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L.

Variationsstatistische Untersuchungen
an den Blittern von Vinca minor L.

Ein Beitrag
zur Theorie des Flichenwachstums der Blitter.

Von Dr. Paul Vogler.

1. Das Ludwig’sche Gipfelgesetz.

- Die tagtigliche Beobachtung lehrt, dass nie zwei Orga-
nismen derselben Art vollstindig gleich sind, so wenig wie
zwei Blitter eines Baumes je absolut iibereinstimmen. Diese
allgemein bekannte Tatsache der Variabilitit aller Organismen
und ihrer Teile legt der Wissenschaft eine ganze Anzahl von
Fragen vor: nach den Ursachen, der Bedeutung dieser Er-
scheinung, nach den Gesetzen, die sie beherrschen. Zahlreich
sind die Wege, auf denen man zur Beantwortung dieser Fragen
zu gelangen sucht: vergleichende Morphologie, Kulturversuche,
Experimental-Morphologie, stammesgeschichtliche Untersuch-
ungen schlagen in dieses Gebiet hinein.

Nun gibt es eine Gruppe von Variabilititserscheinungen,
die ciner ganz speziellen Untersuchungsmethode zuginglich
sind, némlich die, bei denen es sich um zahlenmiissig fassbare
Variationen handelt: variable Dimensionen, die sich messen
lassen; variable Anzahl gleichwertiger Organe, die ausziihlbar
sind; Variationen des Gewichtes, die sich durch exaktes Wiigen
feststellen lassen. In allen diesen Fillen ist niimlich eine
statistische Untersuchung maglich. Und seit Quételet im Jahre
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1871 fiir die Anthropometrie den Nachweis fiihrte, dass sich
sogar ein mathematischer Ausdruck fiir die Variation einzelner
Merkmale beim Menschen gewinnen lasse, sobald man die
Untersuchung auf eine geniigend grosse Anzahl von Individuen
ausdehne, hat sich die ,Variationsstatistik“ in der Biologie
zu einem ziemlich ausgedehnten Wissenszweig entwickelt, und
wir kennen heute einige Gesetze der Variation, die durch
diese Methode der Forschung allein gewonnen werden konnten.

Quételet war zum Schluss gelangt, dass sich die Varia-
tionen cines Merkmals symmetrisch um ein Zentrum grosster
Dichte gruppieren, oder etwas weniger knapp ausgedriickt:
verfolgen wir irgend ein Merkmal, etwa die Grisse der Menschen
in einem Volke (in em ausgedriickt), so werden wir finden,
dass innerhalb eines gewissen Zahlenraumes auf jeden Grossen-
wert eine bestimmte Anzahl von Individuen entfallen. Diese
Anzahl ist am grossten fiir einen Mittelwert; je weiter wir
uns von diesem entfernen, nach oben oder unten, um so kleiner
wird sie, bis sie schliesslich auf Null herabsinkt. Bildlich
lisst sich dieses Verhalten durch eine Kurve darstellen, indem
man auf einer Horizontalen in gleichen Abstéinden Senkrechte
errichtet, diese mit den gefundenen Grossen bezeichnet und
sodann auf den Vertikalen in konstantem Masstab die jeweilige
Anzahl der zu jedem Wert gehorenden Individuen auftrigt.
Die Verbindung der so erhaltenen Punkte ergibt die ,, Variations-
kurve“, die in diesem Falle einen Gipfel auf dem Mittelwert
hat und nach beiden Seiten symmetrisch abfillt. Eine solche
Kurve entspricht der in der Mathematik bekannten Gauss’schen
Wahrscheinlichkeitskurve, die sich auch durch einen mathe-
matischen Ausdruck darstellen lisst.

Solche eingipflige, einfache Variationskurven wurden in
der Folge im Tier- und Pflanzenreiche vielfach nachgewiesen,
sodass wir es hier mit einer sehr verbreiteten Gesetzmissigkeit
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zu tun haben, deren Ursachen zu erforschen hauptsichlich
Aufgabe des Experiments ist. Doch ist hier nicht der Ort,
darauf weiter einzutreten, ebensowenig wie auf die Bedeutung
derartiger Kurven fiir die Unterscheidung von Varietiiten, fir
Vererbungsfragen und éhnliches, wo die Meinungen tiber ihren
Wert zum Teil noch sehr weit auseinandergehen.

Bei der Untersuchung hotanischer Objekte zeigte sich
aber bald, dass der Quételet’sche Satz nicht iiberall Giiltigkeit
hat; dass vielmehr hiufig sich Kurven mit mehreren Gipfeln
ergeben, also mehrere Zentren grisster Dichte vorhanden sind.
Diese ,Nebengipfel“ verschwinden auch nicht, wenn man die
Messungen oder Zahlungen noch so sehr vermehrt; sie kénnen
also nicht Zufallserscheinungen sein, miissen vielmehr fest
begriindet sein in der innern Organisation der untersuchten
Objekte. |

Am klarsten sind jene Beispiele, wo es sich um die Va-
riation der Anzahl gleichwertiger Organe, etwa der Dolden-
strahlen bei Umbelliferen und Primulaceen, oder der Strahl-
bliiten bei Kompositen handelt. Fast immer sind die Kurven
mehrgipflig; und, was besonders wichtig ist, die Gipfel liegen
nicht beliebig, sondern ganz bestimmte Zahlen erscheinen als
bevorzugte. Namentlich Prof. Ludwig in Greiz hat neben
vielen andern durch eine grosse Zahl von Arbeiten (vgl. Botan.
Zentralblatt von 1895—1898) nachgewiesen, dass wir es hier
mit einem ganz hestimmten Gesetz der Variation zu tun haben.
Die bevorzugten Zahlen gehoren einer Reihe an, die man als
Fibonaccireihe bezeichnet und die folgendermassen lautet:
1, 2, 3,5, 8, 13, 21, 34, 55 usw. (jede folgende Zahl ist die
Summe der beiden vorhergehenden). Zu diesen Hauptzahlen
gehoren sodann als Nebenzahlen ihre einfachen Multipla, also
2-, 3-, 4-fache; vor allem die Dupla, also 4, 6, 10, 16, 26,
42,68, 110 usw. Hugo de Vries nannte diese Gesetzmiissig-
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keit in der Anordnung der Gipfel kurz das Ludwig’sche
Gipfelgesetz. Ein Beispiel mag es noch erliutern: Ludwig?)
hat an unserer Wucherblume die Anzahl der Strahlbliiten teils
selbst ausgeziihlt, teils durch Schiiler an verschiedenen Orten
auszihlen lassen und zwar schliesslich bis auf 17,000 Exem-
plare. Dabei ergaben sich folgende Verhaltnisse (die obere
Zahlenreihe gibt die Anzahl der Strahlen der Kopfchen an,
die untere wieviele Képfchen unter den 17,000 ausgezihlten
die betreffende Anzahl von Strahlen besassen):
T8 9 10 11 12 13 14 15 16 17
2 9 13 36 65 148 427 383 465 479 525
18 19 20 21 22 23 24 25 26
625 856 1668 5650 1790 1147 812 602 614
27 28 29 30 31 32 33 34 35 36
31 377 294 196 183 187 307 346 186 64
31 38 39 40 41 42 43
28 16 16 14 — 3 2

