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PANORAMA I SICHERHEIT

Künstliche Intelligenz
auf Schienen
Deep Learning sorgt für Sicherheit I Um die Funktionsfähigkeit ihrer Infrastruktur
sowie die Sicherheit der Fahrgäste und des Personals sicherzustellen, setzen die
Schweizerischen Bundesbahnen (SBB) unter anderem spezielle Diagnosezüge ein.
Mehrere Kameras auf diesen Zügen nehmen Bilder der Gleise auf. Um die Bilder
optimal auswerten zu können, setzen die SBB auf künstliche Intelligenz und
arbeiten eng mit dem CSEM zusammen.

PHILIPP SCHMID, JOËL CASUTT, MARCEL ZURKIRCHEN

Das
Rückgrat der Eisenbahn sind

die Schienen. Sie liegen
jahrzehntelang im Gleisbett und

werden jeden Tag arg strapaziert: nicht
nur von Personenzügen in unterschiedlichen

Grössen und mit unterschiedlichen

Geschwindigkeiten, sondern auch

von tonnenschweren Güterzügen. Die
Division Infrastruktur der SBB betreibt
in der Schweiz ein Streckennetz von
rund 3000 km Länge mit teils
mehrspurigen Gleisen.

Der Aufwand, um die Kunden sicher
von A nach B zu bringen, ist enorm.
Trotz dieser schwierigen Aufgabe

erreichen die SBB die beste
Kundenpünktlichkeit im europäischen
Vergleich von über 90%.

Täglich gehen Mitarbeiter der SBB

den Gleisen entlang und überprüfen den

Fahrweg visuell auf mögliche
Abweichungen (Bild 1). Dadurch wird unter
anderem der Zustand der Gleise überprüft

und Defekte frühzeitig erkannt.
Rund 50 Mitarbeiter sind für das
komplette Schienennetz verantwortlich und
inspizieren die Fahrweginfrastruktur
auf über 250 mögliche Fehlerarten.
Zusammen ergibt dies pro Jahr etwa

23000 bestätigte Auffälligkeiten, von

denen die meisten unkritisch sind.
Diese werden anhand ihres Schweregrades

klassifiziert, und entsprechende
Massnahmen werden eingeleitet.

Für eine effiziente Beurteilung nutzen
die Streckeninspektoren idealerweise
Tageslicht. Da die Züge in einem immer
höheren Takt fahren, wird die Inspektion

für die Mitarbeiter besonders während

der Stosszeiten immer anspruchsvoller.

Auf Strecken mit erhöhter
Geschwindigkeit, wie der Neubaustrecke

sowie dem neuen Gotthardbasis-
CO

tunnel, ist die manuelle Streckeninspek-
tion während dem laufenden Betrieb s
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Bild 1 Die Erhöhung des Taktes der Züge erschwert die Arbeit der Gleisinspektoren
zunehmend.

nicht gestattet. Ausserdem braucht es

sehr grosse Erfahrung, um die
Auffälligkeiten korrekt beurteilen zu können.
Aus diesen Gründen sowie zur Steigerung

der Effizienz setzen die SBB seit

einigen Jahren neben den menschlichen
Streckeninspektoren spezielle Messzüge

ein, sogenannte Diagnosefahrzeuge

(DFZ), die vollgepackt mit neuster

Kamera- und Messtechnologie sind.
Die Qualität der automatischen

Auswertung ist hier noch nicht so weit
ausgereift wie die Analyse durch einen
menschlichen Experten, und bedarf
heute noch der manuellen Nachprüfung

der Daten. Wie bringt man nun
die Erfahrung der Experten in eine
robuste Software?

Diagnosefahrzeug-Typen
Die SBB betreiben aktuell zwei
unterschiedliche Diagnosefahrzeuge
(Bild 2): ein selbstfahrendes (DFZ) und
ein gezogenes (gDFZ) mit je bis zu 18

Hochleistungskameras. Mit Geschwindigkeiten

von bis zu 200 km/h fahren
die Systeme über die Schienen und führen

dabei Messungen an Schotterbett,
Gleiskonstruktion, Fahrleitungen und
Tunnelbauten aus. Alle Daten werden
in vollem Tempo gespeichert und können

bei Bedarfauch zur Prüfung live im
Messzug dargestellt werden (Bild 3). So

kommen etwa 10 GB Daten pro
Kilometer zusammen. Diese Datenmenge
entspricht etwa 5 Millionen Buchseiten
Text-für jeden Kilometer. Die Speicherung

und Verarbeitung solcher gewaltiger

Datenmengen fällt unter «Big
Data».

