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1.

Variationsstatistische Untersuchungen
an den Blättern von Vinca minor L.

Ein Beitrag
zur Theorie des Flächenwachstums der Blätter

Von Dr. Paul Vogler.

1. Das Liulwig'sche Gipfelgesetz.

Die tagtägliche Beobachtung lehrt, dass nie zwei
Organismen derselben Art vollständig gleich sind, so wenig wie
zwei Blätter eines Baumes je absolut übereinstimmen. Diese

allgemein bekannte Tatsache der Variabilität aller Organismen
und ihrer Teile legt der Wissenschaft eine ganze Anzahl von

Fragen vor: nach den Ursachen, der Bedeutung dieser

Erscheinung, nach den Gesetzen, die sie beherrschen. Zahlreich
sind die Wege, auf denen man zur Beantwortung dieser Fragen
zu gelangen sucht : vergleichende Morphologie, Kulturversuche,
Experimental-Morphologie, stammesgeschichtliche Untersuchungen

schlagen in dieses Gebiet hinein.

Nun gibt es eine Gruppe von Variabilitätserscheinungen,
die einer ganz speziellen Untersuchungsmethode zugänglich
sind, nämlich die, bei denen es sich um zahlenmässig fassbare

Variationen handelt: variable Dimensionen, die sich messen

lassen ; variable Anzahl gleichwertiger Organe, die auszählbar

sind; Variationen des Gewichtes, die sich durch exaktes Wägen
feststellen lassen. In allen diesen Fällen ist nämlich eine

statistische Untersuchung möglich. Und seit Quetelet im Jahre
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1871 für die Anthropométrie den Nachweis führte, dass sich

sogar ein mathematischer Ausdruck für die Variation einzelner

Merkmale heim Menschen gewinnen lasse, sobald man die

Untersuchung auf eine genügend grosse Anzahl von Individuen
ausdehne, hat sich die „Variationsstatistik" in der Biologie
zu einem ziemlich ausgedehnten Wissenszweig entwickelt, und

wir kennen heute einige Gesetze der Variation, die durch
diese Methode der Forschung allein gewonnen werden konnten.

Quételet war zum Schluss gelangt, dass sich die Varia-
tionen eines Merkmals symmetrisch um ein Zentrum grösster
Dichte gruppieren, oder etwas weniger knapp ausgedrückt:
verfolgen wir irgend ein Merkmal, etwa die Grösse der Menschen

in einem Volke (in cm ausgedrückt), so werden wir finden,
dass innerhalb eines gewissen Zahlenraumes auf jeden Grössen-

wert eine bestimmte Anzahl von Individuen entfallen. Diese

Anzahl ist am grössten für einen Mittelwert; je weiter wir
uns von diesem entfernen, nach oben oder unten, um so kleiner
wird sie, bis sie schliesslich auf Null herabsinkt. Bildlich
lässt sich dieses Verhalten durch eine Kurve darstellen, indem

man auf einer Horizontalen in gleichen Abständen Senkrechte

errichtet, diese mit den gefundenen Grössen bezeichnet und

sodann auf den Vertikalen in konstantem Masstab die jeweilige
Anzahl der zu jedem Wert gehörenden Individuen aufträgt.
Die Verbindung der so erhaltenen Punkte ergibt die „Variationskurve",

die in diesem Falle einen Gipfel auf dem Mittelwert
hat und nach beiden Seiten symmetrisch abfällt. Eine solche

Kurve entspricht der in der Mathematik bekannten Gauss'schen

Wahrscheinlichkeitskurve, die sich auch durch einen

mathematischen Ausdruck darstellen lässt.

Solche eingipflige, einfache Variationskurven wurden in
der Folge im Tier- und Pflanzenreiche vielfach nachgewiesen,
sodass wir es hier mit einer sehr verbreiteten Gesetzmässigkeit
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zu tun haben, deren Ursachen zu erforschen hauptsächlich
Aufgabe des Experiments ist. Doch ist hier nicht der Ort,
darauf weiter einzutreten, ebensowenig wie auf die Bedeutung

derartiger Kurven für die Unterscheidung von Varietäten, für
Vererbungsfragen und ähnliches, wo die Meinungen über ihren

Wert zum Teil noch sehr weit auseinandergehen.

Bei der Untersuchung botanischer Objekte zeigte sich

aber bald, dass der Quételet'sche Satz nicht überall Gültigkeit
hat; dass vielmehr häufig sich Kurven mit mehreren Gipfeln
ergeben, also mehrere Zentren grösster Dichte vorhanden sind.

Diese „Nebengipfel" verschwinden auch nicht, wenn man die

Messungen oder Zählungen noch so sehr vermehrt ; sie können

also nicht Zufallserscheinungen sein, müssen vielmehr fest

begründet sein in der innern Organisation der untersuchten

Objekte.
Am klarsten sind jene Beispiele, wo es sich um die

Variation der Anzahl gleichwertiger Organe, etwa der Doldenstrahlen

bei Umbelliferen und Primulaceen, oder der Strahlblüten

bei Kompositen handelt. Fast immer sind die Kurven

mehrgipflig ; und, was besonders wichtig ist, die Gipfel liegen
nicht beliebig, sondern ganz bestimmte Zahlen erscheinen als

bevorzugte. Namentlich Prof. Ludwig in Greiz hat neben

vielen andern durch eine grosse Zahl von Arbeiten (vgl. Botan.

Zentralblatt von 1895—1898) nachgewiesen, dass wir es hier

mit einem ganz bestimmten Gesetz der Variation zu tun haben.

Die bevorzugten Zahlen gehören einer Reihe an, die man als

Fibonaceireihe bezeichnet und die folgendermassen lautet:
1, 2, 3, 5, 8, 13, 21, 34, 55 usw. (jede folgende Zahl ist die
Summe der beiden vorhergehenden). Zu diesen Hauptzahlen
gehören sodann als Nebenzahlcn ihre einfachen Multipla, also

2-, 3-, 4-fache; vor allem die Dupla, also 4, 6, 10, 16, 26,

42, 68, HO usw. Hugo de Vries nannte diese Gesetzmässig-
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keit in der Anordnung der Gipfel kurz das Ludwig'sche
Gipfelgesetz. Ein Beispiel mag es noch erläutern: Ludwig1)
hat an unserer Wucherblume die Anzahl der Strahlblüten teils
selbst ausgezählt, teils durch Schüler an verschiedenen Orten

auszählen lassen und zwar schliesslich bis auf 17,000 Exemplare.

