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DOSSIER I ÉNERGIES RENOUVELABLES
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Les données éclairent
les toits suisses
Lever le voile sur le potentiel photovoltaïque suisse à l'ère numérique I Si les

approximations des modèles et le manque de données à haute résolution
empêchaient encore récemment dèstimer de manière réaliste le potentiel photovoltaïque
en toiture à grande échelle, le big data et l'apprentissage automatique offrent désormais

une approche avec une résolution temporelle et spatiale sans précédent.

ROBERTO CASTELLO

Sur
la route longue et sinueuse

menant à la décarbonisation du
secteur de l'énergie, le déploiement

du photovoltaïque en toiture
(rooftop photovoltaics, RPV) a fait l'objet

d'une attention croissante au cours
des dernières années. Pour pouvoir
formuler des politiques efficaces en vue de

son intégration dans l'environnement
construit, une évaluation quantitative
du potentiel électrique du RPV est
nécessaire. Or, cette dernière nécessite
des données précises et à haute résolution

afin de saisir la variation spatiale et

temporelle de l'électricité produite.

Si l'estimation du potentiel photovoltaïque

à l'échelle d'une ville est très utile

pour l'élaboration de politiques et la

planification de stratégies, elle présente
néanmoins certains inconvénients: elle
n'est, par exemple, pas adaptée pour
estimer le retour sur investissement des

panneaux solaires pour les ménages
privés. Ceci rend, par conséquent, plus
difficile l'intégration de ces derniers dans

un système électrique décentralisé, avec

stockage d'énergie et connexion au
réseau électrique.

Très peu de méthodologies ont permis

pour l'instant d'estimer le potentiel

du RPV à grande échelle; et, jusqu'à
récemment, aucune n'a réussi à le faire
avec une résolution temporelle horaire et
une résolution spatiale à l'échelle du toit,
tout en tenant compte de la propagation
systématique des incertitudes
introduites par le processus de modélisation.
L'absence d'études à l'échelle nationale
à de telles résolutions s'explique par les K

difficultés de calcul liées au traitement §
des ensembles de données requis et à la I
gestion des données manquantes, ainsi s

que par l'absence d'un ensemble complet g
de données relatives aux zones étudiées. ïD
Pour relever ces défis, des approches [1-3] iz
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ÉNERGIES RENOUVELABLES I DOSSIER

Figure 1 Distribution spatiale du rayonnement solaire horizontal annuel prévu (a) et de

sa composante directe (b), ainsi que leurs incertitudes totales respectives (c) et (d).

ÜB Panneaux (vert.)

HM Panneaux (horiz.)
I I Toits plats
I I Toits inclinés

Figure 2 Installation
virtuelle de panneaux
photovoltaïques après
retrait des superstructures
du toit: la meilleure
configuration de panneaux
orientés verticalement
et horizontalement est

basées sur l'apprentissage automatique
(machine learning, ML) et les données
massives (big data) ont permis de réaliser

des progrès significatifs dans cette
estimation en Suisse, en améliorant la

précision du modèle et en fournissant
une quantification de l'incertitude.

Le pouvoir aux données
Chaque fois que des variables quantitatives

sont mesurées, des données sont
produites. Comme il est souvent impossible

de sonder une population tout
entière, on utilise les données d'un
échantillon pour décrire au mieux la
distribution inconnue de la population. Un
petit échantillon peut cependant être
biaisé par rapport à la distribution réelle :

donc plus l'échantillon est inclusif, plus
cette description sera exacte et précise.

La grande quantité de données
spatiales disponibles dans les bureaux fédéraux

suisses constitue la source de
données environnementales et urbaines
nécessaires à la conception d'un modèle

précis pour l'estimation du potentiel
RPV. Néanmoins, dans le cadre de

l'ambitieux projet de prévision du potentiel
RPV à haute résolution spatio-temporelle

pour l'ensemble de la Suisse, les
chercheurs sont inévitablement confrontés à

l'absence de certaines données ou à

l'indisponibilité de mesures dans certaines

zones géographiques. Or, un modèle de

régression peut apprendre la tendance
d'une certaine variable par rapport à

d'autres, et ses paramètres peuvent être
utilisés pour déduire la valeur d'une
variable lorsque les mesures manquent.