Fig. 1 zeigt die sich ergebende Variationskurve; ihre
Gipfel liegen auf den Hauptzahlen 8, 13, 21, 34 und den
Nebenzahlen 10, 26, 42 der Fibonaccireihe. Eine Zusammen-
stellung der fiir viele Kompositen und Umbelliferen gefundenen
Gipfelzahlen gibt Ludwig im Bot. Zentralblatt, LXIV, p. 100.
Die gleiche Gesetzmiissigkeit ergab sich auch fiir die Variation
der Anzahl der Perigonbliitter bei Trollius (Ludwig), der An-
zahl der Honigblitter, Staubgefisse und Fruchtknoten heim
Scharbockskraut, Ranunculus ficaria (Vogler, Vierteljahres-
schrift der Naturw. Gesellschaft Ziirich) usw., so dass wir es
also hier mit einem weite Gebiete der pflanzlichen Variation
umfassenden Gesetz zu tun haben.

Es ist selbstverstiindlich, dass man es bei der einfachen
Konstatierung des Gipfelgesetzes nicht bewenden liess, sondern

) Botan. Zentralblatt, Band LXIV, 1895, p. 1.
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dass man versuchte, die gefundene Bevorzugung bestimmter
Zahlen auf ein inneres Gesetz der Entwicklung oder des Wachs-
tums zuriickzufithren. Auch da ist Ludwig wieder voran-
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Fig. 1.
Variation der Strahlbliiten von Ckrysanthemum leucanthemum (nach Ludwig).

gegangen. Sein Erklirungsversuch lisst sich etwa folgender-
massen darstellen :

Wir nehmen an, dass fiir jedes Organ einer Pflanze eine
,Anlage“ vorhanden sei, ein niederstes Formelement (,, Biophor).
Kommt ein und dasselbe Organ mehrmals vor, so muss der
Entfaltung desselben eine Vermehrung dieser ,, Biophore* voraus-
gegangen sein. Die einfachste Vorstellung, die wir uns von
einer Vermehrung derselben machen konnen, ist die einer
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fortgesetzten Zweiteilung. Dabei sind verschiedene Schemata,
nach denen diese Teilung erfolgt, moglich. Der einfachste
Fall wire der, dass die urspriinglich einfache Anlage in zwei
gleichwertige Tochteranlagen zerfillt, die nach einer Reife-
periode sich gleichzeitig wieder auf gleiche Weise vermehren
usw. Dann erhalten wir als bevorzugte Zahlen die Reihe
1, 2, 4, 8, 16, 32 usw.; die Zwischenwerte kommen natiirlich
auch vor, da nicht immer alle Anlagen zur Entfaltung gelangen.
Bei Untersuchung zahlreicher Individuen, also bei einer sta-
tistischen Aufnahme der Variation, erhielten wir in diesem Falle
eine Kurve mit Gipfeln auf den Zahlen der ,Potenzreihe”.
(Das Vorkommen dieser Reihe ist auch in der Tat in einigen
Fillen nachgewiesen.)

Um zur ,Fibonaccireihe“ zu gelangen, braucht man das
Schema der Anlagevermehrung nur weonig zu modifizieren.
Sind bei rhythmischer Zweiteilung die Teilungsprodukte un-
gleich, so dass nach einem bestimmten Zeitintervall nur die
eine Tochteranlage fiir eine neue Teilung reif geworden ist,
die andere aber doppelt so lang braucht, also jeweils eine
Reifeperiode iiberspringt, so ergibt sich, bei fortgesetzter Tei-
. lung nach diesem Schema, die Reihe 1, 2, 3, 5, 8, 13 usw,,
also die Hauptzahlen der Fibonaccireihe. Eine schematische
Darstellung zeigt das sofort. Die reife, teilungsfihige Anlage
werde mit A bezeichnet, die unreife, die nach einer Zeiteinheit
herangereift sein wird, mit a, dann haben wir:

Die urspriingliche Anlage, teilungsfihig A
teilt sich in 2 Tochteranlagen, die nach 1 Zeit-
einheit herangewachsen sind zu A a
nach 2 Zeiteinheiten haben wir dann A a A
. . . (—/\—
nach 3 Zeiteinheiten A a A A a
» 4 . Aa A Aa Aa A

i usw,



Je nachdem, bis zu welcher Etappe die Anlagevermehrung
weiter geht, ehe es zur Zerkliiftung des Protoplasmas und
damit zur beginnenden Organbildung kommt, wird das be-
treffende Organ 1, 2, 3, 5, 8 usw. mal auftreten. Die Neben-
zahlen ergeben sich leicht, wenn man von 2 oder mehr priméren
Anlagen ausgeht oder eine nachtriigliche Verdoppelung (bezw.
Vervielfachung) annimmt. So gelingt es uns also, die Bevor-
zugung der im Wucherblumen-Beispiel auftretenden Gipfelzahlen
auf eine gesetzmiissig verlaufende Anlagenvermehrung zuriick-
zufithren. (Es soll hinzugefiigt werden, dass diese Anlagen
nicht etwa Zellen oder unter dem Mikroskop nachweisbaren
Elementarteilen derselben entsprechen, sie sind ebenso hypo-
thetisch wie die Atome des Chemikers; auch kann iiber ihre
Natur, ob diese korperlich oder nur dynamisch sei, nichts
weiter ausgesagt werden. Aus den Tatsachen der Entwick-
lung und der Bevorzugung bestimmter Zahlen konnen wir nur
zuriickschliessen auf die Gesetzmissigkeit ihrer Vermehrung.)

Dieses Vermehrungsgesetz der Anlagen, das die Zahlen
der Fibonaceireihe gibt, beherrscht nun, wie schon ausgefiihrt,
im Reich der hoheren Pflanzen grosse Gebiete, namentlich
wo es sich um das mehrmalige Vorkommen gleichwertiger
Organe handelt. Nun erhebt sich die Frage, ob es nicht auch
Giiltigkeit habe fiir das Lingen- und Flichenwachstum be-
stimmter Organe; ob sich nicht mehrgipflige Variationskurven,
die man z. B. bei Messungen von Blittern erhilt, ebenfalls
auf dieses Prinzip zuriickfithren lassen.