Dabei ergaben sich folgende Verhältnisse (die obere

Zahlenreihe gibt die Anzahl der Strahlen der Köpfchen an,
die untere wieviele Köpfchen unter den 17,000 ausgezählten
die betreffende Anzahl von Strahlen besassen):

GOL- 9 10 11 12 13 14 15 16 17

2 9 13 36 65 148 427 383 455 479 525

18 19 20 21 22 23 24 25 26

625 856 1568 3650 1790 1147 812 602 614
27 28 29 30 31 32 33 34 35 36

375 377 294 196 183" 187 307 346 186 64

37 38 39 40 41 42 43
28 16 16 14 — 3 2.

Fig. 1 zeigt die sich ergebende Variationskurve; ihre

Gipfel liegen auf den Hauptzahlen 8, 13, 21, 34 und den

Nebenzahlen 10, 26, 42 der Fibonaccireihe. Eine Zusammenstellung

der für viele Kompositen und Umbelliferen gefundenen

Gipfelzahlen gibt Ludwig im Bot. Zentralblatt, LX1V, p. 100.

Die gleiche Gesetzmässigkeit ergab sich auch für die Variation
der Anzahl der Perigonblätter bei Trollius (Ludwig), der
Anzahl der Honigblätter, Staubgefässe und Fruchtknoten beim

Scharbockskraut, Ranunculus ficaria (Vogler, Vierteljahresschrift

der Naturw. Gesellschaft Zürich) usw., so dass wir es

also hier mit einem weite Gebiete der pflanzlichen Variation
umfassenden Gesetz zu tun haben.

Es ist selbstverständlich, dass man es bei der einfachen

Konstatierung des Gipfelgesetzes nicht bewenden liess, sondern

p Botan. Zentralblatt, Band LXIV, 1895, p. 1.
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class man versuchte, die gefundene Bevorzugung bestimmter

Zahlen auf ein inneres Gesetz der Entwicklung oder des Wachstums

zurückzuführen. Auch da ist Ludwig wieder voran-

Variation der Strahlblüten von Chrysanthemum leucanthemum (nach Ludwig).

gegangen. Sein Erklärungsversuch lässt sich etwa folgender-

massen darstellen:

Wir nehmen an, dass für jedes Organ einer Pflanze eine

„Anlage" vorhanden sei, ein niederstes Formelement(„Biophor").
Kommt ein und dasselbe Organ mehrmals vor, so muss der

Entfaltung desselben eine Vermehrung dieser „Biophore"
vorausgegangen sein. Die einfachste Vorstellung, die wir uns von
einer Vermehrung derselben machen können, ist die einer
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fortgesetzten Zweiteilung. Dabei sind verschiedene Schemata,
nach denen diese Teilung erfolgt, möglich. Der einfachste

Fall wäre der, dass die ursprünglich einfache Anlage in zwei

gleichwertige Tochteranlagen zerfällt, die nach einer

Reifeperiode sich gleichzeitig wieder auf gleiche Weise vermehren

usw. Dann erhalten wir als bevorzugte Zahlen die Reihe

1, 2, 4, 8, 16, 32 usw.; die Zwischenwerte kommen natürlich
auch vor, da nicht immer alle Anlagen zur Entfaltung gelangen.
Bei Untersuchung zahlreicher Individuen, also bei einer
statistischen Aufnahme der Variation, erhielten wir in diesem Falle
eine Kurve mit Gipfeln auf den Zahlen der „Potenzreihe".
(Das Vorkommen dieser Reihe ist auch in der Tat in einigen
Fällen nachgewiesen.)

Um zur „Fibonaccireihe" zu gelangen, braucht man das

Schema der Anlagevermehrung nur wenig zu modifizieren.

Sind bei rhythmischer Zweiteilung die Teilungsprodukte
ungleich, so dass nach einem bestimmten Zeitintervall nur die

eine Tochteranlage für eine neue Teilung reif geworden ist,
die andere aber doppelt so lang braucht, also jeweils eine

Reifeperiode überspringt, so ergibt sich, bei fortgesetzter
Teilung nach diesem Schema, die Reihe 1, 2, 3, 5, 8, 13 usw.,
also die Hauptzahlen der Fibonaccireihe. Eine schematische

Darstellung zeigt das sofort. Die reife, teilungsfähige Anlage
werde mit A bezeichnet, die unreife, die nach einer Zeiteinheit

herangereift sein wird, mit a, dann haben wir:
Die ursprüngliche Anlage, teilungsfähig A

teilt sich in 2 Tochteranlagen, die nach 1

Zeiteinheit herangewachsen sind zu A a

nach 2 Zeiteinheiten haben wir dann A a A
nach 3 Zeiteinheiten A a A A a

„4 „ AaAAaAaA
usw.
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Je nachdem, bis zu welcher Etappe die Anlagevermehrung
weiter geht, ehe es zur Zerklüftung des Protoplasmas und

damit zur beginnenden Organbildung kommt, wird das

betreffende Organ 1, 2, 3, 5, 8 usw. mal auftreten. Die Nebenzahlen

ergeben sich leicht, wenn man von 2 oder mehr primären
Anlagen ausgeht oder eine nachträgliche Verdoppelung (bezw.

Vervielfachung) annimmt. So gelingt es uns also, die

Bevorzugung der im Wucherblumen-Beispiel auftretenden Gipfelzahlen
auf eine gesetzmässig verlaufende Anlagenvermehrung
zurückzuführen. (Es soll hinzugefügt werden, dass diese Anlagen
nicht etwa Zellen oder unter dem Mikroskop nachweisbaren

Elementarteilen derselben entsprechen, sie sind ebenso

hypothetisch wie die Atome des Chemikers; auch kann über ihre

Natur, ob diese körperlich oder nur dynamisch sei, nichts

weiter ausgesagt werden. Aus den Tatsachen der Entwicklung

und der Bevorzugung bestimmter Zahlen können wir nur
zurückschliessen auf die Gesetzmässigkeit ihrer Vermehrung.)

Dieses Vermehrungsgesetz der Anlagen, das die Zahlen

der Fibonaccireihe gibt, beherrscht nun, wie schon ausgeführt,
im Reich der höheren Pflanzen grosse Gebiete, namentlich

wo es sich um das mehrmalige Vorkommen gleichwertiger
Organe handelt. Nun erhebt sich die Frage, ob es nicht auch

Gültigkeit habe für das Längen- und Flächenwachstum
bestimmter Organe; ob sich nicht mehrgipflige Variationskurven,
die man z. B. bei Messungen von Blättern erhält, ebenfalls

auf dieses Prinzip zurückführen lassen.

