalytische Bearbeitung durch G. Jung (1961) ergab auch hier für die ältesten erbohrten Sedimente Ältere Tundrenzeit. Möglicherweise können an beiden Lokalitäten die beiden nächst älteren Abschnitte erfaßt werden, nachdem F. Firbas (1957) 3 im Kolbermoor bei Rosenheim mit einer C14-Datierung das Bölling-Interstadial nachweisen konnte. Die Gleichsetzung von Stephanskirchener mit Konstanzer Stadium darf wohl als gesichert gelten 4. Damit

¹ Das Delta wurde erstmals von C. Falkner (1910, S. 48) erwähnt.

² W. LÜDI 1957, S. 12.

³ Dazu ergänzende Bemerkungen H. Zollers 1960, S. 91.

⁴ Vgl. R. HANTKE 1959, 1961.

fällt das Konstanzer Stadium noch in die Älteste Tundrenzeit¹ und mit ihm die erwähnten Bändertone, der Rückzug von Konstanz in das Bölling-Interstadial. Die Schüttung unseres Terrassenschotters muß dann als kalt-klimatische Aufschotterung in die Ältere Tundrenzeit fallen, wobei sicher ein Teil der liegenden Schichten noch dem Bölling zuzurechnen ist. Auch ein Teil der Ausräumung der Thurtalstrecke Lichtensteig-Niederstetten muß in dieser Zeit stattgefunden haben, im untersten Teil dieses Abschnittes hat sie in Zusammenhang mit dem notwendigen Gefällsausgleich wohl schon in den Ältesten Tundrenzeit angefangen.

in der Ältesten Tundrenzeit angefangen.

Zugunsten dieser Datierung sprechen allgemeinere Überlegungen zur Klima- und Waldgeschichte des Spätglazials. Pollenanalytische Arbeiten² haben gezeigt, daß die Wiederbewaldung im Mittelland während des Alleröds eingesetzt hat. W. Lüdi³ gibt für diesen Abschnitt eine Waldgrenzdepression von ca. 500 m gegenüber heute an. Die Waldgrenze lag demnach im Hörnlibergland⁴ bei ca. 1300 m, d.h., nur Tweralpspitz (1332 m), Chrüzegg (1314 m) und Höchhand (1314 m) ragten knapp darüber hinaus. In der Jüngeren Tundrenzeit sank die Waldgrenze auf ca. 1000 m, die Schneegrenze auf 1600 m herab, womit die Zone erhöhter Bodenmobilität zwar bedeutend größer wurde, aber überall durch einen wenn auch gelichteten Waldgürtel von wenigstens 200 m Tiefe von den Talböden getrennt war. Damit ist es ausgeschlossen, daß Wanderschuttdecken der sowieso nur wenig aktiven unteren subnivalen Zone die Bachläufe erreichten. Lediglich in den Tobeln der Seitenbäche konnte Material abgeführt werden. In diese Gedankengänge paßt gut der Befund vom Stierenboden ⁵. In den Solifluktionskegel ist ein unteres Niveau eingesetzt, welches seinerseits von der postglazialen Erosion zerschnitten wurde.

Das tiefste Terrassenniveau ist ne Pt. 528 (Straßenbrücke Rickenbach-Schwarzenbach) auf der rechten Thurseite in 530 m besonders gut erhalten geblieben und liegt hier ca. 15 m über dem Thurbett. Die Terrasse ist aus Molasse oder Schotter herausgeschnitten worden und mit einer dünnen Schotterlage bedeckt. An der angegebenen Stelle zeigt sie folgenden Aufbau: Das Liegende besteht aus Molasse, die am Thurufer ansteht und gegen NNE längs einer Erosionsdiskordanz mitsamt der bedeckenden Grundmoräne einfällt. Diese ist mit schräggeschichtetem Kies bedeckt, dessen Mächtigkeit in der gleichen Richtung wächst und zum Delta Schloß Schwarzenbach gehört. Probeaufschlüsse zeigten, daß

Das setzt für den auf das Singener Stadium folgenden Rückzug eine relativ warme Frühphase voraus.

² Für die Nordschweiz s. bes. die Zusammenfassung von W. Lüdi 1955.

³ 1955, S. 43; z. T. nach M. Welten.

⁴ H. Jenny-Lips 1948 gibt für den nahe gelegenen Speer 1800 m in der Gegenwart an.