Daten
Bisher wurden diese Datenmengen mit
klassischen Ansätzen ausgewertet.
Diese liefern jedoch zu viele falsche

Befunde. Eine Herausforderung gegenüber

der Qualitätskontrolle in der
industriellen Produktion liegt in der
enormen Variation. Die Schienen
liegen in der freien Natur und sind damit
allen Umwelteinflüssen ausgesetzt:
• Wetter: Regen, Schnee, Matsch,

Vereisung

• Umgebung: Tunnel, Bahnhof, Stadt,
Wald, Brücke

• Artefakte: Dreck, Tierkot, Pflanzen,
weggeworfene Kaugummis oder
Zigarettenstummel

• Typen: unterschiedliche Gleisgeometrien,

Weichen, Profil.
Die Entwicklung eines klassischen
Algorithmus zur Auswertung all dieser
Variationen ist praktisch unmöglich.
Solche Algorithmen können zwar leicht
verstanden werden und sind sehr
leistungsfähig im Umgang mit numerischen

Daten. Jedoch gibt es im Fall von
Defekten auf der Schienenoberfläche
keine klaren numerischen Beschrei¬

bungen, denn Form, Textur oder
Schattierung der Defekte sind jedes Mal
unterschiedlich. Ein menschlicher
Experte kann damit noch sehr gut
umgehen, er braucht kein mathematisches

Modell, um einen Defekt zu
erkennen. Er hat sich über viele Jahre
die notwendige Erfahrung angeeignet,
welche ihm hilft, die Klassifizierung
sicher vorzunehmen. Genau hier
kommt Deep Learning ins Spiel.

Deep Learning
Deep Learning ist eine Domäne der
Artificial Intelligence (AI, Künstliche
Intelligenz). Es werden grosse (tiefe)
neuronale Netzwerke trainiert, die
Lernmethoden imitieren dabei die
Funktionsweise des menschlichen
Gehirns. Deep Learning ermöglicht,
das Wissen und die Erfahrung eines

Experten in Software zu übertragen.
Das erfordert grosse Mengen (100 bis

10000 Bilder) von gekennzeichneten

Bild 2 a) Selbstfahrendes und b) gezogenes Diagnosefahrzeug.
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Bild 3 Im Innern eines Diagnosefahrzeugs.

Train

Bild 4 Schematische Darstellung der Datenverarbeitung.

Daten - das heisst von Experten beurteilte

und markierte Bilder. Der grosse
Vorteil ist, dass der Algorithmus selbst

identifiziert, welches die wichtigen
Merkmale sind und so das beste
mathematische Modell automatisch festlegt:
Der Algorithmus baut sich seine eigene
Erfahrung auf.

Hierfür hat das CSEM, ein schweizerisches

Forschungs- und
Entwicklungs-Zentrum, für die SBB eine neue
Software entwickelt, welche bezüglich
der hohen Qualitätsanforderungen
richtungsweisend ist. Diese besteht aus
mehreren Modulen (Bild 4):
• Vorverarbeitung und Clustering
• Detektion von Auffälligkeiten
• Klassifikation
• Fingerprinting
• Kontinuierliche Verbesserungen

durch Einbinden von Experten (Life-
Long Learning)

Eine der grössten Herausforderungen
besteht darin, dass nur relativ wenige

Trainingsdaten zur Verfügung stehen
und es bei bestimmten Fehlerkategorien

selbst für Experten sehr schwierig
ist, eine eindeutige Klassifizierung
vornehmen zu können. Um das Wissen und
die Erfahrung der SBB-Experten
möglichst einfach abbilden zu können, wurden

spezielle Werkzeuge entwickelt.
Diese erlaubten es in kurzer Zeit, die
Datenbasis zu verzehnfachen und die
Einschätzungen der Experten untereinander

abzugleichen. Alle Grenzfälle
wurden im Team besprochen und erst
danach bewertet. Dieser wichtige
Schritt zeigt, dass es auch bei der

Anwendung neuster Technologien den
Menschen als letzte Instanz braucht.

