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Kiinstliche Intelligenz
auf Schienen

Deep Learning sorgt fiir Sicherheit | Um die Funktionsfahigkeit ihrer Infrastruktur
sowie die Sicherheit der Fahrgaste und des Personals sicherzustellen, setzen die
Schweizerischen Bundesbahnen (SBB) unter anderem spezielle Diagnoseziige ein.
Mehrere Kameras auf diesen Zugen nehmen Bilder der Gleise auf. Um die Bilder
optimal auswerten zu koéonnen, setzen die SBB auf kunstliche Intelligenz und
arbeiten eng mit dem CSEM zusammen.

PHILIPP SCHMID, JOEL CASUTT, MARCEL ZURKIRCHEN

as Riickgrat der Eisenbahn sind
Ddie Schienen. Sie liegen jahr-
zehntelang im Gleisbett und
werden jeden Tag arg strapaziert: nicht
nur von Personenziigen in unterschied-
lichen Grossen und mit unterschiedli-
chen Geschwindigkeiten, sondernauch
von tonnenschweren Giiterziligen. Die
Division Infrastruktur der SBB betreibt
in der Schweiz ein Streckennetz von
rund 3000 km Linge mit teils mehr-
spurigen Gleisen.
Der Aufwand, um die Kunden sicher
von A nach B zu bringen, ist enorm.
Trotz dieser schwierigen Aufgabe
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erreichen die SBB die beste Kunden-
plinktlichkeit im europdischen Ver-
gleich von tiber 90 %.

Téglich gehen Mitarbeiter der SBB
den Gleisen entlang und tiberpriifen den
Fahrweg visuell auf mogliche Abwei-
chungen (Bild 1). Dadurch wird unter
anderem der Zustand der Gleise {iber-
priift und Defekte friithzeitig erkannt.
Rund 50 Mitarbeiter sind fiir das kom-
plette Schienennetz verantwortlich und
inspizieren die Fahrweginfrastruktur
auf iiber 250 mogliche Fehlerarten.
Zusammen ergibt dies pro Jahr etwa
23000 bestdtigte Auffilligkeiten, von

denen die meisten unkritisch sind.
Diese werden anhand ihres Schweregra-
des klassifiziert, und entsprechende
Massnahmen werden eingeleitet.

Fiir eine effiziente Beurteilung nutzen
die Streckeninspektoren idealerweise
Tageslicht. Da die Ziige in einem immer
hoheren Takt fahren, wird die Inspek-
tion fiir die Mitarbeiter besonders wih-
rend der Stosszeiten immer anspruchs-
voller. Auf Strecken mit erhohter
Geschwindigkeit, wie der Neubaustre-
cke sowie dem neuen Gotthardbasis-
tunnel, istdie manuelle Streckeninspek-
tion wiahrend dem laufenden Betrieb
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nicht gestattet. Ausserdem braucht es
sehr grosse Erfahrung, um die Auffal-
ligkeiten korrekt beurteilen zu konnen.
Aus diesen Griinden sowie zur Steige-
rung der Effizienz setzen die SBB seit
einigen Jahren neben den menschlichen
Streckeninspektoren spezielle Mess-
zlige ein, sogenannte Diagnosefahr-
zeuge (DFZ), die vollgepackt mit neus-
ter Kamera- und Messtechnologie sind.

Die Qualitat der automatischen Aus-
wertung ist hier noch nicht so weit aus-
gereift wie die Analyse durch einen
menschlichen Experten, und bedarf
heute noch der manuellen Nachprii-
fung der Daten. Wie bringt man nun
die Erfahrung der Experten in eine
robuste Software?

Diagnosefahrzeug-Typen

Die SBB betreiben aktuell zwei unter-
schiedliche Diagnosefahrzeuge
(Bild 2): ein selbstfahrendes (DFZ) und
ein gezogenes (gDFZ) mit je bis zu 18
Hochleistungskameras. Mit Geschwin-
digkeiten von bis zu 200 km/h fahren
die Systeme {iber die Schienen und fiih-
ren dabei Messungen an Schotterbett,
Gleiskonstruktion, Fahrleitungen und
Tunnelbauten aus. Alle Daten werden
in vollem Tempo gespeichert und kon-
nenbeiBedarfauch zur Priifung live im
Messzug dargestellt werden (Bild 3). So
kommen etwa 10 GB Daten pro Kilo-
meter zusammen. Diese Datenmenge
entspricht etwa § Millionen Buchseiten
Text-fiirjeden Kilometer. Die Speiche-
rung und Verarbeitung solcher gewalti-
ger Datenmengen fillt unter «Big
Data».