2. Die Anwendung des Ludwig’schen Gipfelgesctzes
auf Blattflichen.

»50 betrichtlich nun auch die Zahl der Arbeiten ist, in
denen ein solcher Vermehrungsmodus des Fibonacei bereits
erwiesen wurde, so sind doch fast durchweg in ihnen rein
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florale Merkmale beriicksichtigt, indem so das schwankende
numerische Verhiiltnis der Petalen oder Korollen, oder die
Variabilitit im Andrceceum oder Gynceceum und dergleichen
zum Gegenstand der Untersuchung gemacht wurden, wihrend
andererseits bisher keine Publikationen erschienen, in denen
gelegentlich von phyllometrischen Studien ein Uberwiegen ent-
sprechender Zwischenzahlen dargetan wiirde,“ sagt G. Ritter?)
in seiner Arbeit: , Beitrige zur Physiologie des Flichenwachs-
tums der Pflanzen“, die zum erstenmal einen solchen Nachweis
zu fithren sucht. Bei Messungen der Blattliingen bei der Preissel-
beere ( Vaccinium Vitis ideea), der Heidelbeere ( Vaccinium Myr-
tellus) und der gemeinen Myrte (Myrtus communis) fand er
mehrgipflige Kurven, deren Gipfel gesetzmiissig verteilt er-
scheinen und zwar liegen sie angenihert auf den mit
10 multiplizierten Quadratwurzeln der Fibonaceci-
zahlen. Damit ist bereits wahrscheinlich gemacht, dass auch
fiir das Flichenwachstum der Blitter und fiir die Anlagen
das Prinzip der Vermehrung nach der Fibonacciregel gelte.

Die Ritter’sche Publikation veranlasste mich nun, iltere
Messungen von Vincablittern, die mir seinerzeit ebenfalls mehr-
gipflige Kurven ergeben hatten, auf diesen Punkt hin zu unter-
suchen. Teilweise ergab sich Ubereinstimmung, teilweise aber
bedeutende Abweichungen. Es ist aber, wie Ritter selbst aus-
fithrt, auch nicht anzunehmen, dass in jedem Falle die Ver-
hiltnisse so einfach liegen; denn ,wir diirfen ja nicht im
Millimeter den allgemeinen Masstab der Natur erblicken; man
wird im allgemeinen nur erwarten kionnen, dass die Abscissen-
intervalle im Verhéltnis der Quadratwurzeln aus den Fibonacei-
zahlen stehen.“ Und so galt es nun, meine Messungen noch
weiter auszudehnen, und dann zu versuchen, ob die Resultate

!) Beihefte zum Botan. Zentralblatt, Bd. XXII, 1907, Abtlg. II.
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sich vielleicht in anderer Weise unter das Ludwig’sche Giptel-
gesetz einreihen lassen. Ich glaube, dass mir das annihernd
gelungen ist; dass also ein neuer Beweis fir die Giiltigkeit
des Gesetzes der Anlagevermehrung bei Aushildung der Blatt-
spreite gegeben werden kann.

In erster Linie muss ich aber die theoretische Frage, die
bei Ritter nur kurz gestreift ist, etwas einlisslicher besprechen,
d. h. ich mochte, der Mitteilung der Resultate meiner Unter-
suchung vorausgehend, abzuleiten versuchen, was fiir Kurven
sich fiir Linge und Breite der Blitter ergeben miissen, wenn
die Vermehrung der Anlagen nach der legel des Fibonacei
vor sich geht.

Wir supponieren fiir eine bestimmte Flicheneinheit eine
Anlage. Diese eine Anlage bedinge also nur den Flichen-
inhalt des Blattes, in dem Sinne, dass eine Verdoppelung der
Anlage fiir die Entwicklung des Blattes eine Verdoppelung
der Blattfliiche bedeute usw. Vermehrt sich nun die Anlage
nach unserm Fibonaccischema, so miissen wir fiir die Blatt-
fliche eine Fibonaccikurve erhalten, d. h. wenn eine mehr-
gipflige Kurve auftritt, so miissen die Quotienten aus den
Gipfelzahlen gleich sein den Quotienten aus den Fibonacci-
zahlen. Nun ist es ja allerdings nur in ganz seltenen Fillen
moglich, die Blattfliche aus wenigen Messungen genau zu
bestimmen ; bei allen komplizierten Blattformen wird auch eine
geniigende Anniherungszahl nur schwer zu erreichen sein;
bei einfacheren Blattformen dagegen kann die Messung weniger
Dimensionen doch gentigende Anniaherungswerte ergeben, so-
dass sich wenigstens daraus ablesen lisst, ob die Kurve in
den Hauptziigen dem Fibonaccitypus entspricht. Nehmen wir
als einfachste Blattform z. B. die Ellipse, die anniihernd ziem-
lich hiufig verwirklicht ist, so geniigt die Messung von Liinge
und Breite, um die Fliche zu bestimmen. Es ist dann aber
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nicht einmal notig, diese selbst zu berechnen. Da der Inhalt
der Ellipse gleich %(LB) ist, so miissen, wenn sich J; : J2:J;
usw. verhalten wie die Fibonaccizahlen, sich auch %(LB)l:
—:~(LB)2 :%(LB)s usw. gleich verhalten. Nun ist % aber eine

Konstante, also verhilt sich (LB)i: (LLB): usw. ebenfalls wie
die Fibonaccizahlen. Und das gilt nicht nur bei der Ellipse,
sondern auch bei jeder andern einfachen Blattform, so dass
wir also in sehr vielen Fillen verhiltnismiissig leicht priifen
konnen, ob wit es bei der Variation der Blattspreite mit einer
Fibonaccikurve zu tun haben oder nicht.

Nun hat aber diese Untersuchungsmethode einen Mangel,
der sich nicht aus der Welt schaffen lidsst. Unsere Mess-
instrumente erlauben uns nicht eine absolut genaue Messung;
unter den Millimeter hinunter werden wir bei Blattmessungen
nicht gehen konnen, schon deswegen, weil nie alle Blitter
absolut in gleichem Zustand gemessen werden und weil sich
Filtchen und dergleichen nicht immer vollstiindig vermeiden
lassen: d. h. selbst diese Millimetermessungen werden nicht
immer absolut zuverlissig sein. Bei der Multiplikation von
L X B multiplizieren wir dann auch unsere Beobachtungsfehler.
Ein anderer Mangel liegt ferner darin, dass wir so sehr grosse
Zahlen und eine sehr grosse Variationsbreite bekommen, so dass
eine fast unbegrenzte Zahl von Messungen notig wiirde, um
eine geschlossene Kurve zu erhalten, in der zudem die Prim-
zahlen immer vollstindig fehlen miissen. Wir konnen also
eine solche Flichenkurve iiberhaupt nur konstruieren, wenn
wir sie auf eine andere Einheit beziehen, etwa auf 10 oder 20
oder gar 100 mm? Aus allen diesen Griinden wird es uns
geniigen miissen, wenn die Kurve in grossen Ziigen einer
Fibonaceikurve entspricht.