2. Die Anwendung des Ludwig'schen Gipfelgesetzes
auf Blattfläclien.

„So beträchtlich nun auch die Zahl der Arbeiten ist, in
denen ein solcher Vermehrungsmodus des Fibonacci bereits
erwiesen wurde, so sind doch fast durchweg in ihnen rein
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florale Merkmale berücksichtigt, indem so das schwankende

numerische Verhältnis der Petalen oder Korollen, oder die

Variabilität im Andrœceum oder Gynœceum und dergleichen

zum Gegenstand der Untersuchung gemacht wurden, während
andererseits bisher keine Publikationen erschienen, in denen

gelegentlich von pliyllometrischen Studien ein Überwiegen

entsprechender Zwischenzahlen dargetan würde," sagt G. Ritter1)
in seiner Arbeit : „Beiträge zur Physiologie des Flächenwachstums

der Pflanzen", die zum erstenmal einen solchen Nachweis

zu führen sucht. Bei Messungen der Blattlängen bei der Preisseibeere

(Vactinium Vitis idœa), der Heidelbeere Vactinium Myr-
tillus) und der gemeinen Myrte (Myrtus communis) fand er

mehrgipflige Kurven, deren Gipfel gesetzmässig verteilt
erscheinen und zwar liegen sie angenähert auf den mit
10 multiplizierten Quadratwurzeln der Fibonacci-
zahlen. Damit ist bereits wahrscheinlich gemacht, dass auch

für das Flächenwachstum der Blätter und für die Anlagen
das Prinzip der Vermehrung nach der Fibonacciregel gelte.

Die Ritter'sche Publikation veranlasste mich nun, ältere

Messungen von Vincablättern, die mir seinerzeit ebenfalls

mehrgipflige Kurven ergeben hatten, auf diesen Punkt hin zu
untersuchen. Teilweise ergab sich Übereinstimmung, teilweise aber

bedeutende Abweichungen. Es ist aber, wie Ritter selbst

ausfuhrt, auch nicht anzunehmen, dass in jedem Falle die
Verhältnisse so einfach liegen; denn „wir dürfen ja nicht im
Millimeter den allgemeinen Masstab der Natur erblicken ; man
wird im allgemeinen nur erwarten können, dass die Abscissen-

intervalle im Verhältnis der Quadratwurzeln aus den Fibonacci-
zahlen stehen." Und so galt es nun, meine Messungen noch

weiter auszudehnen, und dann zu versuchen, ob die Resultate

b Beihefte zum Botan. Zentralblatt, Bd. XXII, 1907, Abtlg. II.



9

sich vielleicht in anderer Weise unter das Ludwig'sche Gipfelgesetz

einreihen lassen. Ich glaube, dass mir das annähernd

gelungen ist; dass also ein neuer Beweis für die Gültigkeit
des Gesetzes der Anlagevermehrung bei Ausbildung der

Blattspreite gegeben werden kann.

In erster Linie muss ich aber die theoretische Frage, die

bei Ritter nur kurz gestreift ist, etwas einlässlicher besprechen,

d. h. ich möchte, der Mitteilung der Resultate meiner

Untersuchung vorausgehend, abzuleiten versuchen, was für Kurven
sich für Länge und Breite der Blätter ergeben müssen, wenn
die Vermehrung der Anlagen nach der Regel des Fibonacci

vor sich geht.

Wir supponieren für eine bestimmte Flächeneinheit eine

Anlage. Diese eine Anlage bedinge also nur den Flächeninhalt

des Blattes, in dem Sinne, dass eine Verdoppelung der

Anlage für die Entwicklung des Blattes eine Verdoppelung
der Blattfläche bedeute usw. Vermehrt sich nun die Anlage
nach unserm Fibonaccischema, so müssen wir für die

Blattfläche eine Fibonaccikurve erhalten, d. h. wenn eine mehr-

gipflige Kurve auftritt, so müssen die Quotienten aus den

Gipfelzahlen gleich sein den Quotienten aus den Fibonacci-
zahlen. Nun ist es ja allerdings nur in ganz seltenen Fällen

möglich, die Blattfläche aus wenigen Messungen genau zu

bestimmen ; bei allen komplizierten Blattformen wird auch eine

genügende Annäherungszahl nur schwer zu erreichen sein;
bei einfacheren Blattformen dagegen kann die Messung weniger
Dimensionen doch genügende Annäherungswerte ergeben,
sodass sich wenigstens daraus ablesen lässt, ob die Kurve in
den Hauptzügen dem Fibonaccitypus entspricht. Nehmen wir
als einfachste Blattform z. B. die Ellipse, die annähernd ziemlich

häufig verwirklicht ist, so genügt die Messung von Länge
und Breite, um die Fläche zu bestimmen. Es ist dann aber
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nicht einmal nötig1, diese selbst zu berechnen. Da der Inlialt

der Ellipse gleich -j-(LB) ist, so müssen, wenn sich .h : .h : J3

usw. verhalten wie die Fibonaccizahlen, sich auch -j-(LB)i :

-|-(LB)2 : -j-(LB)3 usw. gleich verhalten. Nun ist -j- aber eine

Konstante, also verhält sich (LB)i : (LB)a usw. ebenfalls wie
die Fibonaccizahlen. Und das gilt nicht nur bei der Ellipse,
sondern auch bei jeder andern einfachen Blattform, so dass

wir also in sehr vielen Fällen verhältnismässig leicht prüfen
können, ob wi? es bei der Variation der Blattspreite mit einer

Fibonaccikurve zu tun haben oder nicht.

Nun hat aber diese Untersuchungsmethode einen Mangel,
der sich nicht aus der Welt schaffen lässt. Unsere
Messinstrumente erlauben uns nicht eine absolut genaue Messung ;

unter den Millimeter hinunter werden wir bei Blattmessungen
nicht gehen können, schon deswegen, weil nie alle Blätter
absolut in gleichem Zustand gemessen werden und weil sich

Fältchen und dergleichen nicht immer vollständig vermeiden

lassen; d. h. selbst diese Millimetermessungen werden nicht
immer absolut zuverlässig sein. Bei der Multiplikation von

L X B multiplizieren wir dann auch unsere Beobachtungsfehler.
Ein anderer Mangel liegt ferner darin, dass wir so sehr grosse
Zahlen und eine sehr grosse Variationsbreite bekommen, so dass

eine fast unbegrenzte Zahl von Messungen nötig würde, um
eine geschlossene Kurve zu erhalten, in der zudem die
Primzahlen immer vollständig fehlen müssen. Wir können also

eine solche Flächenkurve überhaupt nur konstruieren, wenn

wir sie auf eine andere Einheit beziehen, etwa auf 10 oder 20

oder gar 100 mm2. Aus allen diesen Gründen wird es uns

genügen müssen, wenn die Kurve in grossen Zügen einer

Fibonaccikurve entspricht.