Daten

Bisher wurden diese Datenmengen mit
klassischen Ansitzen ausgewertet.
Diese liefern jedoch zu viele falsche
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Bild 2 a) Selbstfahrendes und b) gezogenes Diagnosefahrzeug.

zunehmend.

Befunde. Eine Herausforderung gegen-

iber der Qualitdtskontrolle in der

industriellen Produktion liegt in der

enormen Variation. Die Schienen lie-

gen in der freien Natur und sind damit

allen Umwelteinfliissen ausgesetzt:

® Wetter: Regen, Schnee, Matsch, Ver-
eisung

® Umgebung: Tunnel, Bahnhof, Stadt,
Wald, Briicke

® Artefakte: Dreck, Tierkot, Pflanzen,
weggeworfene Kaugummis oder
Zigarettenstummel

® Typen: unterschiedliche Gleisgeo-
metrien, Weichen, Profil.

Die Entwicklung eines klassischen

Algorithmus zur Auswertung all dieser

Variationen ist praktisch unmoglich.

Solche Algorithmen konnen zwar leicht

verstanden werden und sind sehr leis-

tungsfihig im Umgang mit numeri-

schen Daten. Jedoch gibt es im Fall von

Defekten auf der Schienenoberfliche

keine klaren numerischen Beschrei-
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Bild 1 Die Erhohung des Taktes der Ziige erschwert die Arbeit der Gleisinspektoren
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bungen, denn Form, Textur oder Schat-
tierung der Defekte sind jedes Mal
unterschiedlich. Ein menschlicher
Experte kann damit noch sehr gut
umgehen, er braucht kein mathemati-
sches Modell, um einen Defekt zu
erkennen. Er hat sich iiber viele Jahre
die notwendige Erfahrung angeeignet,
welche ihm hilft, die Klassifizierung
sicher vorzunehmen. Genau hier
kommt Deep Learning ins Spiel.

Deep Learning

Deep Learning ist eine Doméne der
Artificial Intelligence (AI, Kiinstliche
Intelligenz). Es werden grosse (tiefe)
neuronale Netzwerke trainiert, die
Lernmethoden imitieren dabei die
Funktionsweise des menschlichen
Gehirns. Deep Learning ermdglicht,
das Wissen und die Erfahrung eines
Experten in Software zu iibertragen.
Das erfordert grosse Mengen (100 bis
10000 Bilder) von gekennzeichneten
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Bild 3 Im Innern eines Diagnosefahrzeugs.

a

Train |

j

|
%
Preprocess {

Classification

®

o

Clustering

i)

| et e . o= | Liteong
! | Learning

Bild 4 Schematische Darstellung der Datenverarbeitung.

Daten - das heisst von Experten beur-
teilte und markierte Bilder. Der grosse
Vorteil ist, dass der Algorithmus selbst
identifiziert, welches die wichtigen
Merkmale sind und so das beste mathe-
matische Modell automatisch festlegt:
Der Algorithmus baut sich seine eigene
Erfahrung auf.

Hierfiir hat das CSEM, ein schweize-
risches Forschungs- und Entwick-
lungs-Zentrum, fiir die SBB eine neue
Software entwickelt, welche beziiglich
der hohen Qualititsanforderungen
richtungsweisend ist. Diese besteht aus
mehreren Modulen (Bild 4):
® Vorverarbeitung und Clustering
® Detektion von Auffilligkeiten
® Klassifikation
® Fingerprinting
® Kontinuierliche Verbesserungen

durch Einbinden von Experten (Life-

Long Learning)

Eine der grossten Herausforderungen
besteht darin, dass nur relativ wenige
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Trainingsdaten zur Verfiigung stehen
und es bei bestimmten Fehlerkatego-
rien selbst fiir Experten sehr schwierig
ist, eine eindeutige Klassifizierung vor-
nehmen zukonnen. Um das Wissen und
die Erfahrung der SBB-Experten mog-
lichst einfach abbilden zu konnen, wur-
den spezielle Werkzeuge entwickelt.
Diese erlaubten es in kurzer Zeit, die
Datenbasis zu verzehnfachen und die
Einschétzungen der Experten unterei-
nander abzugleichen. Alle Grenzfille
wurden im Team besprochen und erst
danach bewertet. Dieser wichtige
Schritt zeigt, dass es auch bei der
Anwendung neuster Technologien den
Menschen als letzte Instanz braucht.