Zuverlissig sind fiir uns nur die direkt erhaltenen Zahlen,
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also die linearen Dimensionen des Blattes. Und wie
miissen nun die Variationskurven fiir diese aussehen, wenn
die Kurve der Blattfliche dem Fibonaccitypus angehort? Eine
einfache Uberlegung lehrt, dass, gleiche Grundform der
Blattspreite vorausgesetzt, die Verdoppelung der Fliche
eine Multiplikation der linearen Dimensionen mit der Quadrat-
wurzel aus 2 verlangt. Verhalten sich also die Abstinde der
Kurvengipfel fiir die Blattfliche wie die Fibonaccizahlen, so
miissen sie sich in der Kurve der Linge und Breite verhalten
wie die Quadratwurzeln aus diesen. Wichtig ist dabei, dass
die Grundform der Blattspreite dieselbe bleibt, bei einem ellip-
tischen Blatte also sich das Verhiiltnis von Linge zu Breite
nicht édndert. Diesen Punkt scheint mir nun Ritter ausser acht
gelassen zu haben und es ist leicht moglich, dass bei Be-
riicksichtigung desselben seine Kurven noch besser stimmten.

Aus diesen allgemeinen Uberlegungen ergab sich fiir unsern
speziellen Fall, die Untersuchung der Vinecablitter, folgendes
Vorgehen. In erster Linie musste der Versuch gemacht werden,
ob nicht schon die fiir die Werte von L X B erhaltene Kurve
die Andeutung einer Entwicklung nach dem Ludwig’schen
Gesetz ergebe. War das der Fall, so erleichterte sich die
weitere Arbeit bedeutend, denn es ist unstreitig leichter, die
Gipfelzahlen auf ganze Fibonaccizahlen zu reduzieren, als auf
die Quadratwurzeln von solchen, vor allem deswegen, weil
die Intervalle viel grosser sind. Konnen wir auch so nur unge-
fahre Werte erhalten, so haben wir doch einen festen An-
haltspunkt, dessen Richtigkeit oder Unrichtigkeit sich im
weiteren dann rasch ergeben wird.

Wir wollen annehmen, die Gipfel unserer Kurve liegen

anniihernd auf den Fibonaccizahlen multipliziert mit x.

LB 1.B: I:.B ‘ ; . o .
== 1, ® usw. gibt also die Fibonaccireihe. Sagen wir
X p.¢ X
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LB . . .
also kurz: . = Fibonaccizahl. Damit nun LB nach der

Fibonacecireihe sich entwickle, muss L. und B sich je nach den
Quadratwurzeln aus diesen entwickeln. L. muss also sein gleich
einer Konstanten « mal Quadratwurzel aus der zugehorigen
Fibonaccizahl, B gleich 3 mal dieser selben Quadratwurzel.

/T ' :
Wir haben also 5\—5‘;—@@ = Fibonaccizahl. Daraus ergibt sich

3 =x. Da nun das Verhiltnis von L:B konstant sein muss,
gleich y, so muss auch «:f3 =y sein. Und damit haben wir
die Moglichkeit, unsere Gipfelzahlen fiir I und B zu berechnen.

Gegeben sind uns:
L und B als direkt gemessen,
x ergab sich aus der Kurve fir L X B,

y ist % fir die beriicksichtigten Blitter.

afl =x,

o

E:%

a? = Xy,

“:VX.Y:
X

p——v§}

mit andern Worten: die Gipfel der Kurve fiir L miissen liegen
auf den Quadratwurzeln der Fibonaccizahlen multipliziert mit
Vxy, und die entsprechenden der B-Kurve auf denselben multi-

pliziert mit V%.

Hiitte die Kurve fiir L )X B keine klaren Andeutungen fiir
die schiitzungsweise Bestimmung von x gegeben, so héitten wir
anders vorgehen miissen. Und zwar wiiren wir in dem Fall wohl
ambesten von der Kurve fiir L ausgegangen. Ihre Gipfel hitten

sich verhalten, wie die Quadratwurzeln aus den Fibonacci-
zahlen. Die Berechnung der zugehorigen Fibonaceizahlen mag
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auf algebraischem Wege moglich sein. Wir Nicht-Mathematiker
werden aber wohl rascher durch Probieren zum Ziele kommen,
indem wir versuchen, die Zahl zu finden, mit der die Quadrat-
wurzeln multipliziert werden missen, um unsere Gipfelzahlen
zu bekommen. (Wenn der Fall so einfach liegt, wie bei den
Untersuchungen Ritters, haben wir diese bald gefunden.) Damit
haben wir dann « bestimmt. Aus a:f=L:B =y konnen
wir dann $ berechnen und so die Gipfel der B-Kurve nach-
kontrollieren. «f gibt uns x und wir haben so eine weitere
Kontrolle unseres Resultates, indem die Gipfel der L )X B-Kurve
den Fibonaccizahlen mal x wenigstens angenéhert entsprechen
miissen.

So haben wir also in beiden Fillen, ob wir die eine oder
andere Kurve als Ausgangspunkt wihlen, die Moglichkeit,
die Resultate durch Umrechnen der einen Kurve auf die andere
zu kontrollieren, so dass wir unsere Schliisse mit gentigender
Sicherheit ziehen konnen.

3. Die Yariation der Bliitter von Vinca minor.

Fiir eine Untersuchung wie die vorliegende eignet sich
Vinea minor aus zwei Griinden besonders gut: die Blattform
ist sehr einfach, nahezu eine Ellipse, und doch in ihren Dimen-
sionen sehr variabel; als immergriine Pflanze liefert sie uns
die Blitter auch im Winter stets frisch, so dass sich die Mes-
sungen auf eine lingere Zeit verteilen lassen, in der zudem
ein Weiterwachsen nicht anzunehmen ist. Die Frage, ob die
Blitter des Vorjahres im Winter alle ansgewachsen sind, hitte
allerdings eigentlich eine vorausgehende Spezialuntersuchung
verlangt; ich begniigte mich aber mit der Konstatierung der
Tatsache, dass meine Messungen aus verschiedenen Jahren
und von verschiedenen Standorten, die am Anfang des Winters
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und am Ende Kurven mit gleicher Gipfellage ergaben, so dass
also die gestellte Frage fiir mich mit ja beantwortet erschien.

Was die Auswahl der Blitter anbetrifft, so ging ich fol-
gendermassen vor: ohne irgendwelche Wahl wurden an ver-
schiedenen Standorten einzelne Stengel oder Ausliufer gesam-
melt, und dann davon sofort zu Hause meist simtliche nicht
notorisch verkriippelten Blitter gemessen, unter Weglassung
der allerjiingsten an den Triebspitzen. Der Augenschein lehrt
ohne weiteres, dass die Mitte des Triebes auf eine ziemlich
weite Strecke die gleichartigsten, ich michte sagen ,normalen”
Blitter trigt, so dass also ohne weiteres aus der Art der Aus-
wahl sich eine Bevorzugung dieser ergab. Doch wurden auf
solche Weise auch die oft abnorm breiten und kurzen Blitter
der Triebbasis, wie auch die oft sehr schmalen der Triebspitze
geniigend beriicksichtigt.

