Zeitschrift: bulletin.ch / Electrosuisse

Herausgeber: Electrosuisse

Band: 109 (2018)

Heft: 7-8

Artikel: Schrittweise zur optimalen Fertigung

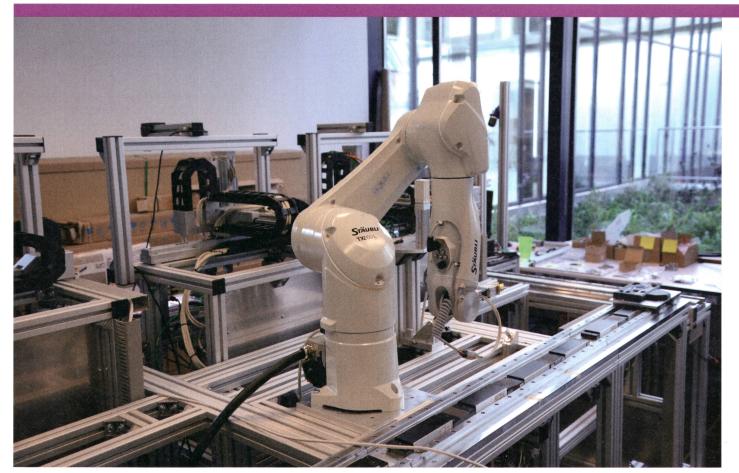
Autor: Novotný, Radomír

DOI: https://doi.org/10.5169/seals-856966

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation


L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Schrittweise zur optimalen Fertigung

Am Forschungslabor für Industrie 4.0 der ZHAW in Winterthur wird u.a. die Interoperabilität von Komponenten diverser Hersteller getestet.

Die Rolle von Industrie 4.0 | Viele Firmen stellen sich heute zu Recht die Frage, ob sie die Effizienz ihrer Fertigung mit Industrie 4.0 steigern könnten. Aber für eine erfolgreiche Digitalisierung müssen zunächst bestehende Prozesse optimiert werden. Zudem beschränkt sich die Einführung von Industrie 4.0 nicht nur auf technische Aspekte.

TEXT RADOMÍR NOVOTNÝ

nternehmen, die Produkte herstellen, fragen sich nicht nur, welche Produkte sie auf den Markt bringen sollen, sondern auch, wie sie diese Produkte am effizientesten und preisgünstigsten produzieren können. In diesem Zusammenhang taucht dann öfter die Frage auf, ob sich der Einsatz von Industrie 4.0 lohnen würde – dem Konzept der digitalisierten Wertschöpfungskette mit dezentraler, vernetzter Intelligenz. Die Antwort auf diese Frage ist nicht immer einfach, denn man hat es bei Industrie 4.0 mit einem Konzept zu tun, das nicht ab

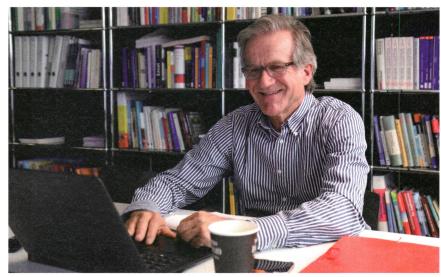
Stange erhältlich ist. Dr. Hans Wernher van de Venn, Professor an der ZHAW und Leiter des Instituts für Mechatronische Systeme, befasst sich schon lange mit der Digitalisierung in der Industrie. Er betont: «So individuell wie ein Unternehmen ist, so individuell muss auch dessen Industrie-4.0-Lösung aussehen.» Um eine Antwort zu finden, werden manchmal Readiness-Diagnosetools eingesetzt. Anhand einiger Fragen kann man ermitteln, wie weit ein Unternehmen von einer Implementierung von Industrie 4.0 entfernt ist und wo noch Handlungsbedarf besteht. Das

mag zwar zum Einstieg nützlich sein, nimmt aber dem Management nicht die Frage ab, was die Unternehmensziele sind und wie sie mit Industrie 4.0 erreicht werden könnten. Eigentlich müssten sich Firmen diese Frage kontinuierlich stellen, um das Optimum aus ihrem Potenzial herauszuholen. Wenn hier keine Klarheit herrscht, bringt ein punktuelles Implementieren von Industrie-4.0-Elementen nur wenig.