Vorverarbeitung und Clustering

Alle Messdaten werden vom Zug auf
eine zentrale Datenbank der SBB tiber-
tragen und in ein spezifisches SBB-Da-
teiformat konvertiert. Die SBB kdnnen
so verschiedene, von der Quelle unab-

hingige Daten parallel darstellen. So
kénnen neben den Daten von den Dia-
gnosefahrzeugen auch Daten von Droh-
nen, Fotosvon Experten oder Messdaten
aus dem Labor miteinander kombiniert
und weitere Datenkorellationen ermog-
licht werden. Liegen die Bilddaten auf
dem Server, werden sie in einem ersten
Schritt durch verschiedene Filter vorver-
arbeitet, normalisiert und in einzelne
Klassen aufgeteilt (Clustering).

Detektion von Auffilligkeiten

In einem nachsten Schritt wird nach
Auffilligkeiten (Anomalien) gesucht.
Anomalien sind alles, was auch einem
nicht geschulten Menschen auf einer
Schiene beim Betrachten auffallen
wirde - Dreck, Blitter, Kaugummis,
Defekte, Schweissniahte usw. Um
sicherzustellen, dass kein Fehler tiber-
sehen wird, tendieren diese Algorith-
men dazu, zu viele Auffalligkeiten zu
detektieren. Sie konnen dafiir mit einer
nahezu unendlichen Variation umge-
henund auch unbekannte Fehler zuver-
lassig erkennen. Um die Anzahl der
Alarme tiefzu halten, wird der folgende
Schritt benotigt.

Klassifikation

Um echte Defekte von unkritischen
Fahrbahnzustianden zu unterscheiden,
ist eine exakte Klassifikation notig. In
dem Projekt werden sechs verschie-
dene Klassen unterschieden. Von
«keine Gefahr» (Kaugummi, Vogel-
dreck) zu den heikelsten Fehlern, den
sogenannten Squats (Bild5). Diese
Defekte sind an der Oberflache nur
sehr schwer zuerkennen: Analog einem
Zahn mit Karies entsteht im Inneren
ein Hohlraum, der sich immer tiefer in
die Schiene hineinfrisst. Der grosse
Unterschied zu klassischen Algorith-
men liegt in der Klassifizierung von
Objekttypen mit hoher intrinsischer
Varianz. Fiir gute Resultate wurde iiber
Monate sehr eng mit den Experten der
SBB zusammengearbeitet. Erst dank
ihrem Wissen konnte ein neuronales
Netzwerk fiir die Klassifizierung
erfolgreich trainiert werden.

Fingerprinting

Der Algorithmus kann bereits sehr
zuverldssig Schiaden von Artefakten auf
den Gleisen unterscheiden und klassi-
fizieren. Das Gleisnetz ist sicherheits-
relevant und unterliegt strikten Vor-
schriften. Deshalb konnen sich die SBB
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Lotstelle Plastikteil

Bild 5 Fehlerklassen.

Oberflachenschaden Kaugummi

Durchdrehen von Rad

Squat

November 2016 Februar 2017

April 2017 Mai 2017

Bild 6 Zeitlicher Verlauf eines mit Fingerprinting gefundenen Fehlers.

nicht ausschliesslich auf einen Algo-
rithmus verlassen. Die finale Entschei-
dung, ob und wann ein Defekt vor Ort
gepriift und repariert werden soll,
bleibt bei den Streckeninspektoren.