Die Messungen wurden vorgenommen durch leichtes Auf-
driicken der frischen Blitter auf Millimeterpapier mit Hilfe
eines Objekttrigers. So liessen sich auf einen Blick Linge
und Breite genau genug ablesen. Schwierigkeiten ergaben sich
nur ausnahmsweise bei abnorm gekriimmten Blittern, die dann
einfach ausgeschaltet wurden. Die Linge wurde gemessen
vom Beginn der Spreite bis zur Spitze, also ohne Blattstiel.

Fiir die Anzahl der zu messenden Blitter nahm ich mir
nicht eine bestimmte Grenze von vornherein vor, sondern ge-
dachte dieselbe moglichst hoch zu treiben, mindestens soweit,
bis sich durch weitere Messungen die Kurve nicht mehr
wesentlich éinderte, d.h. die Gipfel konstant blieben. Durch
Konstruktion der Kurven von 200 zu 200 Messungen fiir
Linge und Breite konnte dieser Moment leicht bestimmt
werden und er war auch iiber Erwarten friih erreicht. Schon
von 800 Messungen an ergaben sich keine wesentlichen Ver-
schiebungen der wichtigeren Gipfel mehr. Der Sicherheit halber
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und vor allem, um verwerthare Zahlen fiir die Blattfliche
und fiir die Korrelation zwischen Liinge und Breite zu erhalten,
steigerte ich die Zahl der Messungen trotzdem bis auf 2500.

In Fig. 2 habe ich die Kurven fiir 800, 1400 und 2500
Lingenmessungen iibereinandergezeichnet reproduziert; man
sieht, dass alle wichtigeren Gipfel der 2500-Kurve schon bei
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Fig. 2. Variationskurve fiir die Linge der Blidtter von Vinca minor,
konstruiert nach 800, 1400 und 2500 Messungen.

800 vorhanden sind. Nur der auf 28 tritt noch bei 1400 nicht
hervor. Ganz gleiche Verhiiltnisse ergaben sich fiir die Breite.
Damit diirfte der Nachweis gefiihrt sein, dass die Anzahl
meiner Messungen auch fiir ziemlich weittragende Schliisse
gross genug ist.

a) Die Korrelation zwischen Linge und Breite.

Den Ausgangspunkt fiir alle weiteren Untersuchungen und
Rechnungen bildet das durch die Messungen gefundene Zahlen-
material. In der Tabelle auf Seite 16 ist dieses iibersichtlich
zusammengestellt; diese gibt nicht nur in der untersten und



Korrelation zwischen Linge und Breite bei den Bléidttern von Vinca minor.
(2500 Messungen.)
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der iussersten Reihe die Variation von Linge und Breite iiber-
haupt, sondern auch sofort einen kleinen Einblick in die Kor-
relation zwischen den beiden Griossen. Das Material diirfte wohl
geniigen zur mathematischen Berechnung eines Korrelations-
indexes, nach den Formeln, wie man sie da und dort in varia-
tionsstatistischen Arbeiten findet. Ich habe solche Rechnungen
nicht durchgefiihrt; sie liegen mir zu ferne und ich habe immer
den Eindruek gehabt, dass solche nach ziemlich komplizierter
Methode berechneten Indices fiir uns Nicht-Mathematiker meist
herzlich wenig sagen; wir sind doch gezwungen, uns diese
erst durch eine andere Darstellungsweise zu illustrieren. So
begniige ich mich also im folgenden von vornherein mit solchen
anschaulicheren Darstellungen, die mir zudem gestatten, die-
jenigen Punkte, die fiir meine weitere Untersuchung wichtig
sind, besonders hervorzuheben.

Ein besserer Einblick in die Korrelationsverhiltnisse
ergibt sich schon, wenn wir die Variation des Verhiltnisses
von L zu B, das wir oben mit y bezeichnet haben, verfolgen.
Ich habe dieses Verhiiltnis mit Riicksicht auf die Genaunigkeit
der Messungen auf eine Dezimale bestimmt, oder, nm Briiche
zu vermeiden, als 10 Li: B berechnet. Das Resultat ist folgendes :

IOL:B 10 11 12 13 14 15 16 17 18 19
1 5 12 9 58 129 235 316 359 326

20 21 22 23 24 25 26 27 28 29 30 31
238 201 188 161 95 61 31 9 9 4 3 4

32 33 34 35 36 37 38
1 1 1 1 —. - 1

Fig. 3 zeigt diese Variation in :fg;raphiseher Darstellung.

Es ist eine zweigipflige Kurve mit Hauptgipfel auf 18 und

einem Nebengipfel auf 21; die Korrelation zwischen L und B

kann also keine vollstindige sein, denn sonst hiitten wir eine

eingipflige Kurve erhalten miissen. Die grosse Variationsbreite
2
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unseres y’s, die uns hier entgegentritt, sagt uns bereits, wie
leicht das Bild fiir unseren Versuch der Anwendung des
Ludwig’schen Glpfelgesetzes auf die Variationen der Linge
und Breite gestort werden
kann, wenn wir die Gesamt-
# zahl der Messungen beriick-
sichtigen wiirden; noch mehr
aber die Zweigipfligkeit der
Kurve. Es geht daraus her-
vor, dass unter den unter-

o

pz

suchten Blittern zwei Typen
22 vorkommen, die nicht zu-
sammengenommen  werden
diirfen.

Zur Charakterisierung
der Korrelationsverhéltnisse
zwischen L und B eignen sich
zwei andere Darstellungs-
arten besser. Wir berechnen
zunichst aus unseren Ta-
bellen fiir jede Blattlinge

die mittlere Breite und stellen

a .
b 2 e k12 de 22 s ko w 4

Fig. 3.
Variation des Wertes 10 L : B bei Vinca.
~ uns dann das Ergebnis in der

Weise graphisch dar, dass wir, die Linge als Abscisse ge-
nommen, die zugehorige Breite als Ordinate auftragen. Be-
steht eine vollstiindige Korrelation, so muss die Verbindungs-
linie dieser siimtlichen Punkte eine Gerade sein, die, wenn
mit der Linge auch die Breite wiichst, nach rechts ansteigt.
Wir konnen diese theoretische Gerade berechnen aus dem
Mittelwert von 10 L : B, der 19,24 betrigt. Bei L = 19,24
miisste B 10 sein, bei L = 38,48, B =20 usw., doch geniigen
ja diese zwei Werte bereits zur Konstruktion der Geraden.
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Soweit nun die empirisch gefundene Kurve oberhalb dieser
berechneten Geraden liegt, sind die Blitter verhéltnisméissig
zu breit, soweit sie darunter liegt, entsprechend zu schmal.
Die gefundene Zahlenreihe ist folgende:
Linge des Blattes: 11 12 13 14 15 16 17
Zugehorige mittlere Breite: 7,3 8,0 83 87 92 94 9,9
18 19 20 21 22 23 24 25 26 27
10,8 11,4 12,0 12,6 13,1 13,6 13,9 14,6 14,8 15,2
286 29 30 31 32 33 34 35 36 37
15,7 15,6 16,1 16,5 16,9 17,1 173 17,2 17,7 18,1
38 39 40 41 42 43 44 45 46 47
17,9 19,3 18,7 19,6 19,6 20,3 19,6 20,4 20,50 20,0
48 49 50 51 H2 H3 b4

21,2 222 222 230 223 230 243

Pa o TN G

1
1
]

¢ t + + +—t
W Ji ke ir do 1t fs 24 2 se Bz 34 9e 37 do 41 ¢4 s 47 g0 vi 11 re

Fig. 4. Variation der Breite mit zunehmender Linge bei den Blittern
von Vinca.