⁵ Siehe S. 79.

die Kiese weiter im N, also gegen den distalen Bereich des Deltas, in mächtige Sandbänder übergehen. Bedeckt sind die Kiese von einer 2 m mächtigen, horizontal geschichteten Schotterlage, die aber keine Übergußschichtung darstellt, sondern die liegenden Deltakiese diskordant schneidet. Über die Fortsetzung des Niveaus thurabwärts soll an anderer Stelle berichtet werden, hier sei lediglich vermerkt, daß die Reste thuraufwärts seltener werden und sich im Raum Lütisburg verlieren. Die Datierung dieser Terrasse stößt insofern auf Schwierigkeiten, als eine Verknüpfung mit sicher datierbaren Sedimenten nicht möglich ist. Aus ihrer Lage ergibt sich zunächst, daß sie jünger ist als die Ältere Tundrenzeit, älter als die jüngste nichtanthropogene Eintiefung und Ausräumung im Thurtal zwischen Wil und Niederbüren, der im jüngeren Postglazial erneut Akkumulation von Schotter sowie an einzelnen Stellen von Torf folgte¹. Diese Überlegungen legen die Einstufung in die Jüngere Tundrenzeit nahe, d. h., nach einer Phase der Eintiefung im Alleröd folgte eine Periode neuer Schuttüberladung mit Seitenerosion und geringer Akkumulation. Diese Datierung muß mit Vorbehalt aufgenommen werden. Ihre Sicherheit leidet darunter, daß die Thur talabwärts an zwei Stellen, an der Felsegg (Henau) und bei Sonnenburg-Billwil (Oberbüren), sich epigenetisch in Molasse eingeschnitten hat, und zwar von einem Niveau ab, welches ungefähr der tiefsten Terrasse entspricht.

Im Gegensatz zu verschiedenen Untersuchungen der letzten Jahre möchte ich also der Jüngeren Tundrenzeit nicht jene bedeutende Wirksamkeit zusprechen, wie sie sich in der Schüttung eines Schotterkörpers vom Ausmaß der jüngeren Seelandschotter der Emme² oder in der Bildung eines fast kompletten periglazialen Formenschatzes³ äußerte. Unsere Befunde sprechen nicht gegen periglaziale Wirkungen der Jüngeren Tundrenzeit schlechthin. Sollten sie aber durch weitere Untersuchungen erhärtet werden, so müßten die periglazialen Wirkungen auf stärkere Schuttlieferung, welche Bäche und Flüsse mehr zu Seitenerosion als zu Akkumulation veranlaßte, und möglicherweise auf Bildung von Hangkerben⁴ reduziert werden.

Die Vorgänge in den Seitentälern der Thur

Die Tiefenerosion blieb selbstverständlich nicht auf die Thur beschränkt. Alle Seitenbäche sind ihr als lokaler Erosionsbasis mehr

² H. ZIMMERMANN 1962.

³ H. Poser und J. Hövermann 1951, C. Rathjens 1952, 1954.

Die gegenwärtige kräftige Tiefenerosion der Thur ist eine Folge der Thurkorrektion. Vgl. dazu T.A. 1:25 000, Bl. 72 und 75, vor der Korrektion, in welchen die Verwilderung schön zum Ausdruck kommt.

⁴ Gemeint sind Kerben in der Rückzugsterrasse von Bütschwil. Eine sichere Datierung ist hier noch verfrüht.

oder weniger rasch gefolgt, worauf bereits im Kapitel Rezente Erosion eingegangen wurde¹. Hier sei nachgetragen, daß das Ausmaß nicht nur von Wassermenge und Untergrund, sondern – wie nicht anders zu erwarten – auch von den Gefällsverhältnissen nach dem Gletscherrückzug bzw. dem Ende der glazifluvialen Entwässerung abhängig war. Deshalb konnte sich die Murg im Abschnitt Bruederwald und s Tobel trotz kleinem Einzugsgebiet um max. 20 m, der Gonzenbach im Hammertobel um 60–70 m in Molasse eintiefen.

Dies erscheint nicht erstaunlich, wenn man bedenkt, daß in diesen Beträgen ein mehrfacher Wechsel von NF und Mergel enthalten ist 2. Als der Raum von Lütisburg vom Thurgletscher im frühen Spätglazial freigegeben wurde, stürzte der Bach über den linken Talhang der Thur 3. Die entstandene Steile konnte in den oberen Stockwerken um so rascher zurückverlegt werden, als bei Spilhusen kiesige Moräne den rechten Hang des Bachlaufes bildet. Erst oberhalb Hammer traf die Steile in ihrer ganzen Höhe auf Molasse, wobei sie sich entsprechend der Stratigraphie in einzelne Wasserfälle auflöste. Deren Wandergeschwindigkeit hing nur von der Mächtigkeit der einzelnen Horizonte ab, denn die Wassermenge war für alle praktisch gleich groß und schwoll nur beim Eintreffen der einzelnen Stufen am Seeufer kurzfristig an.