Je nach Streckenabschnitt kommen
die Diagnosefahrzeuge alle 14 Tage
zum Einsatz. Hierbei werden immer
wieder die gleichen Auffilligkeiten
gefunden -die dann erneut durch einen
Experten bewertet werden miissten und
Zusatzaufwand generieren. Viele Auf-
falligkeiten entwickeln sich nur sehr
langsam tiiber die Zeit zu Defekten, so
dass von der Entdeckung bis hin zur
Reparatur, bei Defekten mit geringer
Kritikalitat, bis zu sechs Monate verge-
henkonnen. Wahrend dieser Zeitistder
Defekt bereits im Instandhaltesystem
registriert und sollte, bis zur gebiindel-
ten Behebung «optimierte Instandhal-
tung» mit anderen Defekten, nicht
immer wieder als neuer Fehler bei der
Auswertung auftauchen. Dazu wurde
das Fingerprinting entwickelt. Das Ziel
ist die Verfolgung von Defekten iiber
die Zeit. Erkennt die Al einen Defekt,
wird ein Fingerabdruck berechnet, der
den Defekt eindeutig kennzeichnet.
Fahren die Diagnosefahrzeuge spiter
wieder tiber diesen Fehler, kann anhand
des Fingerabdrucks der Defekt einem
bereits bekannten Defekt eindeutig
zugeordnet werden. Dadurch ergibt

VS=
T

sich fiir jeden Defekt ein zeitlicher Ver-
lauf-die Historie des Defektes (Bild 6).
Die Zuordnung funktioniert zudem
ohne hochgenaue Lokalisierung des
Fahrzeugs auf der Schiene (GPS funkti-
oniert nicht im Tunnel) sowie bei lokal
andernden Umgebungsmerkmalen.

3

Juni 2017 August 2017

Besonders durch temperaturbedingte
Ausdehnungen konnen sich das Gleis-
bett und die relative Position eines Feh-
lers zu dem umliegenden Gestein oder
den Gleisklammern veridndern (Bild 7).
Dies wird durch Deep-Learning-Tech-
niken ermoglicht.

. et

Bild 7 Ob durch Erdbeben oder Ausdehnung unter Warmeeinfluss, Schienen kénnen

manchmal spektakuldre Verformungen erfahren.
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Fahrstrom

Fahrdraht-Messung OLWMS
Fahrleitungsvideo OLVS
Fahrleitungstragwerk-Inspektion OLSIS
Fahrleitungskettenwerk-Inspektion OLCIS
Fahrleitungstragwerk-Detektion OLPDS

Fahrbahn

Gleisgeometrie-Messung TGMS
Schienenguerprofil-Messung RPMS
Schienenlangsprofil-Messung RCMS
Gleisoberflachen-Messung VCube TSMS
Gleisoberflachen-Inspektion VCube TSIS
Fahrflachen-Inspektion VCube RSIS
Fahrkanten-Inspektion GCIS
Weichen-Inspektion SMIS

Bild 8 Diagnosefahrzeuge ermdglichen eine grosse Anzahl unterschiedlicher Messungen.

Life-Long Learning

Der Mensch lernt durch seine Sinne
jeden Tag etwas Neues hinzu und
erweitert damit kontinuierlich seinen
Wissensschatz. Das gleiche Verhalten
wiinschen wir uns von kiinstlicher
Intelligenz. Der Experte wird daher
auch in Zukunft gebraucht: Er fungiert
als Lehrerin dem kontinuierlichen Pro-
zess, um die Sicherheit und Zuverlas-
sigkeit auf der Schiene zu gewihrleis-
ten. Nur dank seiner Erfahrung kann
die Software stetig dazulernen und auf
neu auftretende Defekte reagieren. Es
entsteht eine regelrechte Symbiose
zwischen Mensch und Maschine. Die
Al kann nicht nur Wissen aufbauen,
sondern auch transferieren. So werden
die entwickelten neuronalen Netz-
werke bereits heute bei den SBB fiir die
Ausbildung der jungen Streckenin-
spektoren verwendet, indem der Com-
puter den Lernenden zeigt, was Defekte
sind, und die Grenzfille aufzeigt, wo
sich selbst die Experten nicht ganz
einig sind.

Resultate

Das Projekt lauft seit zwei Jahren und
istnunin der entscheidenden Evaluati-
onsphase. Die Verifizierung und statis-

bulletinch 9/2019
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Balisen

ETCS Balisen-Diagnose DETCS
Balisen-Messung SIMS
Balisen-Inspektion SIMS

tische Auswertung der Algorithmen ist
herausfordernd. Es wurde eine Test-
strecke bestimmt, auf welcher durch
mehrere Testfahrten mit den Diagno-
sefahrzeugen umfangreiche Daten auf-
genommen wurden. Dieselbe Strecke
wurde von mehreren Streckeninspek-
toren unabhingig beurteilt. Die neue
Deep-Learning-Software  musste
gegen klassische Algorithmen antre-
ten, die seit liber zehn Jahren verfeinert
werden und weltweit im Einsatz ste-
hen. Die CSEM-L0osung verbessert die
Erkennungsrate um den Faktor 10 und
reduziert dabei die Fehlalarme (Fal-
se-Positives) um 50% im freien
Gelande und um 95% in Tunnels. Diese
ausgezeichneten Resultate wurden
ohne Optimierung des neuronalen
Netzwerks erreicht. Dies wird nun in
der ndchsten Phase mit vielen Daten
direkt vom Feld nahezu automatisch
verfeinert.