Zuverlässig sind für uns nur die direkt erhaltenen Zahlen,
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also die linearen Dimensionen des Blattes. Und wie
müssen nun die Variationskurven für diese aussehen, wenn
die Kurve der Blattfläche dem Fibonaccitypus angehört Eine
einfache Überlegung lehrt, dass, gleiche Grundform der
Blattspreite vorausgesetzt, die Verdoppelung der Fläche
eine Multiplikation der linearen Dimensionen mit der Quadratwurzel

aus 2 verlangt. Verhalten sich also die Abstände der

Kurvengipfel für die Blattfläche wie die Fibonaccizahlen, so

müssen sie sich in der Kurve der Länge und Breite verhalten
wie die Quadratwurzeln aus diesen. Wichtig ist dabei, dass

die Grundform der Blattspreite dieselbe bleibt, bei einem
elliptischen Blatte also sich das Verhältnis von Länge zu Breite
nicht ändert. Diesen Punkt scheint mir nun Ritter ausser acht

gelassen zu haben und es ist leicht möglich, dass bei

Berücksichtigung desselben seine Kurven noch besser stimmten.

Aus diesen allgemeinen Überlegungen ergab sich für unsern

speziellen Fall, die Untersuchung der Vincablätter, folgendes

Vorgehen. In erster Linie musste der Versuch gemacht werden,
ob nicht schon die für die Werte von L X I' erhaltene Kurve
die Andeutung einer Entwicklung nach dem Ludwig'schen
Gesetz ergebe. War das der Fall, so erleichterte sich die

weitere Arbeit bedeutend, denn es ist unstreitig leichter, die

Gipfelzahlen auf ganze Fibonaccizahlen zu reduzieren, als auf
die Quadratwurzeln von solchen, vor allem deswegen, weil
die Intervalle viel grösser sind. Können wir auch so nur ungefähre

Werte erhalten, so haben wir doch einen festen

Anhaltspunkt, dessen Richtigkeit oder Unrichtigkeit sich im
weiteren dann rasch ergeben wird.

Wir wollen annehmen, die Gipfel unserer Kurve liegen
annähernd auf den Fibonaccizahlen multipliziert mit x.

LlxE'> usw- S'ht also die Fibonaccireihe. Sagen wir
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also kurz : — Fibonaccizahl. Damit nun L B nach der
X

Fibonaccireihe sich entwickle, muss L und B sich je nach den

Quadratwurzeln aus diesen entwickeln. L muss also sein gleich
einer Konstanten « mal Quadratwurzel aus der zugehörigen

Fibonaccizahl, B gleich ß mal dieser selben Quadratwurzel.

Wir haben also F^ßVFi __ p^)0nacciza},] Daraus ergibt sich

aß x. Da nun das Verhältnis von L :B konstant sein muss,

gleich y, so muss auch a : ß y sein. Und damit haben wir
die Möglichkeit, unsere Gipfelzahlen für L und B zu berechnen.

Gegeben sind uns :

L und B als direkt gemessen,

x ergab sich aus der Kurve für L X B,

y ist g für die berücksichtigten Blätter.

aß==x,
aj y>

xy,
a Vxy,

p-vf,
mit andern Worten: die Gipfel der Kurve für L müssen liegen
auf den Quadratwurzeln der Fibonaccizahlen multipliziert mit

Vxy, und die entsprechenden der B-Kurve auf denselben

multipliziert mit V.
Hätte die Kurve für L X B keine klaren Andeutungen für

die schätzungsweise Bestimmung von x gegeben, so hätten wir
anders vorgehen müssen. Und zwar wären wir in dem Fall wohl
ambesten von der Kurve für L ausgegangen. Ihre Gipfel hätten

sich verhalten, wie die Quadratwurzeln aus den Fibonaccizahlen.

Die Berechnung der zugehörigen Fibonaccizahlen mag
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auf algebraischem Wege möglich sein. Wir Nicht-Mathematiker
werden aber wohl rascher durch Probieren zum Ziele kommen,
indem wir versuchen, die Zahl zu finden, mit der die Quadratwurzeln

multipliziert werden müssen, um unsere Gipfelzahlen

zu bekommen. (Wenn der Fall so einfach liegt, wie bei den

Untersuchungen Ritters, hahen wir diese bald gefunden.) Damit
haben wir dann a bestimmt. Aus a : ß L : B y können

wir dann ß berechnen und so die Gipfel der B-Kurve
nachkontrollieren. aß gibt uns x und wir haben so eine weitere

Kontrolle unseres Resultates, indem die Gipfel derL X B-Kurve
den Fibonaccizahlen mal x wenigstens angenähert entsprechen

müssen.

So haben wir also in beiden Fällen, ob wir die eine oder

andere Kurve als Ausgangspunkt wählen, die Möglichkeit,
die Resultate durch Umrechnen der einen Kurve auf die andere

zu kontrollieren, so dass wir unsere Schlüsse mit genügender
Sicherheit ziehen können.

3. Die Variation der Blätter von Vinea minor.

Für eine Untersuchung wie die vorliegende eignet sich

Vinca minor aus zwei Gründen besonders gut : die Blattform
ist sehr einfach, nahezu eine Ellipse, und doch in ihren Dimensionen

sehr variabel; als immergrüne Pflanze liefert sie uns

die Blätter auch im Winter stets frisch, so dass sich die

Messungen auf eine längere Zeit verteilen lassen, in der zudem

ein Weiterwachsen nicht anzunehmen ist. Die Frage, ob die

Blätter des Vorjahres im Winter alle ausgewachsen sind, hätte

allerdings eigentlich eine vorausgehende Spezialuntersuchung

verlangt ; ich begnügte mich aber mit der Konstatierung der

Tatsache, dass meine Messungen aus verschiedenen Jahren

und von verschiedenen Standorten, die am Anfang des Winters
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und am Ende Kurven mit gleicher Gipfellage ergaben, so dass

also die gestellte Frage für mich mit ja beantwortet erschien.