Wesentlich für unsere Betrachtung ist das gleichzeitige Wandern der Fälle, denn darin liegt die Erklärung für die bedeutende Erosionsleistung bei der Bewältigung großer Gefällsungleichheiten nicht nur im Spät- und Postglazial, sondern auch während des Hochglazials beim Durchbrechen von Wasserscheiden. Es ist deshalb auch ohne Bedeutung, ob das Hammertobel beim Ablösen der jungen Steile von der Thur bereits bis auf das Niveau der Salener Terrasse ausgeräumt war, auf jeden Fall muß die erste große Welle einen entscheidenden Vorsprung besessen haben.

Der erwähnte Wasserfall im Hammertobel ermöglicht die Bestimmung der Wandergeschwindigkeit über einen größeren Zeitraum hinweg. Verlängert man das Niveau Oberkante Wasserfall mit 20 m über dem unteren Niveau bis an die Mündung des Gonzenbaches in die Thur, so stößt man auf die Salener Terrasse, deren Niveau in der Älteren Dryaszeit⁴ gebildet wurde. Die Eintiefung in dieses Niveau setzte mit der Klimaänderung Ältere Dryaszeit-Alleröd ein, d.h. vor ca. 12 000 Jahren. Die Laufstrecke ab Mündung Thur, verkürzt um einige kleinere Mäanderschlingen, beträgt

¹ Datierung siehe S. 84 f.

² Siehe S. 16.

³ Zwar führte der Gonzenbach beim Verlassen des Stausees von Winklen keine Gerölle, er benötigte sie aber auch gar nicht.

⁴ Beim Vergleich mit dem Rheinfall (Alb. Heim 1931) wird einem die große Bedeutung der Gesteinsabfolge zum Bewußtsein gebracht.

2700 m. Als durchschnittliche Wandergeschwindigkeit ergibt sich demnach 23 cm/Jahr, was dem niedrigsten der von Arn. Escher im Tößgebiet im Verlauf von 20 Jahren gemittelten Wert entspricht.

In Wirklichkeit muß die Wandergeschwindigkeit größer gewesen sein, denn das Rückschreiten konnte erst einsetzen, als die lokale Erosionsbasis – in diesem Fall die Thur bei Lütisburg – bei ihrer Tieferlegung eine weiche Schicht antraf. Daraus erklärt sich der geringe Wanderbetrag des großen Wasserfalls des Hörachbaches bei Bräägg, welcher im gleichen Zeitraum, in dem der große Wasserfall im Hammertobel 2,7 km zurücklegte, nur 90 m hinter sich brachte.

Bemerkenswerterweise zeigt der Fall im Lochbachtal bei Chaspel mit 2,6 km Abstand von der Töß fast den gleichen Wert wie jener im Hammertobel. Eine genauere Untersuchung der Terrassen im Tößtal, deren Stellung neuerdings etwas ins Wanken geraten ist², müßte abklären, ob der Wasserfall hier ebenfalls von einer spätglazialen Terrasse ausgegangen ist oder aber früher seine Wanderung begonnen hat. Darauf weisen die Verhältnisse im Aubachtal hin. Hier hat das Rückwandern früher angefangen, denn die Tieferlegung im Murgtal konnte bereits mit dem Rückzug vom Würmmaximum einsetzen. Das Ergebnis ist ein Wanderweg von nur 0,85 km. Ahnlich liegen die Verhältnisse im benachbarten Flobachtal, wo aber eine einzige, ausgeprägte Stufe fehlt. Noch deutlicher spricht der Betrag beim Wattwiler Feldbach, wo das Wandern im Spätglazial³ begann und durch die Absenkung des großen Wattwiler Sees ausgelöst wurde. Der Abstand hat hier einen Wert von 0,95 km erreicht. Auch wenn, wie anschließend dargelegt wird, mehrere verschiedenartige Faktoren die Wandergeschwindigkeit beeinflussen, so geht doch schon aus diesen Beispielen die große Bedeutung der Wassermenge hervor.

Die oben angegebene Geschwindigkeit von 23 cm/Jahr im Hammertobel stellt einen Minimalwert dar, denn das Wandern muß später begonnen haben als die Eintiefung. Gleichzeitig ist sie ein Durchschnittswert, denn es kann kaum bezweifelt werden, daß die Klimaänderungen im Spät- und Postglazial modifizierend wirkten. Ein großer Einfluß ging aber auch von den stratigraphischen Verhältnissen aus, wie schon angedeutet wurde. Die Bänke laufen nicht in gleicher Mächtigkeit durch, ja einzelne keilen aus. Mehrfach ließen sich prachtvolle Stromrinnen erkennen, wie sie N. Pavoni (1952) vom Zürichseegebiet beschrieben hat. Bei günstiger Konstellation der Schichten muß der Fall mit Geschwindigkeiten gewandert sein, welche den Durchschnittswert erheblich übertrafen. Mit dem Auskeilen einer Mergelschicht verlangsamte sich dann die

¹ In: Alb. Heim 1919, S. 418.