Vorverarbeitung und Clustering
Alle Messdaten werden vom Zug auf
eine zentrale Datenbank der SBB

übertragen und in ein spezifisches SBB-Da-
teiformat konvertiert. Die SBB können
so verschiedene, von der Quelle unab¬

hängige Daten parallel darstellen. So

können neben den Daten von den
Diagnosefahrzeugen auch Daten von Drohnen,

Fotos von Experten oder Messdaten

aus dem Labor miteinander kombiniert
und weitere Datenkorellationen ermöglicht

werden. Liegen die Bilddaten auf
dem Server, werden sie in einem ersten
Schritt durch verschiedene Filter
vorverarbeitet, normalisiert und in einzelne
Klassen aufgeteilt (Clustering).

Detektion von Auffälligkeiten
In einem nächsten Schritt wird nach

Auffälligkeiten (Anomalien) gesucht.
Anomalien sind alles, was auch einem
nicht geschulten Menschen auf einer
Schiene beim Betrachten auffallen
würde - Dreck, Blätter, Kaugummis,
Defekte, Schweissnähte usw. Um
sicherzustellen, dass kein Fehler
übersehen wird, tendieren diese Algorithmen

dazu, zu viele Auffälligkeiten zu
detektieren. Sie können dafür mit einer
nahezu unendlichen Variation umgehen

und auch unbekannte Fehler zuverlässig

erkennen. Um die Anzahl der
Alarme tiefzu halten, wird der folgende
Schritt benötigt.

Klassifikation
Um echte Defekte von unkritischen
Fahrbahnzuständen zu unterscheiden,
ist eine exakte Klassifikation nötig. In
dem Projekt werden sechs verschiedene

Klassen unterschieden. Von
«keine Gefahr» (Kaugummi, Vogeldreck)

zu den heikelsten Fehlern, den

sogenannten Squats (Bild 5). Diese
Defekte sind an der Oberfläche nur
sehr schwer zu erkennen: Analog einem
Zahn mit Karies entsteht im Inneren
ein Hohlraum, der sich immer tiefer in
die Schiene hineinfrisst. Der grosse
Unterschied zu klassischen Algorithmen

liegt in der Klassifizierung von
Objekttypen mit hoher intrinsischer
Varianz. Für gute Resultate wurde über
Monate sehr eng mit den Experten der
SBB zusammengearbeitet. Erst dank
ihrem Wissen konnte ein neuronales
Netzwerk für die Klassifizierung
erfolgreich trainiert werden.

Fingerprinting
Der Algorithmus kann bereits sehr

zuverlässig Schäden von Artefakten auf
den Gleisen unterscheiden und
klassifizieren. Das Gleisnetz ist sicherheitsrelevant

und unterliegt strikten
Vorschriften. Deshalb können sich die SBB
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Lötstelle Plastikteil Oberflächenschaden Kaugummi Squat Durchdrehen von Rad

Bild 5 Fehlerklassen.

November 2016 Februar 2017 April 2017 Mai 2017 Juni 2017 August 2017

Bild 6 Zeitlicher Verlauf eines mit Fingerprinting gefundenen Fehlers.

nicht ausschliesslich auf einen
Algorithmus verlassen. Die finale Entscheidung,

ob und wann ein Defekt vor Ort
geprüft und repariert werden soll,
bleibt bei den Streckeninspektoren.

Je nach Streckenabschnitt kommen
die Diagnosefahrzeuge alle 14 Tage
zum Einsatz. Hierbei werden immer
wieder die gleichen Auffälligkeiten
gefunden - die dann erneut durch einen
Experten bewertet werden müssten und
Zusatzaufwand generieren. Viele
Auffälligkeiten entwickeln sich nur sehr

langsam über die Zeit zu Defekten, so
dass von der Entdeckung bis hin zur
Reparatur, bei Defekten mit geringer
Kritikalität, bis zu sechs Monate vergehen

können. Während dieser Zeit ist der
Defekt bereits im Instandhaltesystem
registriert und sollte, bis zur gebündelten

Behebung «optimierte Instandhaltung»

mit anderen Defekten, nicht
immer wieder als neuer Fehler bei der

Auswertung auftauchen. Dazu wurde
das Fingerprinting entwickelt. Das Ziel
ist die Verfolgung von Defekten über
die Zeit. Erkennt die AI einen Defekt,
wird ein Fingerabdruck berechnet, der
den Defekt eindeutig kennzeichnet.
Fahren die Diagnosefahrzeuge später
wieder über diesen Fehler, kann anhand
des Fingerabdrucks der Defekt einem
bereits bekannten Defekt eindeutig
zugeordnet werden. Dadurch ergibt

sich für jeden Defekt ein zeitlicher
Verlauf- die Historie des Defektes (Bild 6).
Die Zuordnung funktioniert zudem
ohne hochgenaue Lokalisierung des

Fahrzeugs aufder Schiene (GPS funktioniert

nicht im Tunnel) sowie bei lokal
ändernden Umgebungsmerkmalen.