Ausblick

Dankden Diagnosefahrzeugen werden
die vermessenen Streckenkilometer
um ein Mehrfachesinnert wenigen Jah-
ren erhoht. Um diese Datenflut meis-
tern zu konnen, braucht es Software
wie die von CSEM. Heute ist die Gleis-
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kontrolle traditionell reaktiv. Erst wenn
ein Fehler erkannt wird, kann er auch
repariert werden. Je nach Schwere des
Defekts muss dazu eine Strecke kurz-
fristig gesperrt werden.

Die Hoffnung ist, dass die Wartung
von schadhaften Stellen in Zukunft
dank dem automatischen Erkennen und
dem Fingerprinting bereits im Voraus
geplant und damit das Systemverstand-
nis hinsichtlich den Zusammenhingen
der Infrastruktur und der Schadensent-
wicklung weiter gesteigert werden kann.
Das ultimative Ziel wire es, diese Soft-
ware in einem Echtzeit-Bordiiberwa-
chungssystem in jedem Zug (On-Board
Monitoring) zu betreiben.
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L'intelligence artificielle
sur labonne voie

Le deep learning au service de la sécurité ferroviaire | Les CFF utilisent, entre
autres, des trains de diagnostic pour garantir le bon fonctionnement de leurs
infrastructures ainsi que la sécurité des usagers et de leurs employés. A bord, des
cameras photographient les voies ferrées a la recherche du moindre changement.
Afin doptimiser I'évaluation des images saisies, les CFF recourent a l'intelligence

artificielle et travaillent en étroite collaboration avec le CSEM.

PHILIPP SCHMID, JOEL CASUTT, MARCEL ZURKIRCHEN

es rails représentent 1’épine dor-
I sale du chemin de fer. Encastrés

pendant des décennies dans le lit
des voies, ils sont chaque jour soumis a
rude épreuve, et ce, non seulement par
un incessant ballet de trains de voya-
geurs de différentes tailles et circulant
a des vitesses variables, mais aussi par
des convois de marchandises d’un
poids considérable. En Suisse, la divi-
sion Infrastructure des Chemins de fer
fédéraux suisses (CFF) exploite un
réseaude 3000 km, composé parfois de
lignes a plusieurs voies. Leffort requis
pour acheminer les clients en toute
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sécurité d’un point A & un point B est
énorme. Malgré cette tache difficile, les
CFF affichent une ponctualité record
en Europe,avecuntauxde plusde 90 %.

Chaque jour, des inspecteurs des
voies des CFF parcourent a pied I'in-
frastructure ferroviaire pour vérifier
visuellement son état et rechercher
d’éventuelles anomalies (figure 1). En
charge de 'intégralité du réseau ferro-
viaire, ces quelque 50 collaborateurs
sont & la recherche d’environ 250 types
de défauts. Chaque année, pres de
23000 anomalies, souvent encore com-
plétement inoffensives, sont confir-

meées. Celles-ci sont classées en fonc-
tion de leur gravité et des mesures
appropriées sont mises en ceuvre.

Pour se révéler efficaces, les inspec-
teurs des voies doivent disposer d’'une
grande expérience et, idéalement, pou-
voir bénéficier de lalumiére dujour. Les
trains circulant a une cadence de plus
en plus élevée, leur travail devient tou-
jours plus difficile, en particulier aux
heures de pointe; et ce, a tel point que
ce contrdle manuel n’est plus autorisé
par la loi sur les trongons a grande
vitesse, comme le nouveau tunnel du
Saint-Gothard, durant les heures d’ex-
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ploitation. C’est pourquoi depuis
quelques années, les CFF utilisent éga-
lement des trains de mesure spéciaux,
appelés véhicules de diagnostic, dotés
des technologies de caméras et des
techniques de mesure les plus
modernes. La qualité de cette évalua-
tion automatique n’arrive toutefois pas
aégaler celle d’un expert. Les CFF et le
CSEM, un centre suisse de recherche et
de développement, se sont donc asso-
ciés pour «transposer » I'ceil averti des
inspecteurs des voies dans un logiciel
robuste.