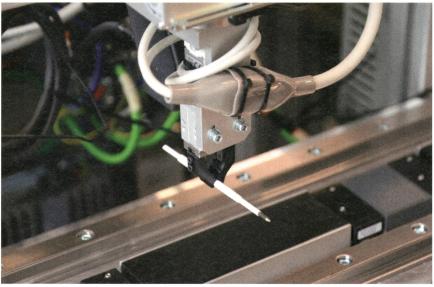
Ein weiteres Thema, um das man nicht herum kommt, ist die Optimierung der bestehenden Produktionsprozesse.[1] Es geht um Lean Production,

einer Produktion, bei der das Produktionstempo nicht von Prognosen bestimmt ist, sondern vom tatsächlichen Bedarf. Wenn es gelingt, die Geschäftsprozesse vom Einkauf bis zur Auslieferung von Produkten zu synchronisieren, können Verzögerungen in der Produktion bzw. Ineffizienzen wie Zwischenlager minimiert werden. Diese unter dem Begriff Kanban bekannte Methode ist an sich nichts Neues: Sie geht zurück auf das 1947 durch Taiichi Ohno bei Toyota entwickelte Produktionsprinzip.

Digitalisierung als zweiter Schritt


Erst wenn man die Prozesse verschlankt, Engpässe beseitigt und die Materialwege in der Fabrik optimiert hat, kann die Digitalisierung einen Mehrwert schaffen: Einerseits durch die Automatisierung gewisser Prozesse und andererseits durch das Eröffnen neuer Möglichkeiten, beispielsweise von Online-Bestellungen, die automatisch in die Produktion fliessen, ohne Informations- und Systembruch. Wenn ausserdem aktuelle Daten von bereits genutzten Produkten zurückfliessen können, wird auch eine vorbeugende bzw. zustandsabhängige Wartung möglich. Gemäss van de Venn gab es das auch schon früher: «Es ist die Integration der Services und der Produktion in ein gemeinsames Konzept, welches die gesamte Wertschöpfungskette ausmacht.»

Zu den neuen Möglichkeiten gehört beispielsweise das Konzept der digitalen Zwillinge, d. h. von Modellen, die physische (aber manchmal auch immaterielle) Produkte und ihr Verhalten mittels Daten und Algorithmen möglichst genau beschreiben. Mit ihnen lassen sich Simulationen durchführen, um die Anzahl Prototypen zu reduzieren (frühes Erkennen von Konstruktionsfehlern), um Entwicklungszeiten zu verkürzen und um Produktionsabläufe zu optimieren.


Aber die digitalen Zwillinge sind nicht nur für die Entwicklung und die Produktion nützlich, sondern zukünftig unter anderem beim Recycling, wo man die sortenreine Rückgewinnung vereinfachen und verbessern könnte. [2] Eine der Herausforderungen hier ist die Motivation der Hersteller, die nötigen Daten zur Verfügung zu stellen. Denn obwohl dafür nur ein Bruchteil

Prof. Dr. Hans Wernher van de Venn leitet das Institut für Mechatronische Systeme, ZHAW.

Professor Dieter Fischer ist Dozent am Institut für Business Engineering der FHNW.

An der ZHAW entsteht ein kompletter Kugelschreiber aus seinen Komponenten.

der Produktdaten nötig wäre, sind Hersteller oft aus Datenschutzgründen zurückhaltend mit der Herausgabe solcher Daten.

Die Mitarbeitenden nicht vergessen

Zu einer erfolgreichen Umsetzung der Digitalisierung führen aber nicht nur technische Aspekte. Es ist ebenso wichtig, die Mitarbeitenden in den Transformationsprozess mit einzubeziehen. Einerseits, um ihr spezifisches Knowhow berücksichtigen und ihnen so Wertschätzung zeigen zu können, andererseits, um es ihnen zu ermöglichen, sich mit den Umstellungen und mit ihrer neuen Rolle zu identifizieren. Widerstand in den eigenen Reihen kann teuer werden.