Besonders durch temperaturbedingte
Ausdehnungen können sich das Gleisbett

und die relative Position eines Fehlers

zu dem umliegenden Gestein oder
den Gleisklammern verändern (Bild 7).
Dies wird durch Deep-Learning-Tech-
niken ermöglicht.

Bild 7 Ob durch Erdbeben oder Ausdehnung unter Wärmeeinfluss, Schienen können
manchmal spektakuläre Verformungen erfahren.
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Umgebung

Fahrstrom

Fahrdraht-Messung OLWMS

Fahrleitungsvideo OLVS

Fahrleitungstragwerk-Inspektion OLSIS

Fahrleitungskettenwerk-Inspektion OLCIS

Fahrleitungstragwerk-Detektion OLPDS

Fahrbahn

Gleisgeometrie-Messung TGMS

Schienenquerprofil-Messung RPMS

Schienenlängsprofil-Messung RCMS

Gleisoberflächen-Messung VCube TSMS

Gleisoberflächen-Inspektion VCube TSIS

Fahrflächen-Inspektion VCube RSIS

Fahrkanten-Inspektion GCIS

Weichen-Inspektion SMIS

Bild 8 Diagnosefahrzeuge ermöglichen eine grosse Anzahl unterschiedlicher Messungen.

Life-Long Learning
Der Mensch lernt durch seine Sinne

jeden Tag etwas Neues hinzu und
erweitert damit kontinuierlich seinen
Wissensschatz. Das gleiche Verhalten
wünschen wir uns von künstlicher
Intelligenz. Der Experte wird daher
auch in Zukunft gebraucht: Er fungiert
als Lehrer in dem kontinuierlichen Pro-

zess, um die Sicherheit und Zuverlässigkeit

auf der Schiene zu gewährleisten.

Nur dank seiner Erfahrung kann
die Software stetig dazulernen und auf
neu auftretende Defekte reagieren. Es

entsteht eine regelrechte Symbiose
zwischen Mensch und Maschine. Die
AI kann nicht nur Wissen aufbauen,
sondern auch transferieren. So werden
die entwickelten neuronalen
Netzwerke bereits heute bei den SBB für die
Ausbildung der jungen Streckeninspektoren

verwendet, indem der Computer

den Lernenden zeigt, was Defekte
sind, und die Grenzfälle aufzeigt, wo
sich selbst die Experten nicht ganz
einig sind.

Resultate
Das Projekt läuft seit zwei Jahren und
ist nun in der entscheidenden
Evaluationsphase. Die Verifizierung und statis¬

tische Auswertung der Algorithmen ist
herausfordernd. Es wurde eine
Teststrecke bestimmt, auf welcher durch
mehrere Testfahrten mit den
Diagnosefahrzeugen umfangreiche Daten
aufgenommen wurden. Dieselbe Strecke
wurde von mehreren Streckeninspektoren

unabhängig beurteilt. Die neue
Deep-Learning-Software musste
gegen klassische Algorithmen antreten,

die seit über zehn Jahren verfeinert
werden und weltweit im Einsatz
stehen. Die CSEM-Lösung verbessert die
Erkennungsrate um den Faktor 10 und
reduziert dabei die Fehlalarme
(False-Positives) um 50% im freien
Gelände und um 95 % in Tunnels. Diese

ausgezeichneten Resultate wurden
ohne Optimierung des neuronalen
Netzwerks erreicht. Dies wird nun in
der nächsten Phase mit vielen Daten
direkt vom Feld nahezu automatisch
verfeinert.

Ausblick
Dank den Diagnosefahrzeugen werden
die vermessenen Streckenkilometer
um ein Mehrfaches innert wenigen Jahren

erhöht. Um diese Datenflut meistern

zu können, braucht es Software
wie die von CSEM. Heute ist die Gleis¬

kontrolle traditionell reaktiv. Erst wenn
ein Fehler erkannt wird, kann er auch

repariert werden. Je nach Schwere des

Defekts muss dazu eine Strecke
kurzfristig gesperrt werden.