Les véhicules de diagnostic

Les CFF exploitent actuellement deux
types de véhicules de diagnostic: un
véhicule automoteur (figure 2a) et un
véhicule tracté (figure 2b). Ces véhi-
cules se déplacent sur les rails a des
vitesses pouvant atteindre 200 km/h,
procédant a des mesures sur le lit de
ballast, les voies, leslignes de contact et
les tunnels. Equipés de 18 caméras et de
20 écrans, ils peuvent accueillir jusqu’a
quatre ingénieurs de mesure. Toutes les
données sont stockées en temps réel,
mais peuvent également étre affichées
en direct pour contrdle dans le train de
mesure (figure 3). Chaque kilométre
livre ainsi environ 10 GB de données,
soit’équivalent d’un livre de § millions
de pages. Pas de doute, le stockage et le
traitement de cette masse d’informa-
tions relevent du « big data ».

Les données

Jusqu’a présent, ces montagnes de don-
nées étaient traitées avec des méthodes
traditionnelles, livrant trop de diagnos-
tics erronés. Contrairement au controle
de qualité dans un environnement
industriel, ici les conditions d’observa-
tion varient, car les rails se trouvent a

Vs= T
ASS el

SECURITE | PANORAMA

=

Figure 1 L'augmentation de la cadence des trains rend le travail des inspecteurs des

voies de plus en plus difficile.

lair libre et sont ainsi exposés a toutes
sortesd’influences environnementales:
® la météo: pluie, neige, boue, givre;
® les abords: tunnel, gare, ville, forét,
pont;
® les artefacts: saleté, excréments
d’animaux, plantes, chewing-gums
oumeégots de cigarettes;
® les types: différences dans la géomeé-
trie des voies, des aiguillages et des
profils.
Développer un algorithme classique
pour I’évaluation de toutes ces varia-
tions est pratiquement impossible. De
tels algorithmes sont certes faciles a
appréhender et tres puissants dans le
traitement des données numériques,
mais confrontés a des descriptions
floues, ils sont inefficaces. Et c’est juste-
ment le cas lors de défauts a la surface
des rails. Leur forme, leur texture ou
leur ombrage se révélent toujours iné-
dits. Unexpertpeut trés bien s’enaccom-
moder, puisqu’il n’a pas besoin d’'un

modele mathématique pour reconnaitre
un défaut. 1l a en effet acquis beaucoup
d’expérience au fil des années, ce qui
l'aide & effectuer inconsciemment la
classification. C’est dans ce type de
situation que le deep learning (ou ’ap-
prentissage profond) entre en scéne.

Le deep learning

Le deep learning est un domaine de
'intelligence artificielle (Al ou artifi-
cial intelligence). De grands réseaux
neuronaux (profonds) sont entrainés
grice a des méthodes d’apprentissage
inspirées du fonctionnement du cer-
veau humain. Le deep learning permet
de transférer les connaissances et 'ex-
périence d’un expert dans un logiciel
afin de former les algorithmes d’ap-
prentissage. Pour ce faire, il faut de
grandes quantités de données caracté-
risées, soit des images évaluées et éti-
quetées par des experts. Le grand avan-
tage: l'algorithme identifie lui-méme
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Figure 3 A l'intérieur d’'un véhicule de diagnostic.
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Figure 4 Vue schématique du traitement des données.

les caractéristiques importantes et

détermine ainsi automatiquement le

meilleur modeéle mathématique; en

bref, il développe sa propre expérience.
Pour livrer de meilleurs résultats, le

nouveau logiciel du CSEM réalise un

processus composé de plusieurs étapes

(figure 4):

® prétraitement et clustering (parti-
tionnement des données);

® détection d’anomalies;

® classification;

® fingerprinting:calculdes «empreintes
digitales» des défauts ou anomalies;

® amélioration continue par I'im-
plication d’experts (apprentissage
continuy).