² Vgl. R. HANTKE 1960.

³ Eine genauere Datierung war mir bisher nicht möglich.

Bewegung, schließlich wandelte sich der Fall zu einer Steile in der NF und regenerierte erst mit dem Einsetzen einer neuen Mergelbank. Daraus ergibt sich ein sehr komplexes Bild, in welchem klimatische und geologische Einflüsse interferieren.

Es dürfte schwierig sein, die in der gleichen Zeit zurückgelegte Strecke in den Steilpartien der Tobel zu ermitteln. Wir wollen auf Grund einiger Überlegungen versuchen, wenigstens ihre Größenordnung zu bestimmen. So bedeutend an sich – im Vergleich mit anderen Landschaften - die Denudation an den Hängen im Spätund Postglazial war, so dürfen wir andererseits nicht in den Fehler verfallen, sie zu überschätzen. Zu dieser Vorsicht mahnen die Reste an glazialem und periglazialem Schutt. In der Größenordnung werden einige Meter richtig sein¹, besonders wenn wir in den höheren Lagen noch im Spätglazial mit Solifluktion rechnen. Diesem Wert dürfte auch die Erniedrigung der Wasserscheide entsprechen, wenigstens im Durchschnitt und an jenen Stellen, wo die Tobelbäche nicht durch Versteilung ihres rückwärtigen Gehänges unmittelbar die Denudation beschleunigen können. Betrachten wir nun den Höhenverlauf einer Wasserscheide, so zeigen sich auffällig geringe Unterschiede zwischen den Partien verstärkter Denudation - also dort, wo sich zwei Tobel treffen - und solchen geringerer Abtragung – also dort, wo sich zwei Tobelwasserscheiden berühren. Diese Differenzen erreichen z.B. auf der Wasserscheide zwischen Dietfurter- und Gonzenbach 20-25 m. Das läßt sich wohl nicht anders interpretieren, als daß die Rückverlegung der Tobelwasserfälle nur wenig größer ist als der Hangabtrag. Wie groß das genaue Ausmaß der rückschreitenden Erosion ist, spielt in diesem Zusammenhang keine Rolle. Auf jeden Fall ergibt sich – wie auch gar nicht anders zu erwarten – eine enorme Diskrepanz zwischen ihrer Leistung und jener der Stufen im unteren Abschnitt.

Der Gefällsausgleich in den Zungenbecken

Fluviale Akkumulation hat im ganzen Spät- und Postglazial nur eine untergeordnete Rolle gespielt. Lediglich in jenen Fällen, in denen der Rheingletscher dem allgemeinen Gefälle entgegen vordrang und Zungenbecken ausschürfte, kam es bei der Wiederaufnahme des fluvialen Regimes im Zusammenhang mit dem Gefällsausgleich zur Schüttung von Seeabsätzen und Schottern. Erstere nehmen einen großen Raum in der Auffüllung des Zungenbeckens e Wil ein. Wie aus mehreren Bohrungen in der Thurau hervorgeht, kommen diese sandigen bis mergeligen Ablagerungen in einer Mächtigkeit bis zu 20 m und vermutlich mehr vor 2. Beim Aushub für die Weberei Sirnach (1959) in der Murgaue direkt w der alten

¹ Vgl. O. Maull 1958, Tabelle S. 290, H. Jäckli, 1957, S. 129.

² Bändertone treten im Thurbett erst ab Felsegg (Henau) auf.

Fabrik wurden bis 3,5 m horizontal geschichtete Schotter freigelegt, Bohrungen zwischen Oberwangen und Sirnach ergaben Kiesmassen bis 20 m und mehr¹.

Die Entwicklung in den Urstromtälern

Noch umfangreicher sind Akkumulationen, welche Zeugnis ablegen für die Leistungsfähigkeit der Denudation. In den großen Trockentälern etwa von Littenheid und Bichelsee, wo durch die enorme Tiefenerosion während der Hochglaziale Steilhänge und Wände bis 250 m relativer Höhe in leicht abzutragendem Gestein geschaffen wurden und andererseits der Abtransport nach dem Aufhören des Schmelzwasserabflusses beinahe vernachlässigt werden kann, bilden sie Halden und Kegel von großer Mächtigkeit. Durch Bohrungen im Niveau des heutigen Talbodens oder wenig darüber wurden an zwei Stellen Triebsand bzw. Schliesand mit lehmigen Einlagerungen festgestellt, deren Mächtigkeit 31,5 m erreicht. Bei einer Bohrung wurden an der Basis dieser Serie Holzwurzeln festgestellt, während Torf erst in 3,20–3,45 m eingelagert war. Alb. Weber (1953) gibt für die Bohrung bei Niederhofen bis 12 m Lehm an.