Die Hoffnung ist, dass die Wartung
von schadhaften Stellen in Zukunft
dank dem automatischen Erkennen und
dem Fingerprinting bereits im Voraus

geplant und damit das Systemverständnis
hinsichtlich den Zusammenhängen

der Infrastruktur und der Schadensentwicklung

weiter gesteigertwerden kann.
Das ultimative Ziel wäre es, diese
Software in einem Echtzeit-Bordüberwachungssystem

in jedem Zug (On-Board
Monitoring) zu betreiben.

Autoren
Philipp Schmid ist Head Robotics & Machine Learning am
CSEM und entwickelt mit seinem Team moderne Lösungen
für die Industrie.
-» CSEM, 6055 Alpnach
-» philipp.schmid@csem.ch

Joël Casutt ist Leiter Technologie und Entwicklung im
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Marcel Zurkirchen ist Leiter Mess- und Diagnosetechnik
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L'intelligenceartificielle
sur labonne voie
Le deep learning au service de la sécurité ferroviaire I Les CFF utilisent, entre
autres, des trains de diagnostic pour garantir le bon fonctionnement de leurs
infrastructures ainsi que la sécurité des usagers et de leurs employés. À bord, des
caméras photographient les voies ferrées à la recherche du moindre changement.
Afin d'optimiser l'évaluation des images saisies, les CFF recourent à l'intelligence
artificielle et travaillent en étroite collaboration avec le CSEM.

PHILIPP SCHMID, JOËL CASUTT, MARCEL ZURK

Les
rails représentent l'épine dor¬

sale du chemin de fer. Encastrés

pendant des décennies dans le lit
des voies, ils sont chaque jour soumis à

rude épreuve, et ce, non seulement par
un incessant ballet de trains de

voyageurs de différentes tailles et circulant
à des vitesses variables, mais aussi par
des convois de marchandises d'un
poids considérable. En Suisse, la division

Infrastructure des Chemins de fer
fédéraux suisses (CFF) exploite un
réseau de 3000 km, composé parfois de

lignes à plusieurs voies. L'effort requis
pour acheminer les clients en toute

48 bulletin.ch 9/2019

sécurité d'un point A à un point B est
énorme. Malgré cette tâche difficile, les

CFF affichent une ponctualité record
en Europe, avec un taux de plus de 9 o %.

Chaque jour, des inspecteurs des
voies des CFF parcourent à pied
l'infrastructure ferroviaire pour vérifier
visuellement son état et rechercher
d'éventuelles anomalies (figure 1). En

charge de l'intégralité du réseau
ferroviaire, ces quelque 50 collaborateurs
sont à la recherche d'environ 250 types
de défauts. Chaque année, près de

23 000 anomalies, souvent encore
complètement inoffensives, sont confir¬

mées. Celles-ci sont classées en fonction

de leur gravité et des mesures
appropriées sont mises en oeuvre.

Pour se révéler efficaces, les inspecteurs

des voies doivent disposer d'une
grande expérience et, idéalement, pouvoir

bénéficier de la lumière du jour. Les
trains circulant à une cadence de plus
en plus élevée, leur travail devient
toujours plus difficile, en particulier aux
heures de pointe; et ce, à tel point que
ce contrôle manuel n'est plus autorisé

par la loi sur les tronçons à grande
vitesse, comme le nouveau tunnel du

Saint-Gothard, durant les heures d'ex-

electrc#-" ySE
suisse Azo
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Figure 1 L'augmentation de la cadence des trains rend le travail des inspecteurs des

voies de plus en plus difficile.

ploitation. C'est pourquoi depuis
quelques années, les CFF utilisent
également des trains de mesure spéciaux,
appelés véhicules de diagnostic, dotés
des technologies de caméras et des

techniques de mesure les plus
modernes. La qualité de cette évaluation

automatique n'arrive toutefois pas
à égaler celle d'un expert. Les CFF et le

CSEM, un centre suisse de recherche et
de développement, se sont donc associés

pour «transposer» l'œil averti des

inspecteurs des voies dans un logiciel
robuste.