Les techniques d'apprentissage
automatique sont particulièrement efficaces

pour traduire les dépendances linéaires
et non linéaires d'une variable par
rapport à d'autres dans un modèle compact
et « prêt à l'emploi ». Les algorithmes de

régression supervisés apprennent à partir

d'un ensemble de données qui
contient des paires constituées d'entrées

(features) et de leurs valeurs de sortie

connues (targets). Cette partie, appelée
entraînement (training) des

algorithmes, permet de découvrir les

interdépendances et de les encoder dans un
modèle. Le modèle est ensuite appliqué

pour prédire des valeurs de sortie inconnues

pourun nouvel ensemble d'entrées.

Le modèle le plus simple est la régression

linéaire, mais les techniques de ML
offrent la possibilité d'en créer des plus
complexes, et aussi plus exacts. Essayons

par exemple de prédire le rayonnement

solaire incident sur chacun des pixels de

200x200 m2 couvrant la Suisse, ce qui
représente l'un des défis de l'étude
décrite dans [1]. Il est toujours possible
de trouver dans la littérature scientifique
des formules physiques à appliquer pour
calculer le rayonnement solaire sur une
certaine zone géographique. Ce serait
toutefois une façon lente et laborieuse
d'atteindre cet objectif. Un autre moyen
consiste à s'appuyer sur les quelques
mesures de l'irradiation solaire déjà
existantes et à essayer de modéliser la
manière dont celle-ci dépend d'un
certain nombre de features.

Les mesures satellitaires et la
télédétection (remote sensing, RS)
fournissent une couverture à une résolution

limitée : l'objectifest de prédire les
valeurs pour des pixels à plus haute

sélectionnée.

résolution spatiale, là où aucune
mesure n'est disponible. Le principe
consiste à laisser la machine apprendre
quelles sont les corrélations entre les
features (la position géographique du
pixel, son altitude, etc.) et les targets
(dans ce cas, le rayonnement solaire
incident sur le pixel). Une fois la relation

apprise (par le biais du training), la
machine est capable de donner pour
chaque nouveau pixel (et donc ses
features donnés en entrée) sa meilleure
estimation du rayonnement solaire
incident, ainsi que son incertitude
statistique et celle due au modèle.

Combien d'énergie
le soleil procure-t-il?
Une première étape consiste à estimer
le potentiel « physique », déterminé

vs=Ïï; electro
Azo suisse
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Figure 3 Puissance

installée par bâtiment et

potentiel technique RPV

cumulé en fonction du

pourcentage de bâtiments
considérés comme appropriés.
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Figure 4 Distribution
spatiale du potentiel
technique annuel, agrégé
en pixels de 500 x 500 m2

à des fins de visualisation

(a), potentiel
technique annuel pour les

toitures appropriées d'un

pixel de 500 x 500 m2

choisi au hasard dans la

ville de Genève (b), et

profils mensuels moyens
horaires du potentiel
technique additionné pour
toutes les toitures
considérées comme
appropriées, leurs incertitudes,
et demande suisse d'électricité

en 2018 (c).

par le rayonnement solaire horizontal
(en W/m2) mesuré à la surface terrestre.
Les données météorologiques enregistrées

par le RS sont des données
précieuses pour calculer ce potentiel. Les
satellites fournissent une couverture
spatiale uniforme à haute résolution
temporelle. Les méthodes basées sur
le ML utilisent ces mesures à large
résolution spatiale (environ 1,6 x2,3 km2)

comme targets pour apprendre les

interdépendances cachées avec les
features géographiques et de terrain (la
pente, la courbure, etc.). Seules, les

données géographiques, c'est-à-dire
l'altitude, la latitude et la longitude,

sont suffisantes pour concevoir un
modèle de prévision précis qui estime le

rayonnement solaire horizontal. Le
modèle le plus performant, c'est-à-dire
celui qui donne l'erreur quadratique
moyenne la plus faible sur un ensemble
de données de test indépendant, est
choisi pour prédire les valeurs targets
inconnues sur une grille plus fine de

200x200 m2. Dans ce cas, un ensemble

d'algorithmes de ML, qui prédit la
variable en faisant la moyenne des

résultats de ses différents estimateurs

[4], donne de très bons résultats,
en fournissant également l'estimation
de l'incertitude du modèle.