Die Akkumulation setzte beim Rückzug vom Altener Stadium, also noch im Hochglazial, ein. Klima- und Vegetationsgeschichte der folgenden Perioden sowie die zunehmende Bedeckung der Steilhänge² durch Schutt wirkten beide in Richtung auf eine Abnahme von Hangabtragung und Akkumulation.

Ohne Zweifel war der Abtrag im ausgehenden Hochglazial und im Spätglazial besonders intensiv. Darauf weisen die mächtigen, fast fossilfreien Ablagerungen hin. Vergleichbare Ablagerungen hat W. Lüdi (1934) am Osthang des Uetliberges pollenanalytisch untersucht. Danach hat die Ablagerung der Utomergel bis in die Haselzeit angedauert. Wie für den großen Kegel des Utomergels, so gilt auch für jene der Talungen von Bichelsee und Littenheid, von Maischhausen und Ettenhausen, daß die heutige Umformung geringfügig ist. Finden sich oberhalb Wängestel und Nübrüch (Neubrunn) noch freie NF-Wände, an deren Fuß sich unmittelbar kleinere Schutthalden bilden, welche aber den Hauptteil nicht mehr erreichen, so hat w Oberhofen unterhalb Tüfetel die Erosion ganz schwach sich durchgesetzt und in den Hochrainen eine kleine Mulde geschaffen. Zu kräftiger Eintiefung ist es in dem Kegel se Neubrunn gekommen, ebenso auch jener von Mooswangen mit dem stark gegliederten Einzugsgebiet «Wildemaa» wurde zer-

¹ Vgl. S. 57, 59.

² Vgl. O. Lehmann 1933, Abb. 1, S. 87. Wie die Bohrungen zeigen, ging die Zurückverlegung der Steilhänge zur Hauptsache auf Abschwemmung und mit großer Wahrscheinlichkeit Solifluktion zurück. Rein qualitativ dürfte das am verborgenen Profil des Anstehenden wenig ändern.

schnitten. Dieser Kegel sowie jener unterhalb des Chranzenberges und der kleinere s Hof Ägelsee verdanken Lage und Größe den Prallhängen der Littenheider Schmelzwasserrinne. Die beiden erstgenannten waren bereits im Spätglazial so weit vorgebaut worden, daß sie talaufwärts je einen heute verlandeten See aufstauen konnten, während der Tobelbach, dessen Einzugsgebiet etwas größer ist als dasjenige am Chranzenberg, ein Delta in diesen See schüttete, welches erst im Verlauf der Mittleren Wärmezeit das nw Seeufer erreichte (Andresen 1957). Gerade diese Beispiele zeigen eindrücklich, wie bei dem gegebenen Material - Mergelhorizonte erreichen hier schon Mächtigkeiten von mindestens 12 m – der denudative Abtrag quasi ruckartig, mit sehr schnell abnehmender Intensität den Reliefausgleich herbeiführte, während der Tobelbach am heutigen Schwemmkegel bis in die Gegenwart² weiterbaute. Auch der Bichelsee wurde durch mächtige Haldenbildungen gestaut. Diese erreichen zwischen Pt. 841,2 und 828 sowie zwischen Haselberg und Gerstel ihre größte Mächtigkeit, also genau dort, wo ursprünglich die Wasserscheiden durchzogen und heute die größte Reliefexposition vorhanden ist. Bei Gulen und Neubrunn konnten sich die Akkumulationen als Wasserscheide zwischen Murg- und Tößsystem durchsetzen. Die alte Gratwasserscheide wurde damit gleichsam herunterprojiziert und hat sich posthum als Talwasserscheide behauptet.

II Zeugen der Rißeiszeit und des Frühwürms

Die Abschnitte über Abtragung unter rezenten und periglazialen Verhältnissen haben gezeigt, wie intensiv die Denudation – materialbedingt – im Bergland wirkt. Es darf deshalb nicht erstaunen, wenn Reste älterer Epochen ungewöhnlich selten sind.

a) Die Ausbreitung der Gletscher zur Rißeiszeit

Diese Tatsache war schon Arn. Escher³ und A. Gutzwiller⁴ im inneren Hörnlibergland aufgefallen. Der Kieselkalkblock in ca. 980 m, den letzterer in der Nähe der Wolfegg fand, wurde in der Literatur mehrfach erwähnt⁵. Ein weiterer Kieselkalk liegt s der Hulftegg ca. 100 m wnw Pt. 988 in 980 m. Solche Funde beweisen ein Ansteigen des Thurgletschers bis auf knapp 1000 m. H. Tanner (1946) lehnt ein Überschreiten der Wasserscheide ab, während Alb. Heim (1919), der sich weitgehend auf die Arbeiten

¹ Am Chranzenberg; vgl. auch die Angaben bei J. Früн 1886, S. 98, welche zeigen, wie die NF bei Neuhunzenberg bereits an Bedeutung eingebüßt hat.