Les véhicules de diagnostic
Les CFF exploitent actuellement deux

types de véhicules de diagnostic: un
véhicule automoteur (figure 2a) et un
véhicule tracté (figure 2b). Ces
véhicules se déplacent sur les rails à des

vitesses pouvant atteindre 200 km/h,
procédant à des mesures sur le lit de

ballast, les voies, les lignes de contact et
les tunnels. Équipés de 18 caméras et de

20 écrans, ils peuvent accueillir jusqu'à
quatre ingénieurs de mesure. Toutes les

données sont stockées en temps réel,
mais peuvent également être affichées

en direct pour contrôle dans le train de

mesure (figure 3). Chaque kilomètre
livre ainsi environ 10 GB de données,
soit l'équivalent d'un livre de 5 millions
de pages. Pas de doute, le stockage et le
traitement de cette masse d'informations

relèvent du « big data ».

Les données
Jusqu'à présent, ces montagnes de données

étaient traitées avec des méthodes
traditionnelles, livrant trop de diagnostics

erronés. Contrairement au contrôle
de qualité dans un environnement
industriel, ici les conditions d'observation

varient, car les rails se trouvent à

l'air libre et sont ainsi exposés à toutes
sortes d'influences environnementales :

• la météo: pluie, neige, boue, givre;
• les abords: tunnel, gare, ville, forêt,

pont;
• les artefacts: saleté, excréments

d'animaux, plantes, chewing-gums
ou mégots de cigarettes;

• les types: différences dans la géométrie

des voies, des aiguillages et des

profils.
Développer un algorithme classique

pour l'évaluation de toutes ces variations

est pratiquement impossible. De
tels algorithmes sont certes faciles à

appréhender et très puissants dans le

traitement des données numériques,
mais confrontés à des descriptions
floues, ils sont inefficaces. Et c'est justement

le cas lors de défauts à la surface
des rails. Leur forme, leur texture ou
leur ombrage se révèlent toujours
inédits. Un expert peut très bien s'en accommoder,

puisqu'il n'a pas besoin d'un

modèle mathématique pour reconnaître
un défaut. Il a en effet acquis beaucoup
d'expérience au fil des années, ce qui
l'aide à effectuer inconsciemment la
classification. C'est dans ce type de

situation que le deep learning (ou
l'apprentissage profond) entre en scène.

Le deep learning
Le deep learning est un domaine de

l'intelligence artificielle (AI ou artificial

intelligence). De grands réseaux

neuronaux (profonds) sont entraînés
grâce à des méthodes d'apprentissage
inspirées du fonctionnement du
cerveau humain. Le deep learning permet
de transférer les connaissances et
l'expérience d'un expert dans un logiciel
afin de former les algorithmes
d'apprentissage. Pour ce faire, il faut de

grandes quantités de données caractérisées,

soit des images évaluées et
étiquetées par des experts. Le grand avantage:

l'algorithme identifie lui-même

ifcj SB3OTFFS

Figure 2 Véhicule de diagnostic des CFF (a) et véhicule de diagnostic tracté (b).
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Figure 3 A l'intérieur d'un véhicule de diagnostic.

g
Train

g ^1 9
Classification Fingerprint Expert

Figure 4 Vue schématique du traitement des données.

les caractéristiques importantes et
détermine ainsi automatiquement le

meilleur modèle mathématique; en
bref, il développe sa propre expérience.

Pour livrer de meilleurs résultats, le

nouveau logiciel du CSEM réalise un
processus composé de plusieurs étapes

(figure 4):
• prétraitement et clustering (parti-

tionnement des données) ;

• détection d'anomalies;
• classification;
• fingerprinting : calcul des «empreintes

digitales» des défauts ou anomalies;

• amélioration continue par
l'implication d'experts (apprentissage
continu).

L'un des principaux défis à relever
réside dans le fait que les données
étiquetées disponibles pour entraîner le

système sont relativement peu
nombreuses. Par ailleurs, pour certaines
catégories de défauts, il est très difficile,
même pour des experts, d'établir une

classification claire. C'est pourquoi des

outils spéciaux ont été développés pour
aider ces derniers à exploiter au mieux
leurs connaissances et leur expérience.
Ces outils ont rapidement permis de

décupler la base de données et de faire
des recoupements entre experts. Les

cas limites ont été discutés au sein de

l'équipe avant d'être définitivement
évalués. Cette étape essentielle montre
que ces nouvelles technologies ne

peuvent pas se passer de l'expertise
humaine.