Was die Auswahl der Blätter anbetrifft, so ging ich fol-
gendermassen vor: ohne irgendwelche Wahl wurden an
verschiedenen Standorten einzelne Stengel oder Ausläufer gesammelt,

und dann davon sofort zu Hause meist sämtliche nicht
notorisch verkrüppelten Blätter gemessen, unter Weglassung
der allerjüngsten an den Triebspitzen. Der Augenschein lehrt
ohne weiteres, dass die Mitte des Triebes auf eine ziemlich
weite Strecke die gleichartigsten, ich möchte sagen „normalen"
Blätter trägt, so dass also ohne weiteres aus der Art der
Auswahl sich eine Bevorzugung dieser ergab. Doch wurden auf

solche Weise auch die oft abnorm breiten und kurzen Blätter
der Triebbasis, wie auch die oft sehr schmalen der Triebspitze
genügend berücksichtigt.

Die Messungen wurden vorgenommen durch leichtes
Aufdrücken der frischen Blätter auf Millimeterpapier mit Hilfe
eines Objektträgers. So liessen sich auf einen Blick Länge
und Breite genau genug ablesen. Schwierigkeiten ergaben sich

nur ausnahmsweise bei abnorm gekrümmten Blättern, die dann

einfach ausgeschaltet wurden. Die Länge wurde gemessen

vom Beginn der Spreite bis zur Spitze, also ohne Blattstiel.

Für die Anzahl der zu messenden Blätter nahm ich mir

nicht eine bestimmte Grenze von vornherein vor, sondern

gedachte dieselbe möglichst hoch zu treiben, mindestens soweit,

bis sich durch weitere Messungen die Kurve nicht mehr

wesentlich änderte, d. h. die Gipfel konstant blieben. Durch

Konstruktion der Kurven von 200 zu 200 Messungen für

Länge und Breite konnte dieser Moment leicht bestimmt

werden und er war auch über Erwarten früh erreicht. Schon

von 800 Messungen an ergaben sich keine wesentlichen

Verschiebungen der wichtigeren Gipfel mehr. Der Sicherheit halber
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und vor allem, um verwertbare Zahlen für die Blattfläche
und für die Korrelation zwischen Länge und Breite zu erhalten,

steigerte ich die Zahl der Messungen trotzdem bis auf 2500.

In Fig. 2 habe ich die Kurven für 800, 1400 und 2500

Längenmessungen übereinandergezeichnet reproduziert; man

sieht, dass alle wichtigeren Gipfel der 2500-Kurve schon bei

konstruiert nach 800, 1400 und 2500 Messungen.

800 vorhanden sind. Nur der auf 28 tritt noch bei 1400 nicht
hervor. Ganz gleiche Verhältnisse ergaben sich für die Breite.

Damit dürfte der Nachweis geführt sein, dass die Anzahl
meiner Messungen auch für ziemlich weittragende Schlüsse

gross genug ist.

a) Die Korrelation zwischen Länge und Breite.

Den Ausgangspunkt für alle weiteren Untersuchungen und

Rechnungen bildet das durch die Messungen gefundene
Zahlenmaterial. In der Tabelle auf Seite 16 ist dieses übersichtlich

zusammengestellt; diese gibt nicht nur in der untersten und
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der äussersten Reihe die Variation von Länge und Breite

überhaupt, sondern auch sofort einen kleinen Einblick in die

Korrelation zwischen den beiden Grössen. Das Material dürfte wohl

genügen zur mathematischen Berechnung eines Korrelationsindexes,

nach den Formeln, wie man sie da und dort in
variationsstatistischen Arbeiten findet. Ich habe solche Rechnungen

nicht durchgeführt ; sie liegen mir zu ferne und ich habe immer

den Eindruck gehabt, dass solche nach ziemlich komplizierter
Methode berechneten Indices für uns Nicht-Mathematiker meist

herzlich wenig sagen; wir sind doch gezwungen, uns diese

erst durch eine andere Darstellungsweise zu illustrieren. So

begnüge ich mich also im folgenden von vornherein mit solchen

anschaulicheren Darstellungen, die mir zudem gestatten,
diejenigen Punkte, die für meine weitere Untersuchung wichtig
sind, besonders hervorzuheben.

Ein besserer Einblick in die Korrelationsverhältnisse

ergibt sich schon, wenn wir die Variation des Verhältnisses

von L zu B, das wir oben mit y bezeichnet haben, verfolgen.
Ich habe dieses Verhältnis mit Rücksicht auf die Genauigkeit
der Messungen auf eine Dezimale bestimmt, oder, um Brüche

zu vermeiden, als 10 L : B berechnet. Das Resultat ist folgendes :

10 L : B 10 11 12 13 14 15 16 17 18 19

1 5 12 9 58 129 235 316 359 326

_20 21 22 23 24 25 26 27 28 29 30 31

238 251 188 151 95 61 31 9 9 4 3 4

32 33 34 35 36 37 38
1 1 1 1 — — 1

Fig. 3 zeigt diese Variation in graphischer Darstellung.
Es ist eine zweigipflige Kurve mit Hauptgipfel auf 18 und

einem Nebengipfel auf 21 ; die Korrelation zwischen L und B

kann also keine vollständige sein, denn sonst hätten wir eine

eingipflige Kurve erhalten müssen. Die grosse Variationsbreite
2
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unseres y's, die uns hier entgegentritt, sagt uns bereits, wie

leicht das Bild für unseren Versuch der Anwendung des

Ludwig'schen Gipfelgesetzes auf die Variationen der Länge
und Breite gestört werden

kann, wenn wir die Gesamtzahl

der Messungen
berücksichtigen würden; noch mehr

aber die Zweigipfligkeit der

Kurve. Es geht daraus hervor,

dass unter den

untersuchten Blättern zwei Typen
vorkommen, die nicht

zusammengenommen werden

dürfen.

Zur Charakterisierung
der Korrelationsverhältnisse
zwischen L und B eignen sich

zwei andere Darstellungsarten

besser. Wir berechnen

zunächst aus unseren Ta-
~)o J3 Tî* 7i 7ï ~£i> Ti n £ T/ te TT

bellen für jede Blattlänge

Variation des WeÏs tö L : B bei Vinca. die mittlere BreitC Und Stellei1

uns dann das Ergebnis in der

Weise graphisch dar, dass wir, die Länge als Abscisse

genommen, die zugehörige Breite als Ordinate auftragen.
Besteht eine vollständige Korrelation, so muss die Verbindungslinie

dieser sämtlichen Punkte eine Gerade sein, die, wenn
mit der Länge auch die Breite wächst, nach rechts ansteigt.