² Nach der Verbauung nicht mehr. Dagegen dürfte die Akkumulation sich während der mittelalterlichen Rodungen verstärkt haben (Andresen 1957).

³ Tagebücher.

^{4 1873,} S. 124 f.

⁵ So in A. i. E. 1909, Bd. 2, S. 412.

Gutzwillers stützt, für die Würmeiszeit eine Transfluenz über die Hulftegg (ca. 960 m) annimmt und den Rißgletscher das Gebiet zwischen Hörnli und Bichelsee, Murg- und Tößtal bedecken läßt. Auf Grund unserer Untersuchungen kommen wir zu einer Bestätigung von Heims Auffassung, verlegen aber die Hulfteggtransfluenz ebenfalls in die Rißeiszeit¹. Die große Ausdehnung des Rißglet-

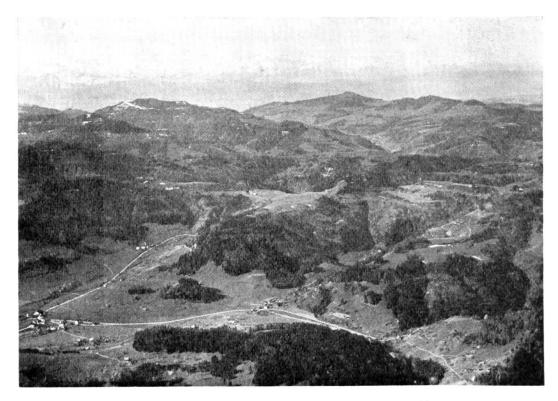


Abb. 12. Luftaufnahme gegen SW mit Blick auf die während der Rißeiszeit glazial überarbeitete Wasserscheide Gonzenbach (Thur) / Töß. Mitte unten: der Weiler Bennenmoos, links davon durch randglaziale Entwässerung entstandenes Tälchen zwischen der Wolfegg und Pt. 832.

Aufnahme Swiß Air Photo AG

schers erhellt aus dem Auftreten von Säntismaterial w der Wasserscheide Thur/Töß², so beim Steishof 700 m nw Sternenberg in 870 m und im Tobel 200 m ne Furershus (Steinental). Am eindrücklichstenist der Aufschluß bei Wolfsgrueb (255,25/711,04/810 m) 1,5 km ssw von Bichelsee. Das Profil zeigt von oben nach unten:

I m groben Schotter, horizontal geschichtet. Blöcke bis 0,5 m: Molassesandstein, einige NF-Blöcke, helvetisches Material, kein Kristallin.

Bis 20 cm Sandband.

¹ Vgl. die Ausführungen S. 61 ff.

² Ob es sich bei den «kleinen Kreidekalken» wirklich um erratisches Material handelt, erscheint nach den Befunden H. Tanners 1944, S. 63 ff., fraglich.

1 m mittelkörniger Schotter, horizontal geschichtet.

1,5 m Deltaschrägschichtung, leicht verkittet. Schüttung gegen N. Molasse nicht aufgeschlossen.

Auch der Schotter enthält nur Thurgletschermaterial, vereinzelte Amphibolite beweisen im Grenzbereich nicht das Gegenteil und könnten eventuell als Reste der Mindelvereisung vom Rißgletscher aufgearbeitet worden sein. Morphologisch hebt sich das Vorkommen nicht hervor, sondern bildet mit der w und e anschließenden Molasse eine ausgeprägte, gratförmige Wasserscheide zwischen dem Habbach und dem s Einzugsgebiet der Lützelmurg. Der Schotter kann also nur unter der Voraussetzung gebildet worden sein, daß Gletscherlappen die Täler völlig ausfüllten, wobei zwischen ihnen kleine Seen aufgestaut wurden. Die Entwässerung an der Wolfsgrueb verlief zunächst generell nordwärts, dem Rand des dort liegenden Gletschers entlang und muß dann gegen W abgelenkt worden sein. Der Durchbruch durch die Wasserscheide¹ gelang den Schmelzwassern zwischen Pt. 823 (1,3 km se Selmatten) und Pt. 841,2.