Wir finden also zwar ein fast kontinuierliches Ansteigen
der Breite mit wachsender Linge, aber, wie bei unserer zwei-
gipfligen Kurve fiir die Variation von L : B zu erwarten war,
ein recht starkes Abweichen der empirischen Kurve von der
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berechneten Geraden, wie Fig. 4 (ausgezogene Linie) aufs
deutlichste zeigt. Anfiénglich liegt die empirische Kurve (starke
Linie) iiber der berechneten (zarte Linie); bei der Linge
34 mm kreuzen sich die beiden und nachher bleibt die empi-
rische unter der berechneten. Mit andern Worten: die kiirzeren
Blitter sind im Mittel zu breit, die lingeren zu schmal.

In der gleichen Figur ist (punktierte Linien) die Ande-
rung der Breite mit wachsender Linge noch in anderer Weise
dargestellt, nimlich als Kurve der Grosse 10 L : MB, wobei
MB die mittlere Breite der Blitter jeder Linge bedeutet.
Wire die Korrelation eine vollstindige, so miissten wir eine
der Abscissenaxe parallellaufende Gerade erhalten auf dem
fir 10 y gefundenen Mittelwert von 19,24. Diese Linie ist
(zart punktiert) ebenfalls eingezeichnet. Ein Blick zeigt, wie
vorher, auch hier die zu grosse Breite der kurzen und das
umgekehrte Verhalten der langen Blitter.

Es ist ferner von Interesse, die Frage auch umgekehrt
zu stellen, wie mit steigender Breite sich die mittlere Linge
iandere, da dieses Verhiltnis unter Umstéinden sehr von dem
bereits besprochenen abweichen kann. In ganz gleicher Weise
wurde also zu jedem B die mittlere Linge berechnet und
der Verlauf der Kurve (stark ausgezogen) in Fig. 5 dargestellt,
und zum Vergleich auch hier wieder die bei vollstindiger
Korrelation und einem mittleren 10y von 19,24 sich ergebende
Gerade (zarte Linie) eingezeichnet. Die gefundenen Zahlen
sind folgende:

B: 6 T 8 5 10 11 12 13
ML: 148 16,5 16,0 16,8 173 199 222 247
14 15 16 17 18 19 20 21 -22
26,2 286 314 31,9 .351 376 391 41,4 423
23 24 26 26 27
45,0 46,9 470 458 495




21

Sehen wir ab von den
schmiilsten und breitesten .,
Blattern, bei denen die
Mittelzahlen wegen der ge- 4
ringen Frequenz sowieso
keinen grossen Wert haben, *
so ergibt sich als Resultat
eine viel bessere Uberein-
stimmung der empirischen
Kurve mit der berechneten, 1%
als bei der Variation der |
mittleren Breite. Wichtig,
weil von vornherein nicht
erwartet, ist aber besonders
die Tatsache, dass nicht .

L [
etwa die schmalen Blitter Fiz. 5,

verhaltnismassig 71 ]ang Variation der Linge mit zunehmender Breite
bei den Bléittern von Vinca.
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sind, sondern umgekehrt:
die schmalen Blitter sind etwas zu kurz, die breiten etwas
zu lang.

Die punktierte Kurve in der gleichen Figur stellt die
Variation von 10 ML: B dar, verglichen mit der Geraden fiir
konstantes 10 y = 19,24. Sie zeigt in gleicher Weise eine
bessere Ubereinstimmung zwischen berechneter und empirischer
Kurve als die Fig. 4; und ebenso, dass die schmalen Blitter
eher zu kurz, die breiteren zu lang sind (wenn die beiden
Extreme nicht beriicksichtigt werden).

0) Die Variation der Fldche.

Die Form der Vincablitter entspricht nahezu einer Ellipse,
so dass also aus Liinge und Breite der Flicheninhalt annahernd

genau berechnet werden kann nach der Formel F :—Z-(L B).
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Da nun %;" eine Konstante ist, geniigt es, wie in der Ein-
leitung ausgefiihrt, die Variation der Grosse L. X B zu unter-
suchen. Dieser Wert schwankt fiir die untersuchten 2500 Blitter
zwischen 66 und 1377. Wollte man den mm? als Einheit
nehmen, so wiirden also 2500 Messungen zur Aufstellung einer
Variationskurve niemals geniigen. Dazu kommen noch die
andern in der Einleitung auseinandergesetzten Griinde, welche
uns zwingen, fir die Konstruktion der Kurve eine andere,
grossere Einheit zu nehmen.

Wie gross soll diese sein? Es ist klar, dass fiir die
niedrigeren Werte eine kleinere Einheit angenommen werden
darf als fir die grosseren, da die Spriinge weniger gross
sind; doch geben zwei verschiedene Einheiten: eine unklare
Kurve. Nehmen wir die Einheit zu klein, so riskieren wir,
eine nicht geschlossene Kurve zu erhalten, im umgekehrten
Fall fliessen leicht die Gipfel zusammen. Da es sich aber
in keinem Fall um eine absolut scharfe Kurve handeln kann,
sondern diese uns nur Anhaltspunkte fiir die Bestimmung
des x geben soll, so fand ich es richtiger, die Einheit etwas
klein zu wihlen, nidmlich 10, dariiber dann aber noch eine
zweite Kurve mit der Einheit 20 zu konstruieren. Das Re-
sultat war so, dass sich ein recht klares Bild der Variatiof
von L X B ergab.

Ich verzichte auf die Anfiihrung der langen Zahlenreihen,
die sich jeder aus der Korrelationstabelle berechnen kann.
Die Kurve Fig. 6 spricht fiir sich. Sie braucht nur noch ein
paar Erliuterungen betreffend die Konstruktion.

Die Zahlen an der Abscissenaxe: 6, 7, 8, 9,... 80, 81 usw.
bedeuten die Werte von L X B dividiert dureh 10. Die Fre-
quenzzahlen der unteren (einfachen) Kurve wurden so fest-
gestellt, dass die Werte L. XX B in Zehnergruppen eingeteilt
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wurden, 66—T5 wurde sodann mit 7, T76—8b mit 8, 86—95
mit 9 usw. bezeichnet.

Die obere (doppelte) Kurve ist konstruiert mit der Ein--
heit 20 und zwar in doppelter Weise. Die ausgezogene Kurve
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gibt die Frequenzen, welche man erhélt, wenn man zusammen-
zieht 51—70, 71—90, 91—110 usw. Die Eckpunkte dieser
Kurve miissen die geraden Zahlen 6, 8, 10 usw. sein. In der
punktierten Kurve sind zusammengezogen diec Werte 61—80,
81—100, 101—120 usw.; ihre Eckpunkte liegen auf den
ungeraden Zahlen 7, 9, 11 usw.