L'un des principaux défis a relever

réside dans le fait que les données éti-

quetées disponibles pour entrainer le

systéme sont relativement peu nom-

breuses. Par ailleurs, pour certaines

catégories de défauts, il est tres difficile,

méme pour des experts, d’établir une
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classification claire. C’est pourquoi des
outils spéciaux ont été développés pour
aider ces derniers a exploiter au mieux
leurs connaissances et leur expérience.
Ces outils ont rapidement permis de
décupler la base de données et de faire
des recoupements entre experts. Les
cas limites ont été discutés au sein de
I’équipe avant d’étre définitivement
évalués. Cette étape essentielle montre
que ces nouvelles technologies ne
peuvent pas se passer de l'expertise
humaine.

Prétraitement et clustering

Toutes les donnéesrelevées dansle train
rejoignent une base de données centra-
lisée des CFF ou elles sont converties
dans un format propre a la compagnie.
Les CFF peuvent ainsi afficher diffeé-
rentes données en paralléle, indépen-
damment de leurs sources. Ainsi, outre
les données livrées par les véhicules de
diagnostic, des données de drones, des

photos d’experts ou des données de
mesure de laboratoire peuvent étre com-
binées les unes avec les autres. Une fois
sur le serveur, les données sont passées
atravers différents filtres, standardisées
et réparties dans différentes catégories
(clustering). Les images prises dans un
tunnel sont en effet traitées différem-
ment de celles de rails prises a I’air libre
oudans une gare.

Détection d’anomalies

L'étape suivante consiste a rechercher
les anomalies, a savoir tout ce qu'une
personne non formée pourrait aussi
remarquer en observant un rail: saleté,
feuilles, chewing-gums, défauts, sou-
dures, etc. Pour éviter qu’un défaut ne
passe inapergu, les algorithmes ont ten-
dance a détecter trop d’anomalies. Ils
peuvent gérer une variété de défauts
quasi infinie et détecter de maniére
fiable des défauts inconnus. Pour main-
tenir le nombre d’alarmes a un bas
niveau, |’étape suivante est primordiale.

Classification

Toutes les anomalies détectées ne pré-
sentent pas le méme degré de dangero-
sité. Il est notamment crucial de distin-
guer les défauts les plus délicats: les
«squats ». Ces derniers sont tres diffi-
ciles a détecter sur la surface des rails:
de maniere analogue a une carie dans
une dent, une cavité apparait a I'inté-
rieur du rail et se développe toujours
plus profondément. Si le «squat» est
visible sur la surface, il doit étre réparé
relativement rapidement.

Afin de différencier les défauts réels
des anomalies non critiques, une classi-
fication exacte est donc nécessaire
(figure ). Six classes différentes ont été
répertoriées dans ce projet, allant de
I’«absence de danger » (chewing-gum,
fientes d’oiseaux) aux défauts plus
importants («squats»). Cette étape
représente la différence majeure avec
les algorithmes classiques. Pour obtenir
de bons résultats, le CSEM a travaillé
pendant des mois en étroite collabora-
tion avec les experts des CFF. Clest
grice aux connaissances de ces der-
niers qu'il a été possible d’entrainer un
réseau neuronal a effectuer cette classi-
fication avec succes.

Fingerprinting

L'algorithme se révele déja trés fiable
pour identifier et classifier les défauts
liés aux artefacts. Les CFF ne peuvent
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Figure 5 Différents types de défauts.
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Figure 6 Suivi temporel d’'un défaut (fingerprinting).

toutefois pas encore s’appuyer exclusi-
vement sur lui, car le réseau de voies
ferrées est un élément essentiel en
matiére de sécurité et il est soumis a
une réglementation fédérale stricte. En
conséquence, la décision finale quant a
savoir si et quand un défaut doit étre
contrélé sur place ou réparé reste du
ressort des inspecteurs des voies.