La figure 1 montre la distribution
spatiale du rayonnement solaire
horizontal (formé par les composantes
directe et diffuse) annuel estimé, et son
incertitude correspondante, pour
l'ensemble de la Suisse. Le rayonnement
solaire le plus élevé et la plus grande
incertitude se trouvent à haute altitude
dans le sud du pays, où les phénomènes
météorologiques extrêmes sont
fréquents. La majorité des bâtiments sont
cependant situés à des altitudes plus
basses, sur le Plateau suisse. La même
carte est également compilée pour
288 pas de temps «month-
ly-mean-hourly, MMH » distincts: cela
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signifie que le potentiel physique est
estimé pour chacune des 24 heures
d'une journée type pour chacun des

douze mois, comme une moyenne sur
tous les jours du mois. Ce niveau de

résolution est essentiel pour modéliser
la saisonnalité et la variation intrajour-
nalière du potentiel physique.

La fraction des toits
qui peut être utilisée
Déterminer le nombre de panneaux
solaires qui peuvent être installés sur
un toit implique un examen attentif de

la géométrie de ce dernier, de son
orientation et de la fraction quotidienne
d'exposition au soleil compte tenu des
bâtiments et des arbres environnants.
Effectuer cette opération pour les

9,6 millions de toits qui se trouvent en
Suisse constitue un objectif ambitieux.

Le potentiel « géographique » tient
donc compte de la géométrie, des

superstructures de toit existantes (cheminées,

fenêtres, etc.), des effets d'ombrage
et de la visibilité du ciel. Il est estimé pour
chaque surface de toit en ajustant les

composantes directes, diffuses et réfléchies

du rayonnement solaire préalablement

calculées en fonction de l'inclinaison

du toit et d'autres facteurs. Le résultat
est ensuite convolué avec la surface
disponible pour l'installation d'un
système RPV.

Le rayonnement diffus est corrigé en
fonction du facteur de visibilité du ciel et
le rayonnement direct en fonction de la

partie non ombragée du toit à chaque
heure de la journée. Ensuite, un
algorithme géospatial installe virtuellement
les panneaux en projetant des polygones
rectangulaires sur le toit incliné. Les

panneaux sont installés en alignement
horizontal et vertical, et la configuration

avec le nombre le plus élevé de

panneaux est choisie pour chaque toit (voir
l'exemple de la figure 2). Sur les toits
plats, les panneaux sont placés en
rangées orientées vers le sud et inclinées
selon un angle de 30°.

Mais que se passe-t-il si un toit
comporte en réalité plusieurs superstructures?

La surface effective est alors
d'autant plus réduite par rapport à la
surface totale du toit. Une carte détaillée

de ces superstructures n'est disponible

que pour l'un des 26 cantons
suisses (celui de Genève): alors
comment deviner de manière réaliste l'impact

de ces superstructures sur les toits
restants? L'apprentissage automatique

vient à nouveau à la rescousse. En utilisant

la surface libre pour l'installation
de panneaux sur les toits du canton de
Genève (donc avec des superstructures
cataloguées) comme target dans
l'algorithme de ML et des features liés aux
toitures et bâtiments (aspect et angle
d'inclinaison, type de bâtiment, période
de construction, y compris la surface
avec panneaux résultante du bâtiment
si les superstructures ne sont pas prises
en compte), il est possible de prévoir la
surface nette réelle pour l'installation
de panneaux sur chaque toit de Suisse.

Les effets d'ombrage, qui rendraient
inutile l'installation de systèmes photo-
voltaïques sur certaines parties du toit,
sont aussi quantifiés à chaque heure de
la journée. Un algorithme [5] permet de

modéliser l'ombre pour chaque pixel
d'un modèle numérique de surface
(digital surface model, DSM) à une position

donnée du soleil (c'est-à-dire à une
certaine heure). La précision de
l'estimation de la surface ombrée dépend
essentiellement de la résolution du DSM.
La résolution standard d'un DSM
couvrant toute la Suisse est de 2 x 2 m2 : seul
le canton de Genève dispose d'un DSM
à plus haute résolution, de 0,5 x 0,5 m2.