Die erhaltenen Kurven sind, wie zu erwarten, sehr viel-
zackig. Bei niherem Zusehen lisst sich aber doch leicht einiges
herauslesen, namentlich wenn wir zunichst nur die linke
Hiltte, die nach der ganzen Konstruktionsweise viel zuver-
lissiger sein muss, beriicksichtigen. Da fallen sogleich schon
bei der Zehnerkurve einige Gipfel auf, nimlich die auf den
Zahlen 10, 13, 26, 34, 42. Diese Gipfel konnen nicht nur
Zufall sein, sie entsprechen zu gut der Fibonaccireihe. Sie
veranlassten mich, die Kurve weiterhin auf das Auftreten von
Gipfeln auf Fibonacci-Haupt- und -Nebenzahlen zu kontrol-
lieren. Das Ergebnis war recht ermutigend:

8, scharfe Knickung der Zwanzigerkurve;

10, Gipfel in der Zehnerkurve;

137 N n n n
16, ., ., , Zwanzigerkurve;
21, & 5 & " ; die Depression in der

Zehnerkurve ist ohne Bedeutung, da sie von zwei
Gipfeln begleitet ist;

26, weit vorragender Gipfel der Zehnerkurve;

34:? by n n by ”

427 N n n n "

5b, Depression in allen Kurven;

68, vorragender Gipfel der Zehnerkurve;

84 (2 X 42), vorragender Gipfel in beiden Kurven;

89, Gipfel in der Zwanzigerkurve; fiir die Zehnerkurve
sehr hoher Gipfel auf der Nachbarzahl 90.
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Es entsprechen also, ausser der Zahl 55, allen Haupt-
und ersten Nebenzahlen der Fibonaccireihe Gipfel einer oder
beider Kurven. Dazu kommen nun freilich noch eine ziemliche
Anzahl von Gipfeln, die sich nicht in dieser Reihe unter-
bringen lassen. Wenn also auch durch die Variationskurve
fiir L )X B einigermassen wahrscheinlich gemacht wird, dass
die Vergrisserung der Fliche in dem in der Einleitung aus-
einandergesetzten Sinn dem Anlagenvermehrungsgesetze nach
Fibonacel folgt, so ist damit doch der strikte Beweis dafiir
noch nicht gefiihrt.

Dieser Beweis kann erst dann als gefiihrt betrachtet werden,
wenn fiir die genau gemessenen, also zuverlissigeren linearen
Dimensionen sich eine Entwicklung der Kurven nach dem
Ludwig’schen Gipfelgesetz ergibt, d. h. wenn jene Gipfel sich
verhalten wie die Quadratwurzeln der Fibonaccizahlen. Nach-
dem uns nun aber die Kurve fiir L > B so deutliche Anhalts-
punkte gegeben hat, dass wir unser wahrscheinliches x sofort
daraus ablesen konnen, ist die Kontrolle unseres Resultates
an den Variationskurven fiir L und B sehr einfach.

¢) Die Varation der Linge und Breite und ihr Verhiltnis
zum Ludwig’schen Gipfelgesetz.

Nach den Ausfiibrungen der Einleitung diirfen wir zur
Kontrolle, ob die Gipfelzahlen der Kurven von . und B den
Quadratwurzeln der Fibonaccizahlen entsprechen, nicht siamt-
liche Messungen beriicksichtigen, sondern nur die Blitter mit
gleichem L :B. Absolut ist aber diese Einschrinkung nicht
zu nehmen; es geniigt, wenn wir die Extreme ausser acht
lassen und die Bliitter mit nahezu gleichem L : B herbeiziehen,
damit wir doch ziemlich grosse Frequenzzahlen erhalten.

Die Kurve von L : B besitzt den Hauptgipfel auf 18. Ich
konstruiere mir nur die Variationskurven von L und B fiir
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diejenigen Blitter, deren L:B 17—19 (untere Kurve) und
16—20 (obere Kurve) betrigt, so dass also in beiden Fiillen,
da der beriicksichtigte Teil der L:B-Kurve fast genau
symmetrisch ist, der Mittelwert von L : B, also unser 10y,
18 betrigt.

Damit kénnen wir unsere theoretischen Gipfelzahlen
berechnen und vergleichen mit den empirischen:

x = 10, ergibt sich aus der Kurve von L X B.
y=18 a=VI8=425 B=Vig=—236.
Somit erhalten wir folgende Zahlen fiir Li- und B-Gipfel:

: bl AT - ~1 . Empirische y
Fibonaccizahl: VFib.:  «VFib.: Gipfel fiir L: {3\/1* ib.:

8 2,83 12,0 — 6,4
10 3,16 13,4 - 7,5
13 3,61 15,3 15 8,5
16 4 17,0 - 17 9,4
21 458 19,6 20 10,7
26 5,10 21,7 22 12,0
34 5,83 24,8 2 13,8
42 6,48 27,5 28 14,9
55 7,42 31,5 32 17,5
68 8,25 35,1 35 19,5
89 9,43 40,1 40 9223

110 10,49 44,6 45 24,8

Vergleichen wir nun die Lage der empirischen Gipfel der
L-Kurve mit diesen berechneten Zahlen in Fig. 7, so sehen
wir eine gute Ubereinstimmung. Die eingezeichneten Ordinaten
entsprechen den theoretischen Gipfeln, sie fallen fast genau
mit den Gipfeln der Kurve zusammen. Da die Messungen
nur auf den mm genau gemacht wurden, kann eine bessere
Ubereinstimmung iiberhaupt nicht erwartet werden; die Ab-
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weichung betrigt nirgends mehr als !/ mm. Einzig der stark
hervortretende Gipfel auf 30 passt nicht ins Schema. Doch
kann dieser seine Ursache z. T. wenigstens in einer ganz un-
bewussten Bevorzugung der ,runden“ Zahl 30 beim Auf- und
Abrunden der Messungen haben (die starken Depressionen
auf 29 und 31 sprechen dafiir). Sei dem aber, wie ihm wolle,

Fig. 7. Variation der Linge der Blitter von Vinca mit dem L : B-Index
von 17—19 (punktiert) und dem von 16—20 (ausgezogen).

die iibrige Kurve stimmt so gut mit dem, was unsere theo-
retische Annahme verlangt, dass diese eine vorliufig nicht
geniigend erklirte Abweichung das Resultat nicht umzu-
stossen vermag.