Auch morphologisch läßt sich diese weite Ausbreitung des Thurgletschers nachweisen, denn die beschriebenen glazialen Formen in der Molasse² finden sich auch außerhalb der durch Findlingsgruppen und Moränen gekennzeichneten Würmgrenze. Es betrifft dies in erster Linie die Überformung von Wasserscheiden, während glaziale Erosionsterrassen an den Hängen nur selten auftreten. Wir betrachten zunächst die Wasserscheide zwischen Thur-Murg-System und dem Tößsystem. Südöstlich der Hirzegg (Pt. 1088,0) befindet sich in 1045 m eine kleine Plattform, welche gegen die Hirzegg und gegen Pt. 1125,5 wieder von gratförmiger Wasserscheide abgelöst wird. Auch die Lücke in ca. 960 m bei Älpli zwischen Roten und Hulftegg muß als rißeiszeitlicher Transfluenzpaß angesehen werden. Handelt es sich hier noch um isolierte Vorkommen, so zeigt die Wasserscheide ab Chrüzbüel (se Hulftegg) ununterbrochen glaziale Bearbeitung, besonders schön bei der schon erwähnten Lokalität Ergeten in 1010 m. Erst se und nw Neubrunn lassen Gipfelpartien glaziale Formung vermissen, und zwar von Pt. 852,9 an über die Punkte 831 und 849 bis kurz vor den Aufschluß Wolfsgrueb und w des Trockentales von Bichelsee die Gipfel Höchegg (Pt. 841,2, Pt. 843,0, Pt. 833) und Schauenberg (Pt. 891,6). Zwischen den beiden zuletzt genannten liegt die schöne Verflachung «Ebni» in 805 m. Demnach hat der Rißgletscher in breiter Front die Wasserscheide überschritten, wobei sich die glaziale Erosion in einer Kappung des Grates äußerte. Von einer ausgesprochnen Bevorzugung einzelner Stellen kann keine Rede sein.

¹ Vgl. S. 56 f.

² Vgl. S. 35 ff., bes. S. 40.

Dies zeigt erneut, daß die großen Durchbruchstäler das Werk des fließenden Wassers sind.

Auch die Nebenwasserscheiden w der besprochenen Linie wurden eingeebnet, so bei Sternenberg, Matt und Manzenhueb oder n davon bei Berg. Eine Abgrenzung zwischen Thur- und Rhein-Linth-Gletscher ist schwierig, sicher ist nur, daß die von A. Gutzwiller (1873) gezogene Linie nicht richtig ist. Dagegen sprechen das Fehlen von Rhein-Linth-Gesteinen in den e Seitentälern der Töß und die Tatsache, daß während des Würmmaximums der Rhein-Linth-Gletscher das Tößtal erst von Bauma an aufwärts erreichte¹. Beim Vorrücken über diese Grenze hinaus besaß der Thurgletscher demnach einen deutlichen Vorsprung.

Gelingt es somit, die Grenzen der maximalen Ausdehnung des rißzeitlichen Thurgletschers festzulegen, so stößt man beim Versuch, einzelne Stadien auszuscheiden, auf fast unüberwindliche Schwierigkeiten. Das gilt auch für den Rheingletscher, wo sich aber bereits die Möglichkeit abzeichnete, mit Hilfe randglazialer Rinnen, die rißeiszeitlich angelegt wurden, eine – wenn auch sehr

unvollkommene – Gliederung durchzuführen.

Das ist nur dort möglich, wo der Abfluß streng randglazial verlief, wie bei der großen Rinne Krinau-Mosnang-Winklen, welche von den altangelegten, zur Thur entwässernden Tälern im rechten Winkel geschnitten wird. Erreichte der Gletscherrand eine übergeordnete Wasserscheide, wie bei Bruederwald (Grat-St.Iddaburg) oder Selmatten-Neubrunn, so konnten sich Abflußrinnen nur durchsetzen, wenn die Täler jenseits der Wasserscheide von keinem oder höchstens geringmächtigem Eis erfüllt waren. So ist es z.B. bezeichnend, daß zwischen den Tälern des Rietholzbaches und des Hörachbaches Rinnen nur angedeutet sind, von den gleichen Tälern jedoch Richtung Murg tiefe Durchbrüche stattfanden. Erst thurwärts erkennt man bei Müttlingen in ca. 770 m einen kräftigen Durchbruch. Er bildet das Mittelstück einer zum Tal Krinau-Mosnang-Winkeln parallelen Rinne, die im S bei Bild in 780 m beginnt und sich n über Tüfrüti fortsetzt. Da wir aus der Würmeiszeit keinen Gletscherhalt kennen, der für diese Rinne verantwortlich wäre, kann sie während dieser Zeit nur kurzfristig benutzt, aber nicht entstanden sein. Für eine rißeiszeitliche Entstehung spricht auch die kräftige glaziale Bearbeitung, welche die Teilstücke nachträglich erfuhren.