Wir können diese theoretische Gerade berechnen aus dem

Mittelwert von 10L:B, der 19,24 beträgt. Bei L 19,24
miisste B 10 sein, bei L 38,48, B 20 usw., doch genügen

ja diese zwei Werte bereits zur Konstruktion der Geraden.
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Soweit nun die empirisch gefundene Kurve oberhalb dieser

berechneten Geraden liegt, sind die Blätter verhältnismässig

zu breit, soweit sie darunter liegt, entsprechend zu schmal.

Die gefundene Zahlenreihe ist folgende:
Länge des Blattes: 11 12 13 14 15 16 17

Zugehörige mittlere Breite : 7,3 8,0 8,3 8,7 9,2 9,4 9,9
18 19 20 21 22 23 24 25 26 27

10.8 11,4 12,0 12,5 13,1 13,5 13,9 14,6 14,8 15,2
28 29 30 31 32 33 34 35 36 37

15,7 15,6 16,1 16,5 16,9 17,1 17,3 17,2 17,7 18,1

38 39 40 41 42 43 44 45 46 47

17.9 19,3 18,7 19,6 19,6 20,3 19,5 20,4 20,5 20,0
48 49 50 51 52 53 54

21,2 22,2 22,2 23,0 22,3 23,0 24,3

von Vinca.

Wir finden also zwar ein fast kontinuierliches Ansteigen
der Breite mit wachsender Länge, aber, wie bei unserer
zweigipfligen Kurve für die Variation von L : B zu erwarten war,
ein recht starkes Abweichen der empirischen Kurve von der
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berechneten Geraden, wie Fig. 4 (ausgezogene Linie) aufs

deutlichste zeigt. Anfänglich liegt die empirische Kurve (starke

Linie) über der berechneten (zarte Linie) ; bei der Länge
34 mm kreuzen sich die beiden und nachher bleibt die
empirische unter der berechneten. Mit andern Worten : die kürzeren
Blätter sind im Mittel zu breit, die längeren zu schmal.

In der gleichen Figur ist (punktierte Linien) die Änderung

der Breite mit wachsender Länge noch in anderer Weise

dargestellt, nämlich als Kurve der Grösse 10 L : MB, wobei
MB die mittlere Breite der Blätter jeder Länge bedeutet.

Wäre die Korrelation eine vollständige, so müssten wir eine

der Abscissenaxe parallellaufende Gerade erhalten auf dem

für 10 y gefundenen Mittelwert von 19,24. Diese Linie ist

(zart punktiert) ebenfalls eingezeichnet. Ein Blick zeigt, wie

vorher, auch hier die zu grosse Breite der kurzen und das

umgekehrte Verhalten der langen Blätter.

Es ist ferner von Interesse, die Frage auch umgekehrt
zu stellen, wie mit steigender Breite sich die mittlere Länge

ändere, da dieses Verhältnis unter Umständen sehr von dem

bereits besprochenen abweichen kann. In ganz gleicher Weise

wurde also zu jedem B die mittlere Länge berechnet und

der Verlauf der Kurve (stark ausgezogen) in Fig. 5 dargestellt,
und zum Vergleich auch hier wieder die bei vollständiger
Korrelation und einem mittleren 10 y von 19,24 sich ergebende
Gerade (zarte Linie) eingezeichnet. Die gefundenen Zahlen

sind folgende :

B: 6 7 8 9 10 11 12 13

ML: 14,8 16,5 16,0 16,8 17,3 19,9 22,2 24,7
14 15 16 17 18 19 20 21 • 22

26,2 28,6 31,4 31,9 .35,1 37,6 39.1 41,4 42,3
23 24 25 26 27

45,0 46,9 47,0 45,8 49,5
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Sellen wir ab von den

schmälsten und breitesten

Blättern, bei denen die

Mittelzahlen wegen der

geringen Frequenz sowieso

keinen grossen Wert haben,

so ergibt sich als Resultat
eine viel bessere

Übereinstimmung der empirischen
Kurve mit der berechneten,
als bei der Variation der

mittleren Breite. Wichtig,
weil von vornherein nicht

erwartet, ist aber besonders

die Tatsache, dass nicht
etwa die schmalen Blätter

_L
tt U tc tf 1o

verhältnismässig zu lang
Fig. 5.

Variation der Länge mit zunehmender Breite
bei den Blättern von Vinca.

sind, sondern umgekehrt:
die schmalen Blätter sind etwas zu kurz, die breiten etwas

zu lang.
Die punktierte Kurve in der gleichen Figur stellt die

Variation von 10ML:B dar, verglichen mit der Geraden für
konstantes 10 y 19,24. Sie zeigt in gleicher Weise eine

bessere Übereinstimmung zwischen berechneter und empirischer
Kurve als die Fig. 4; und ebenso, dass die schmalen Blätter
eher zu kurz, die breiteren zu lang sind (wenn die beiden

Extreme nicht berücksichtigt werden).

b) Die Variation der Fläche.

Die Form der Vincablätter entspricht nahezu einer Ellipse,
so dass also aus Länge und Breite der Flächeninhalt annähernd

genau berechnet werden kann nach der Formel F -^-(LB).
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Da nun -j- eine Konstante ist, genügt es, wie in der

Einleitung ausgeführt, die Variation der Grösse L X B zu
untersuchen. Dieser Wert schwankt für die untersuchten 2500 Blätter
zwischen 66 und 1377. Wollte man den mm2 als Einheit
nehmen, so würden also 2500 Messungen zur Aufstellung einer

Variationskurve niemals genügen. Dazu kommen noch die

andern in der Einleitung auseinandergesetzten Gründe, welche

uns zwingen, für die Konstruktion der Kurve eine andere,

grössere Einheit zu nehmen.

Wie gross soll diese sein? Es ist klar, dass für die

niedrigeren Werte eine kleinere Einheit angenommen werden

darf als für die grösseren, da die Sprünge weniger gross
sind ; doch geben zwei verschiedene Einheiten eine unklare

Kurve. Nehmen wir die Einheit zu klein, so riskieren wir,
eine nicht geschlossene Kurve zu erhalten, im umgekehrten
Fall fliessen leicht die Gipfel zusammen. Da es sich aber

in keinem Fall um eine absolut scharfe Kurve handeln kann,
sondern diese uns nur Anhaltspunkte für die Bestimmung
des x geben soll, so fand ich es richtiger, die Einheit etwas

klein zu wählen, nämlich 10, darüber dann aber noch eine

zweite Kurve mit der Einheit 20 zu konstruieren. Das

Resultat war so, dass sich ein recht klares Bild der Variation

von L X B ergab.