Prétraitement et clustering
Toutes les données relevées dans le train
rejoignent une base de données centralisée

des CFF où elles sont converties
dans un format propre à la compagnie.
Les CFF peuvent ainsi afficher
différentes données en parallèle,
indépendamment de leurs sources. Ainsi, outre
les données livrées par les véhicules de

diagnostic, des données de drones, des

photos d'experts ou des données de

mesure de laboratoire peuvent être
combinées les unes avec les autres. Une fois
sur le serveur, les données sont passées
à travers différents filtres, standardisées
et réparties dans différentes catégories
(clustering). Les images prises dans un
tunnel sont en effet traitées différemment

de celles de rails prises à l'air libre
ou dans une gare.

Détection d'anomalies
L'étape suivante consiste à rechercher
les anomalies, à savoir tout ce qu'une

personne non formée pourrait aussi

remarquer en observant un rail: saleté,
feuilles, chewing-gums, défauts,
soudures, etc. Pour éviter qu'un défaut ne

passe inaperçu, les algorithmes ont
tendance à détecter trop d'anomalies. Ils
peuvent gérer une variété de défauts
quasi infinie et détecter de manière
fiable des défauts inconnus. Pour maintenir

le nombre d'alarmes à un bas

niveau, l'étape suivante est primordiale.

Classification
Toutes les anomalies détectées ne
présentent pas le même degré de dangero-
sité. Il est notamment crucial de distinguer

les défauts les plus délicats: les

« squats ». Ces derniers sont très difficiles

à détecter sur la surface des rails:
de manière analogue à une carie dans

une dent, une cavité apparaît à l'intérieur

du rail et se développe toujours
plus profondément. Si le «squat» est
visible sur la surface, il doit être réparé
relativement rapidement.

Afin de différencier les défauts réels
des anomalies non critiques, une
classification exacte est donc nécessaire

(figure5). Six classes différentes ont été

répertoriées dans ce projet, allant de
1'«absence de danger» (chewing-gum,
fientes d'oiseaux) aux défauts plus
importants («squats»). Cette étape
représente la différence majeure avec
les algorithmes classiques. Pour obtenir
de bons résultats, le CSEM a travaillé
pendant des mois en étroite collaboration

avec les experts des CFF. C'est
grâce aux connaissances de ces
derniers qu'il a été possible d'entraîner un
réseau neuronal à effectuer cette
classification avec succès.

Fingerprinting
L'algorithme se révèle déjà très fiable

pour identifier et classifier les défauts
liés aux artefacts. Les CFF ne peuvent
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Soudure Particule de plastique Défaut à la surface Chewing gum Squat Patinage des roues

Figure 5 Différents types de défauts.

Novembre 2016 Février 2017 Avril 2017 Mai 2017 Juin 2017 Août 2017

Figure 6 Suivi temporel d'un défaut (fingerprinting).

toutefois pas encore s'appuyer exclusivement

sur lui, car le réseau de voies
ferrées est un élément essentiel en
matière de sécurité et il est soumis à

une réglementation fédérale stricte. En

conséquence, la décision finale quant à

savoir si et quand un défaut doit être
contrôlé sur place ou réparé reste du
ressort des inspecteurs des voies.

Les véhicules de diagnostic
empruntent le même itinéraire une fois

par mois. De ce fait, les mêmes anomalies

et défauts sont constamment détectés

et devraient donc également
toujours être évalués par un expert.
Beaucoup de défauts se développant
très lentement, l'intervention ne doit
pas forcément être immédiate et sera
planifiée opportunément. Afin d'éviter
que des défauts déjà enregistrés dans le

système de maintenance ne
réapparaissent systématiquement, un procédé
de suivi dans le temps, le fingerprinting,

a été mis au point: lorsque l'Ai
détecte un défaut, son « empreinte digitale

» est calculée de manière à le
caractériser formellement. Dès lors, quand le

train repasse à cet endroit, il est clairement

reconnu et classifié en tant que
donnée connue, ce qui permet de disposer

d'un suivi temporel, ou d'un historique,

de chaque défaut (figure 6). Pour
ce faire, il s'agit de surmonter les
problèmes d'imprécision de localisation

du véhicule sur le rail (le GPS ne
fonctionnant pas dans les tunnels) et d'évolution

des caractéristiques environnementales

locales; le lit de la voie et la

position relative d'un défaut par rapport
à la roche environnante ou aux colliers
de serrage de la voie peuvent effective¬

ment varier considérablement, et ce,
particulièrement en cas de dilatation
induite par la température (figure 7).
Des techniques basées sur le deep
learning sont donc également utilisées pour
calculer l'empreinte digitale de manière
fiable.