Sehr spärlich sind Zeugen einer höheren Randlage des Rheingletschers im Untersuchungsgebiet. So wenig wie zur Würmeiszeit läßt sich eine scharfe Grenze gegen den Thurgletscher ziehen, vielmehr entwickelte sich ein Übergangsgebiet, in welchem rheinisches Material gegen S abnimmt. Am weitesten drang der Rheingletscher

¹ M. Stein 1948, R. Hantke 1960.

im Raum e Fischingen vor, wo man Amphibolite, aber auch Diorite, Ilanzer Verrukano und Juliergranite in mehreren Aufschlüssen im Umkreis der «Höchi» bis auf 755 m finden kann.

b) Das älteste nachweisbare Niveau im e Hörnlibergland

Bei der Frage der Eisrandhöhe im Tal des Tobelbaches (nw Mühlrüti) waren wir bereits auf die Verhältnisse im Aubachtal kurz eingegangen¹. Der Hof Neuschür liegt in einer Einsattelung, die sich schon dadurch als Talbodenrest zu erkennen gibt, daß sie in diesem geradlinigen Tal genau in dessen Achse liegt. Der ehemalige Nordhang ist noch gut erhalten. Gegenüber dem benachbarten Flobachtal mit dem gleich gut erhaltenen Talrest von Büel setzt sich im Aubachtal das Niveau über Au bis Anderwil fort. Wie schon dargelegt, hatten wir die Entstehung des Teilstückes Neuschür mit einem Gletscherlappen aus Richtung Fischingen in Zusammenhang gebracht, die Molasseterrasse von Au und Anderwil mit der Transfluenz von Holenstein². Da zur Rißeiszeit der Gletscher auch das Flobachtal bedeckte, müßte man dort noch eine Terrasse im oberen Tal antreffen. Neuschür und Büel stimmen mit der Grenze des Würmgletschers überein³, daher entspricht das Alter der Talbodenreste dem Ende des Würm-Frühglazials. Die seither erfolgte Eintiefung beträgt gegenüber Neuschür (683 m) über 45 m, gegenüber Büel knapp 40 m. Durchmustert man die übrigen Seitentäler des unteren Toggenburgs, so findet man ein entsprechendes Niveau im oberen Gonzenbachtal bei Wisen 50 m und bei Libingen-Entschwil ca. 50-60 m über dem heutigen Talboden.

Diese Werte ergeben für die relativ kurze Zeit seit dem Würmmaximum eine bedeutende fluviale Erosion im Bereich der Epigenesen, welche durchaus vertretbar ist. Dagegen wäre rückschreitende Erosion ab Mündung in die Thur besonders beim Gonzenbach aus zeitlichen und rein morphologischen Gründen völlig ausgeschlossen. Verlängert man das Niveau von Wisen talabwärts, so käme man e Freihof (Dreien), wo der Erbach in 675–680 m fließt, auf 730 m. Hier müßte der Gletscher demnach im Minimum 40 m ausgeräumt haben 4, da in 690 m Grundmoräne ansteht. Zwischen den Talbodenresten – die Verhältnisse bei Neuschür und Büel sind analog – und den talabwärts gelegenen Zeugen des unteren glazialen Niveaus schiebt sich also ein Steilabfall ein. Daraus kann geschlossen werden, daß der Gletscher beim Vormarsch talauf ein

¹ Vgl. S. 63.

³ Vgl. S. 63. Damit wird auch eine Vermutung R. HANTKES bestätigt.

² Wären die Niveaureste im Aubachtal die Folge eines einheitlichen Gletscherlappens, so wäre ihre Lage auf der gleichen Seite wahrscheinlicher.

⁴ Entscheidend für die Bestimmung des Ausmaßes wäre Grundmoräne, die in quer zur Gletscherbewegung gelegene Tobel eingelagert ist.

Längsprofil antraf, welches seinem Charakter nach dem heutigen

glich.

Wie in jüngster Zeit erneut dargelegt wurde¹, müssen wir im Frühwürm mit einem kräftigen Gletschervorstoß rechnen, der beim Thurgletscher bis Lütisburg-Langenrein gereicht haben könnte. Setzen wir analog dem Spät- und Postglazial für das Göttweiger Interstadial Tiefenerosion der Thur, welche sich – je nach Ausmaß und Molassestratigraphie – sofort dem Gonzenbach mitteilen konnte², so wird die rückschreitende Erosion bis zum Herannahen des Gletschers eine bedeutende Strecke zurückgelegt haben. Es wäre denkbar, daß diese Steile kurz vor der Epigenese von Wisen stand und damit ihr unteres Ende bestimmte. Durch diese Erklärung würde nicht nur die Laufstrecke einer Steile, welche Wisen umgehen mußte, wesentlich abgekürzt, sondern auch das Ausmaß der glazialen Tiefenerosion reduziert.

² E.C. KRAUS 1962.

¹ Eine Epigenese entsprechend dem Hammertobel gab es nicht.