Von der B-Kurve kinnen wir nicht viel erwarten. Die
Werte von BVFi sind so nahe beieinander, dass fast jede Zahl
als Gipfelzahl auftreten miisste, die tatséchlichen Gipfel also
einfach Zufallsgipfel sind. Ich verzichte also auf die Repro-
duktion der Kurve, die im wesentlichen iibereinstimmt mit
der aus der Korrelationstabelle zu konstruierenden Gesamt-
kurve. Widerspriiche zu den Schliissen aus der L-Kurve ergeben
sich aus ihr nicht.
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Damit diirfte der Nachweis gefiihrt sein, dass der
aus der Kurve fiir L )X B gezogene Schluss auf die
Entwicklung der Blattflichenkurve fiir Vinca minor
nach dem Ludwig’schen Gipfelgesetz berechtigt war,
und somit unsere Annahme, dass einer bestimmten
Flicheneinheit eine Anlage entspreche und diese
Anlagen sich nach dem Gesetz des Fibonaceci ver-
mehren, wenigstens fiir diesen Fall sich als zulédssig
erwiesen haben.

Nachtrag.

Die vorstehende Arbeit war so gut als abgeschlossen, als
ich bei Anlass eines Ferienaufenthaltes in einem Garten in
Thalwil eine auffillig schmalblittrice Form von Vinca minor
beobachtete, die ich ebenso in Riischlikon und Zofingen wieder-
fand. Ich beniitzte die Gelegenheit, auch davon eine moglichst
grosse Zahl auszumessen, um das Resultat mit meinen St. Galler-
zahlen zu vergleichen. Leider brachte ich es nur auf 820
Messungen, die zu einem vollwertigen Schluss fiir sich allein
nicht ausreichen konnen, wohl aber, wenn die Zahlen gleich-
sinnig liegen, eine Stiitze der friitheren Resultate bilden.

Ich begniige mich mit den Auffiihrungen der wichtigsten
Ergebnisse dieser nachtriglichen Messungen. In der Tabelle
(S. 29) sind in gleicher Weise wie oben die gefundenen Zahlen
zusammengestellt.

Man sieht, die Variation der Liinge ist nahezu gleich gross,
doch ist die Hauptmenge der Blitter linger als bei der nor-
malen Form. Die Variation der Breite ist dagegen bedeutend
geringer; sie geht nur von 5—19, gegeniiber 6—29. Der total
andere Charakter der Blitter driickt sich aber vor allem in



29

1 | | | 4
1e 1 g Ij_m ¥ nﬂmmﬁomﬁhmom%_"@mmmbimﬂ_%wmmmmmm%%%@mwﬁa_b 082 l9 [erlls |9 |a o |o |0 |—|o |1 | s reroa
1 ey 6T
N | ) ) B A P T 8T
0T —It |—|—l& |——I—t [H~|——z T [e LT
&3 T =1 ==t |~ |—{t g lg [z |=[z It |t |[—{—7 |IF 91
L9 —lelr (e lgle|¥re (s 28| le | |8 |2 |—||—|—I8 |—|F|—|T qr
86 —l& [T |—fe |e |& |7 7 |rma o o I8 lorie 7|7 & |7 |8 & |—|— ¥
0T —|—t|—lg iz lzlo a9 iglorle o leTle 6 |e 9 |a|—lg|g (T x|t et
1eT |Il|ﬁHmmﬁmwmﬁmﬂw:ogzmﬂ@mﬂwlﬁﬁﬁ cr
00T —ltl~lg [t |- |t |—~|—|—lg |—|g |9 |z |8 1|6t |¢ |2 txle (& [—|v |1 |8 |—IF TT
£aT T |-|a|tfele[rlofe erls s (2|6 lojora 8le (s v |T 7 e =~ |—|r|r o1
08 T Clrlelrlelrielelelelelalzlolafrielele e (v e |~|T ] 6
ap m il—tlrleleleltizglalale v |t |—lsle g8 |—la e l—l—|1 |-[r| s
75 u Tirlel—igl—clrig T~ @le Tt |———-| &
L | B e |t |—=——lg |-t |-~ o
| .
T | d —f——|—|—|-]. @
s tesor, |09 miwm_s 9¢ Eﬁg mmwmmfﬁom mii% mi@ T«, o¥| 7| 1| o mmﬁmm L8[og g6 Tm mmﬁmmfmﬁi 63|85 .\Lm_w%mi e |ee|ge| 12| 06T m%ﬁ o1/ar

A.mmmss.mmwz 0z2Z8)
oUW BIUIA UOA wJioj udduje[qIewyds JIuld uJdjje|g udp 19q
91124g pun 33upT UYISIMZ UOIB[III0)



30

dem Faktor 10 Li: B aus. Wiihrend bei den normalen Blittern
der Hauptgipfel dieser Kurve bei 18 liegt, fillt der Schwer-
cx s punkt dieser Kurve bei der schmalblittrigen

— Form auf 33, wie aus folgenden Zahlen -
St hervorgeht :

1I0L:B: 19 20 21 22 23 24 25
ol Frequenz: 2 1 2 2 4 8 19
26 27 28 29 30 31 32 33 34
5 14 28 40 46 49 68 60 71 60
30 36 37 38 39 40 41 42 43
*“‘Q\ 0 52 37 H8 42 21 17T 10 10

44 45 46 47 48 49 50

5 5 3 T 6 — 4

ot

144

Von ganz besonderem Interesse ist aber
auch hier die Frage nach der Entwicklung
der Kurve fiir L. )X B und ihren Beziehungen
zum Ludwig’schen Gipfelgesetz. Trotz der
verhiiltnismiissig sehr kleinen Anzahl der
Messungen ergab sich auch hier ein ziem-
lich eindeutiges Resultat. Die L X B-Kurve
hat ihre beiden Hauptgipfel auf dem zehn-
fachen von 42 und 55. Und auch in der
Gegend von 34 liegt ein Schwerpunkt.
Ich begniige mich mit der Reproduktion
des mittleren Teils dieser Kurve in Fig. 8.
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Fiihren wir auch hier unsere Rechnung
durch und vergleichen die berechneten Gipfel
der L-Kurve mit den empirischen, indem
wir auch hier nur die dem Mittelwert 33
(von 10 Li: B) niichstliegenden Blitter be-
riicksichtigen (31—35). Die Zahlen sind: x = 10, y = 3,3,
o= V33 =514,

N



Also Fibonaceizahl: VFib.:  aVFib.:  cmpir. Gipfel :

26 5,10 29,3 31

34 5,83 33,3 34

42 6,48 37,2 38

55 7,42 42,6 42

68 8,25 474 47

89 9,43 54,1 55
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Fig. 9. Variation der Blattlinge bei einer schmalbldttrigen Form
von Vinca.

In Fig. 9 ist die Kurve mit Eintragung dieser Ordinaten
ausgefilhrt. Man sieht, dass, wenn auch die Gipfel nicht so
genau auf die theoretischen Punkte fallen, die Anniiherung
doch, in Anbetracht der geringen Zahl der Messungen, recht
gut ist. Damit diirfte auch fiir diese schmalbliittrige Form
die Giiltigkeit des Ludwig’schen Gipfelgesetzes wahrscheinlich
gemacht sein und das Resultat der Hauptarbeit eine wertvolle
Stiitze erhalten haben.

St. Gallen, im Juni 1908.
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