Ich verzichte auf die Anführung der langen Zahlenreihen,
die sich jeder aus der Korrelationstabelle berechnen kann.

Die Kurve Fig. 6 spricht für sich. Sie braucht nur noch ein

paar Erläuterungen betreffend die Konstruktion.

Die Zahlen an der Abscissenaxe : 6, 7, 8, 9,... 80, 81 usw.

bedeuten die Werte von L X B dividiert durch 10. Die

Frequenzzahlen der unteren (einfachen) Kurve wurden so

festgestellt, dass die Werte LXB in Zelinergruppen eingeteilt
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wurden, 66—75 wurde sodann mit 1, 76—85 mit 8, 86—95

mit 9 usw. bezeichnet.

Die obere (doppelte) Kurve ist konstruiert mit der Ein-'
licit 20 und zwar in doppelter Weise. Die ausgezogene Kurve
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gibt die Frequenzen, welche man erhält, wenn man zusammenzieht

51—70, 71—90, 91—110 usw. Die Eckpunkte dieser

Kurve müssen die geraden Zahlen 6, 8, 10 usw. sein. In der

punktierten Kurve sind zusammengezogen die Werte 61—80,
81—100, 101—120 usw.; ihre Eckpunkte liegen auf den

ungeraden Zahlen 7, 9, 11 usw.
Die erhaltenen Kurven sind, wie zu erwarten, sehr

vielzackig. Bei näherem Zusehen lässt sich aber doch leicht einiges

herauslesen, namentlich wenn wir zunächst nur die linke

Hälfte, die nach der ganzen Konstruktionsweise viel
zuverlässiger sein muss, berücksichtigen. Da fallen sogleich schon

bei der Zehnerkurve einige Gipfel auf, nämlich die auf den

Zahlen 10, 13, 26, 34, 42. Diese Gipfel können nicht nur
Zufall sein, sie entsprechen zu gut der Fibonaccireihe. Sie

veranlassten mich, die Kurve weiterhin auf das Auftreten von

Gipfeln auf Fibonacci-Haupt- und -Nebenzahlen zu kontrollieren.

Das Ergebnis war recht ermutigend:
8, scharfe Knickung der Zwanzigerkurve;

10, Gipfel in der Zehnerkurve;
13±tJ? n n n

16, „ „ „ Zwanzigerkurve;
21, „ „ „ „ ; die Depression in der

Zehnerkurve ist ohne Bedeutung, da sie von zwei

Gipfeln begleitet ist;
26, weit vorragender Gipfel der Zehnerkurve;
34

n r> n » n

4.9
n n » n n

55, Depression in allen Kurven;
68, vorragender Gipfel der Zehnerkurve;
84 (2 X 42), vorragender Gipfel in beiden Kurven ;

89, Gipfel in der Zwanzigerkurve ; für die Zehnerkurve
sehr hoher Gipfel auf der Nachbarzahl 90.
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Es entsprechen also, ausser der Zahl 55, allen Haupt-
und ersten Nebenzahlen der Fibonaccireihe Gipfel einer oder

beider Kurven. Dazu kommen nun freilich noch eine ziemliche

Anzahl von Gipfeln, die sich nicht in dieser Reihe

unterbringen lassen. Wenn also auch durch die Variationskurve
für L X B einigermassen wahrscheinlich gemacht wird, dass

die Vergrösserung der Fläche in dem in der Einleitung
auseinandergesetzten Sinn dem Anlagenvermehrungsgesetze nach

Fibonacci folgt, so ist damit doch der strikte Beweis dafür
noch nicht geführt.

Dieser Beweis kann erst dann als geführt betrachtet werden,

wenn für die genau gemessenen, also zuverlässigeren linearen

Dimensionen sich eine Entwicklung der Kurven nach dem

Ludwig'schen Gipfelgesetz ergibt, d. h. wenn jene Gipfel sich

verhalten wie die Quadratwurzeln der Fibonaccizahlen. Nachdem

uns nun aber die Kurve für L X B so deutliche Anhaltspunkte

gegeben hat, dass wir unser wahrscheinliches x sofort
daraus ablesen können, ist die Kontrolle unseres Resultates

an den Variationskurven für L und B sehr einfach.

c) Die Variation der Länge und Breite und ihr Verhältnis

zum Ludwig'schen Gipfelgesetz.

Nach den Ausführungen der Einleitung dürfen wir zur

Kontrolle, ob die Gipfelzahlen der Kurven von L und B den

Quadratwurzeln der Fibonaccizahlen entsprechen, nicht sämtliche

Messungen berücksichtigen, sondern nur die Blätter mit

gleichem L : B. Absolut ist aber diese Einschränkung nicht
zu nehmen; es genügt, wenn wir die Extreme ausser acht

lassen und die Blätter mit nahezu gleichem L : B herbeiziehen,
damit wir doch ziemlich grosse Frequenzzahlen erhalten.

Die Kurve von L : B besitzt den Hauptgipfel auf 18. Ich
konstruiere mir nur die Variationskurven von L und B für
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diejenigen Blätter, deren L:B 17—19 (untere Kurve) und
16—20 (obere Kurve) beträgt, so dass also in beiden Fällen,
da der berücksichtigte Teil der L: B-Kurve fast genau
symmetrisch ist, der Mittelwert von L : B, also unser 10 y,
18 beträgt.