Là encore, un algorithme d'apprentissage

automatique [6] est employé pour
prédire le coefficient qui serait obtenu
avec une carte ayant une résolution de

0,5 x 0,5 m2, en utilisant comme features
la valeur du coefficient calculée sur
le DSM de 2 x 2 m2 et d'autres caractéristiques

du toit et des bâtiments. Cette
procédure a considérablement amélioré
la quantification de la surface ombragée
des toits à l'échelle de la Suisse, un
ingrédient essentiel pour calculer le

potentiel en électricité finale.

Combien d'électricité
pour la Suisse?
Le potentiel «technique» est défini
comme la production d'électricité
(en kWh) pour chaque toit. Il est obtenu
en multipliant le potentiel géographique

(c'est-à-dire le flux d'énergie
solaire ne frappant que la zone appropriée

sur les toits) par le rendement du

panneau solaire et le facteur de

performance. Il est également tenu compte du
rendement du convertisseur DC/AC
(calculé pour chaque pas de temps en
utilisant la température maximale au
sol) et d'autres pertes telles que l'encrassement

ou la dégradation des

panneaux.

Pour obtenir un potentiel réel, les

toits ayant une petite surface disponible

(moins de 8 m2) sont exclus, car
cette valeur équivaut au seuil inférieur
de faisabilité économique. De même,
tous les toits orientés vers le nord
n'entrent pas dans le calcul, leur contribution

au potentiel étant relativement
faible. Ces critères ramènent la fraction
appropriée de la surface de toitures à

environ 57% de la surface disponible
(environ 270 km2) sur 2,3 millions de
bâtiments. Le potentiel technique
annuel maximum qui peut en être
extrait est estimé à 24! 9 TWh, ce qui
correspond à une production capable
de couvrir 40 % de la demande en
électricité enregistrée en 2018.

L'intégration dans
l'environnement construit
En plus de l'estimation annuelle du

potentiel technique, cette méthodologie

fournit plusieurs contributions
pratiques pour une intégration efficace
du RPV dans les villes. La figure 3

montre comment 25% du potentiel
estimé peut être déjà réalisé en installant

des panneaux photovoltaïques sur
moins de 2% des bâtiments, ceux
présentant le potentiel le plus élevé (dotés
de toits plats). Les 75% du potentiel
peuvent, quant à eux, être atteints en
installant des panneaux photovoltaïques

sur environ un tiers des
bâtiments.

Une analyse du potentiel annuel pour
toute la Suisse, dans la figure 4, montre
que la contribution du RPV serait
insuffisante pendant l'hiver et la nuit, alors

qu'il y aurait un surplus pendant les
heures de pointe et en été. Par conséquent,

une combinaison ad hoc avec
d'autres sources d'énergies renouvelables

(comme l'éolien et la géothermie)

ainsi qu'un couplage des secteurs
(sector coupling) avec des systèmes de

chauffage et de refroidissement
devraient être envisagés pour exploiter
au mieux le solaire. L'estimation horaire
du potentiel pour chaque mois de l'année

est utile pour concevoir les futurs
systèmes énergétiques, afin de satisfaire

instantanément la demande locale

en électricité.
La haute résolution spatiale (à

l'échelle du bâtiment) de cette
méthodologie permet aux urbanistes d'évaluer

la demande en électricité qui pourrait

être satisfaite par l'installation de

systèmes photovoltaïques sur les toits

VS= electro^'
Aie) suisse
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existants dans un certain quartier, ainsi

que d'estimer plus précisément le
rendement attendu pour les nouveaux toits
en tenant compte de leur taille, de leur
inclinaison et de leur orientation. Les
décideurs politiques peuvent agréger
les résultats à différentes échelles
spatiales, par exemple régionale ou nationale,

afin de formuler des politiques
efficaces pour intégrer le PV dans
l'environnement construit.