Figure 7 Que cela soit dû à des phénomènes sismiques ou à la dilatation sous l'effet de

la chaleur, les rails peuvent subir des déformations parfois spectaculaires.
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Environnement

Voie ferrée

Mesure de la géométrie de la voie TGMS
Mesure du profil transversal du rail RPMS

Mesure du profil longitudinal du rail RCMS

Mesure de la surface de la voie VCube TSMS

Inspection de la surface de la vole VCube TSIS

Inspection des surfaces de roulement VCube RSIS

Inspection des Joues de roulement GCIS

Inspection des appareils de voie SMIS Balises

Diagnostic DETCS des balises ETCS

Mesure des balises SIMS

Inspection des balises SIMS

Courant de traction

Mesure du fil de contact OLWMS
Vidéo de la caténaire OLVS

Inspection de la structure de support de
caténaire OLSIS

Inspection des caténaires OLCIS

Détection de la structure de support de la

caténaire OLPDS

Vidéo de l'environnement vers l'avant et
vers l'arrière TVS

Figure 8 Les véhicules de diagnostic permettent d'effectuer un grand nombre de mesures différentes.

Apprentissage continu
Chaque jour, l'être humain apprend
quelque chose de nouveau grâce à ses

sens. Il élargit ainsi continuellement
ses connaissances. Nous attendons la
même chose de l'intelligence
artificielle. En tant qu'enseignant dans un
processus continu destiné à assurer
sécurité et fiabilité sur les rails, l'expert
restera indispensable. Ce n'est que
grâce à son apport que le logiciel pourra
constamment apprendre et réagir à de

nouveaux défauts. Il en découle une
véritable symbiose entre l'homme et la
machine.

L'intelligence artificielle peut non
seulement acquérir des connaissances,
mais aussi les transférer. Les réseaux

neuronaux développés sont en effet
déjà utilisés par les CFF pour la formation

des jeunes inspecteurs de voies.
L'ordinateur leur montre ce que sont les

défauts et quels sont les cas limites pour
lesquels les experts eux-mêmes ne sont

pas unanimes.

Résultats
Le projet a démarré il y a deux ans et se

trouve maintenant dans la phase
cruciale de l'évaluation. La vérification et
l'appréciation statistique des algo¬

rithmes ne sont pas faciles. Un tronçon
d'essai a été défini, sur lequel de multiples

trajets ont été réalisés avec différents

véhicules de diagnostic pour relever

de nombreuses données (figure 8).
En parallèle, le même tracé a fait l'objet
d'une évaluation indépendante par
plusieurs inspecteurs des voies. Le
nouveau logiciel de deep learning a été mis
en concurrence avec les algorithmes
classiques, perfectionnés depuis plus
de 10 ans et utilisés dans le monde
entier. La solution du CSEM améliore le

taux de détection d'un facteur 10 et
réduit en outre les fausses alertes de

50 % en plein air et de 95 % dans les
tunnels. Qui plus est, ces excellents résultats

ont été obtenus sans l'optimisation
du réseau neuronal. Ce dernier va à

présent être affiné quasi automatiquement
dans la phase suivante du projet grâce à

un grand nombre de données provenant

directement du terrain.

Perspectives
En quelques années, les nouveaux
véhicules de diagnostic permettront de

multiplier par quatre les kilomètres de

tronçons mesurés. Pour maîtriser ce
flux de données, des logiciels tels que
celui du CSEM sont requis. Aujourd'hui

le contrôle des voies est traditionnellement

réactif. Un défaut ne peut être
réparé qu'une fois détecté. Et selon sa

gravité, l'intervention peut nécessiter à

court terme la fermeture d'un tronçon.
En misant sur la détection automatique

et le fingerprinting, on espère à

l'avenir pouvoir anticiper et planifier la

maintenance bien à l'avance. En
comprenant mieux comment et où les

défauts surgissent, en tirant des conclusions

et en prenant les mesures nécessaires,

on peut même aspirer à réduire
fondamentalement le nombre de ces
défauts. L'objectif ultime serait d'utiliser

ce logiciel en temps réel, dans un
système de surveillance embarqué à

bord de chaque train.
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Blaulichtschädigung: Wird LED-Beleuchtung schlechtgeredet?

Photobiologische Sicherheit - Was ist zentral für die Praxis?

Christoph Schierz,TU lllmenau
Seit die LED die Glühlampe abgelöst hat und in Zukunft auch die
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