Damit können wir unsere theoretischen Gipfelzahlen
berechnen und vergleichen mit den empirischen :

x — 10, ergibt sich aus der Kurve von L X B-

y 1,8. a Vl8 4,25. ß V{|=2,36.
Somit erhalten wir folgende Zahlen für L- und B-Gipfel :

Fibonaccizahl : VFib.: aVFib.: Empirische
Gipfel fürL: ßVFib

8 2,83 12,0 — 6,4
10 3,16 13,4 — 7,5
13 3,61 15,3 15 8,5
16 4 17,0 17 9,4
21 4,58 19,6 20 10,7
26 5,10 21,7 22 12,0
34 5,83 24,8 25 13,8

42 6,48 27,5 28 14,9
55 7,42 31,5 32 17,5
68 8,25 35,1 35 19,5

89 9,43 40,1 40 22,3
110 10,49 44,6 45 24,8

Vergleichen wir nun die Lage der empirischen Gipfel der

L-Kurve mit diesen berechneten Zahlen in Fig. 7, so sehen

wir eine gute Übereinstimmung. Die eingezeichneten Ordinaten

entsprechen den theoretischen Gipfeln, sie fallen fast genau
mit den Gipfeln der Kurve zusammen. Da die Messungen

nur auf den mm genau gemacht wurden, kann eine bessere

Übereinstimmung überhaupt nicht erwartet werden; die Ab-
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weichung beträgt nirgends mehr als 1/a mm. Einzig der stark
hervortretende Gipfel auf 30 passt nicht ins Schema. Doch

kann dieser seine Ursache z. T. wenigstens in einer ganz un-
bewussten Bevorzugung der „runden" Zahl 30 beim Auf- und

Abrunden der Messungen haben (die starken Depressionen
auf 29 und 31 sprechen dafür). Sei dem aber, wie ihm wolle,

Fig. 7. Variation der Länge der Blätter von Vinca mit dem L : B-Index
von 17—19 (punktiert) und dem von 16—20 (ausgezogen).

die übrige Kurve stimmt so gut mit dem, was unsere
theoretische Annahme verlangt, dass diese eine vorläufig nicht

genügend erklärte Abweichung das Resultat nicht umzu-

stossen vermag.
Von der B-Kurve können wir nicht viel erwarten. Die

Werte von ßVFi sind so nahe beieinander, dass fast jede Zahl

als Gipfelzahl auftreten müsste, die tatsächlichen Gipfel also

einfach Zufallsgipfel sind. Ich verzichte also auf die
Reproduktion der Kurve, die im wesentlichen tibereinstimmt mit
der aus der Korrelationstabelle zu konstruierenden Gesamtkurve.

Widersprüche zu den Schlüssen aus derL-Kurve ergeben

sich aus ihr nicht.



28

Damit dürfte der Nachweis geführt sein, dass der
aus der Kurve für L X B gezogene Schluss auf die
Entwicklung der Blattflächenkurve für Vinco, minor
nach dem Ludwig'schen Gipfelgesetz berechtigt war,
und somit unsere Annahme, dass einer bestimmten
Flächeneinheit eine Anlage entspreche und diese
Anlagen sich nach dem Gesetz des Fibonacci
vermehren, wenigstens für diesen Fall sich als zulässig
erwiesen haben.

Nachtrag.

Die vorstehende Arbeit war so gut als abgeschlossen, als

ich bei Anlass eines Ferienaufenthaltes in einem Garten in

Thalwil eine auffällig schmalblättrige Form von Vinco minor
beobachtete, die ich ebenso in Rüschlikon und Zofingen wiederfand.

Ich benützte die Gelegenheit, auch davon eine möglichst

grosse Zahl auszumessen, um das Resultat mit meinen St. Gallerzahlen

zu vergleichen. Leider brachte ich es nur auf 820

Messungen, die zu einem vollwertigen Schluss für sich allein

nicht ausreichen können, wohl aber, wenn die Zahlen gleichsinnig

liegen, eine Stütze der früheren Resultate bilden.

Ich begnüge mich mit den Aufführungen der wichtigsten

Ergebnisse dieser nachträglichen Messungen. In der Tabelle

(S. 29) sind in gleicher Weise wie oben die gefundenen Zahlen

zusammengestellt.
Man sieht, die Variation der Länge ist nahezu gleich gross,

doch ist die Hauptmenge der Blätter länger als bei der

normalen Form. Die Variation der Breite ist dagegen bedeutend

geringer; sie geht nur von 5—19, gegenüber 6—29. Der total
andere Charakter der Blätter drückt sich aber vor allem in
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dem Faktor 10 L
der Hauptgipfel

: B aus. Während bei den normalen Blättern
dieser Kurve bei 18 liegt, fällt der Schwer-

_ punkt dieser Kurve bei der schmalblättrigen
Form auf 33, wie aus folgenden Zahlen

hervorgeht :

10 L : B: 19 20 21 22 23 24 25

Frequenz: 2

26 27 28

1

29

2

30

2

31

4

32- 33

19

34

rücksichtigen (31-

a V33 5,74.

14 28 40 46 49 68 60 71 60

35 36 37 38 39 40 41 42 43

70 52 37 58 42 21 17 10 10

44 45 46 47 48 49 50
5 5 3 7 6 — 4

Von ganz besonderem Interesse ist aber

auch hier die Frage nach der Entwicklung
der Kurve für L X B und ihren Beziehungen

zum Ludwig'schen Gipfelgesetz. Trotz der

verhältnismässig sehr kleinen Anzahl der

Messungen ergab sich auch hier ein ziemlich

eindeutiges Resultat. Die L X B-Kurve
hat ihre beiden Hauptgipfel auf dem

zehnfachen von 42 und 55. Und auch in der

Gegend von 34 liegt ein Schwerpunkt.
Ich begnüge mich mit der Reproduktion
des mittleren Teils dieser Kurve in Fig. 8.

Führen wir auch hier unsere Rechnung
durch und vergleichen die berechneten Gipfel
der L-Kurve mit den empirischen, indem

wir auch hier nur die dem Mittelwert 33

(von 10 L : B) nächstliegenden Blätter be-

-35). Die Zahlen sind: x 10, y 3,3,
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Also Fibonaccizahl : VFib.
26 5,10
34 5,83
42 6,48
55 7,42
68 8,25
89 9,43

«VFib. :

29,3

33.3

37,2

42,6

47.4

54,1

v-\/
fa

empir. Gipfel :

31

34

38

42

47

55

«w

Fig. 9. Variation der Blattlänge bei einer schmalblättrigen Form
von Vinca.

In Fig. 9 ist die Kurve mit Eintragung dieser Ordinaten

ausgeführt. Man sieht, dass, wenn auch die Gipfel nicht so

genau auf die theoretischen Punkte fallen, die Annäherung

doch, in Anbetracht der geringen Zahl der Messungen, recht

gut ist. Damit dürfte auch für diese schmalblättrige Form
die Gültigkeit des Ludwig'sehen Gipfelgesetzes wahrscheinlich

gemacht sein und das Resultat der Hauptarbeit eine wertvolle
Stütze erhalten haben.

St. Gallen, im Juni 1908.
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