Enfin et surtout, comment prévoir
le RPV pour différents scénarios
urbains et climatiques? L'étude
comprend également une analyse qui quantifie

l'impact de chacun des paramètres
utilisés dans la méthode pour extraire
le potentiel technique. Le rayonnement
horizontal et la fraction de toit disponible

sont les paramètres les plus
sensibles: leur variation de 50% peut
entraîner jusqu'à 40% de changement
dans le potentiel RPV final. Par conséquent,

cette méthodologie peut également

être utilisée afin de prévoir la
production en électricité attendue à

l'avenir, pour des scénarios dans
lesquels les conditions climatiques et la
densité urbaine devraient avoir évolué.

Une contribution importante aux
politiques de décarbonisation
Tout cela peut sembler très utile, mais

avec quel degré de confiance peut-on se

fier à ces résultats? Ces derniers
proviennent d'un modèle statistique et
sont donc intrinsèquement affectés par
une incertitude. Par exemple, le choix

spécifique d'un ensemble
d'algorithmes de ML, qui prédisent la variable

«target» en faisant la moyenne des

résultats de plusieurs estimateurs, permet

de quantifier l'incertitude liée au
modèle sous la forme d'écarts types
(standard deviation) des différentes
estimations. Une autre incertitude liée

aux données est également prise en

compte à partir des résidus entre les

targets et les prédictions du modèle. Les

autres incertitudes se propagent ensuite
selon une procédure basée sur la
variance. L'étude suggère que, si la
surface de toit disponible varie d'une standard

deviation par rapport à sa valeur
estimée, la production d'électricité
peut changer d'environ 20 %.

En résumé, l'utilisation de méthodes

statistiques telles que l'apprentissage
automatique pour extraire des informations

significatives d'un vaste ensemble
de données a permis d'atteindre une
résolution sans précédent dans
l'estimation du potentiel photovoltaïque des

toits en Suisse et, en même temps, de

fournir l'incertitude correspondante.
Ce travail apporte une contribution
importante aux politiques de décarbonisation

en Suisse, car ses résultats
permettent de modéliser à grande échelle
les futurs réseaux électriques. La
méthode est également transférable à

toute région ou à tout pays disposant
d'une base de données suffisamment
homogène, et peut contribuer à la
transition vers des systèmes énergétiques à

faible teneur en carbone.
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Daten beleuchten Schweizer Dächer
Ermittlung des Photovoltaik-Potenzials der Schweiz im digitalen Zeitalter

Der Einsatz von PV-Anlagen auf Dächern (Rooftop Photo-
voltaics, RPV) hat in den letzten Jahren zunehmend an
Aufmerksamkeit gewonnen. Um eine wirksame Politik für ihre
Integration in die gebaute Umwelt zu formulieren, ist eine

quantitative Bewertung des elektrischen Potenzials von
RPV erforderlich.

Nur wenige Methoden konnten bisher das Potenzial
von RPV aufnationaler Ebene abschätzen. Bis vor Kurzem
war keine Methode in der Lage, dies mit stündlicher und
räumlicher Auflösung aufDachskala zu tun, unter
Berücksichtigung der systematischen Ausbreitung der durch den
Modellierungsprozess eingeführten Unsicherheiten. Dies
ist nun möglich: Dank Ansätzen, die aufmaschinellem Lernen

und grossen Datenmengen basieren, ist es dem Labor
für Solarenergie und Bauphysik der EPFL gelungen, bedeu-
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tende Fortschritte bei der Verbesserung der Genauigkeit
der Modelle und der Quantifizierung der Unsicherheit zu
erzielen.

Ergebnis: 57 % der gesamten verfügbaren Dachfläche der
2,3 Millionen Gebäude in der Schweiz sind für die Installation

von Solarpanels geeignet. Das maximale jährliche
technische Potenzial wird auf 24 TWh ± 9 TWh geschätzt, was
einer Produktion entspricht, die 40 % des Strombedarfs des

Jahres 2018 abgedeckt hätte. Es hat sich auch gezeigt, dass

25 % dieses technischen Potenzials bereits durch die Installation

von PV-Modulen aufweniger als 2 % der Gebäude mit
dem höchsten Potenzial (mit Flachdächern) realisiert und
75% durch die Installation von Solarmodulen auf etwa
einem Drittel der bestehenden Gebäude umgesetzt werden
können. che
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