Les véhicules de diagnostic
empruntent le méme itinéraire une fois
par mois. De ce fait, les mémes anoma-
lies et défauts sont constamment détec-
tés et devraient donc également tou-
jours étre évalués par un expert.
Beaucoup de défauts se développant
trés lentement, ’intervention ne doit
pas forcément étre immeédiate et sera
planifiée opportunément. Afin d’éviter
que des défauts déja enregistrés dans le
systéme de maintenance ne réappa-
raissent systématiquement, un procéde
de suivi dans le temps, le fingerprin-
ting, a été mis au point: lorsque I’Al
détecte un défaut, son « empreinte digi-
tale » est calculée de maniére ale carac-
tériser formellement. Deslors, quand le
train repasse a cet endroit, il est claire-
ment reconnu et classifié en tant que
donnée connue, ce qui permet de dispo-
ser d’un suivi temporel, ou d’un histo-
rique, de chaque défaut (figure 6). Pour
ce faire, il s’agit de surmonter les pro-
bléemes d’imprécision de localisation
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du véhicule sur le rail (le GPS ne fonc-
tionnant pas dans les tunnels) et d’évo-
lution des caractéristiques environne-
mentales locales; le lit de la voie et la
position relative d'un défaut par rapport
a la roche environnante ou aux colliers
de serrage de la voie peuvent effective-

Juin 2017 Aot 2017

ment varier considérablement, et ce,
particulierement en cas de dilatation
induite par la température (figure 7).
Des techniques basées sur le deep lear-
ning sont donc également utilisées pour
calculer’empreinte digitale de maniére
fiable.

Figure 7 Que cela soit dil a des phénoménes sismiques ou a la dilatation sous I'effet de
la chaleur, les rails peuvent subir des déformations parfois spectaculaires.
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Figure 8 Les véhicules de diagnostic permettent d’effectuer un grand nombre de mesures différentes.

Apprentissage continu

Chaque jour, I’étre humain apprend
quelque chose de nouveau gréice a ses
sens. Il élargit ainsi continuellement
ses connaissances. Nous attendons la
méme chose de lintelligence artifi-
cielle. En tant qu'enseignant dans un
processus continu destiné a assurer
sécurité et fiabilité sur les rails, I’expert
restera indispensable. Ce n’est que
grace a son apport que le logiciel pourra
constamment apprendre et réagir a de
nouveaux défauts. Il en découle une
véritable symbiose entre ’homme et la
machine.

L'intelligence artificielle peut non
seulement acquérir des connaissances,
mais aussi les transférer. Les réseaux
neuronaux développés sont en effet
déja utilisés par les CFF pour la forma-
tion des jeunes inspecteurs de voies.
L'ordinateur leur montre ce que sont les
défauts et quels sont les cas limites pour
lesquels les experts eux-mémes ne sont
pas unanimes.

Résultats

Le projet a démarré il ya deux ans et se
trouve maintenant dans la phase cru-
ciale de I’évaluation. La vérification et
I’appréciation statistique des algo-
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rithmes ne sont pas faciles. Un trongon
d’essai a été défini, sur lequel de multi-
ples trajets ont été réalisés avec diffé-
rents véhicules de diagnostic pour rele-
ver de nombreuses données (figure 8).
En paralléle, le méme tracé a fait 'objet
d’une évaluation indépendante par plu-
sieurs inspecteurs des voies. Le nou-
veau logiciel de deep learning a été mis
en concurrence avec les algorithmes
classiques, perfectionnés depuis plus
de 10 ans et utilisés dans le monde
entier. La solution du CSEM améliore le
taux de détection d’un facteur 10 et
réduit en outre les fausses alertes de
50% enpleinairetde 95% dansles tun-
nels. Qui plus est, ces excellents résul-
tats ont été obtenus sans |'optimisation
duréseauneuronal. Ce derniervaa pré-
sent étre affiné quasi automatiquement
dansla phase suivante du projet grace a
un grand nombre de données prove-
nant directement du terrain.

Perspectives

En quelques années, les nouveaux véhi-
cules de diagnostic permettront de
multiplier par quatre les kilomeétres de
trongons mesurés. Pour maitriser ce
flux de données, des logiciels tels que
celui du CSEM sontrequis. Aujourd hui

le controle des voies est traditionnelle-
ment réactif. Un défaut ne peut étre
réparé qu'une fois détecté. Et selon sa
gravité, I'intervention peut nécessiter &
court terme la fermeture d’un trongon.

En misant sur la détection automa-
tique et le fingerprinting, on espére a
’avenir pouvoir anticiper et planifier la
maintenance bien a I’avance. En com-
prenant mieux comment et ou les
défauts surgissent, en tirant des conclu-
sions et en prenant les mesures néces-
saires, on peut méme aspirer a réduire
fondamentalement le nombre de ces
défauts. L'objectif ultime serait d’utili-
ser ce logiciel en temps réel, dans un
systeme de surveillance embarqué a
bord de chaque train.
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