Das Sensibilisieren der Mitarbeitenden sollte laut van de Venn auf mehreren Ebenen stattfinden. Zunächst sei es wichtig, die Unternehmensziele im Bereich Industrie 4.0 klar zu kommunizieren und das Bewusstsein zu wecken, dass der Wandel bereits stattfindet. Ein Hinweis auf ähnliche Technologien aus dem Privatbereich, die von Konsumenten schon genutzt werden, erhöht die Akzeptanz und macht den Nutzen klar. Dann gilt es, das Interesse an den Technologien zu wecken, um Motivation für die erforderliche Weiterbildung zu schaffen. Gleichzeitig können Wissenslücken identifiziert und mit betrieblicher Weiterbildung die nötigen Kompetenzen vermittelt werden. Und es besteht durchaus die Chance, dass sich die Transformation für die Mitarbeitenden positiv auswirkt, beispielsweise indem sie eine verantwortungsvollere Aufgabe übernehmen können, mit weniger repetitiven Aufgaben. Auch Professor Dieter Fischer, Dozent am Institut für Business Engineering der FHNW, betont, dass eine zielgerichtete und nachhaltige Umsetzung der Digitalisierung erst möglich ist, wenn die internen Industrie-4.0-Kompetenzen aufgebaut sind und die nötige Akzeptanz vorhanden ist. Die Leute müssen eingebunden werden.

Damit sich Systeme verstehen

Ein Aspekt, der bei der Industrie-4.0-Lösungsvielfalt an Bedeutung gewinnt, ist die Interoperabilität. Hier befindet man sich in einem Spannungsfeld zwischen proprietären und interoperablen Lösungen. Meist sind es grosse Hersteller, die mit proprietären Lösungen Kunden an sich binden wollen. Sie bieten dafür ein breites Spektrum an kompletten, oft modularen Systemen an. Kleinere Hersteller bedienen hingegen oft spezifische Nischen und sind deshalb eher auf Interoperabilität angewiesen, damit ihre Produkte in grössere Systeme integrierbar sind.

Zunehmend etabliert sich das in IEC 62541 definierte Kommunikationsprotokoll OPC UA (Open Platform Communications Unified Architecture) als offener Schnittstellenstandard. Gemäss van de Venn ist OPC UA auch konsequenterweise als einzige Empfehlung im Reference Architecture Model for Industry 4.0 (RAMI 4.0) enthalten. Van de Venn fügt hinzu: «Die von der deutschen Plattform Industrie 4.0 entworfene Checkliste für Produkthersteller sieht die Kategorien Basic, Ready und Full vor, wobei bereits die Stufe Basic beinhaltet, dass

Ausbildung

Sowohl die ZHAW als auch die FHNW bieten diverse Kurse im Kontext der Industrie 4.0 und der Digitalisierung an. Der ZHAW-Kurs «CAS Industrie 4.0 - von der Idee zur Umsetzung» und der «CAS Industrie 4.0» der FHNW befassen sich konkret mit dem Thema.

- > www.zhaw.ch/engineering/ weiterbildung
- > www.fhnw.ch/de/weiterbildung/ technik/cas-industrie-4.0

eine Komponente mindestens OPC UA fähig ist.» Zurzeit arbeitet man an einer Erweiterung dieses Standards zu einer echtzeitfähigen Lösung (OPC UA TSN). Van de Venn konstatiert erfreut: «Mit OPC UA gibt es also zum ersten Mal einen wirklich unabhängigen Protokollstandard in der Automatisierungstechnik, der von einer grossen Anzahl von Herstellern gemeinsam unterstützt und getragen wird.»

Nebst der technischen Ebene muss aber auch die datenlogische Ebene berücksichtigt werden, die besonders dann anspruchsvoll wird, wenn an den Prozessen mehrere Gruppen wie Zulieferer, Service- und Vertriebsorganisationen beteiligt sind. Gemäss Fischer müssen die involvierten Gruppen die zu verbindenden Prozesse inhaltlich verstehen und entsprechende Konventionen festlegen. Fischer betont: «Diese Ebene ist heute der dominantere Kos-

Pas à pas vers une fabrication optimale

Le rôle d'Industrie 4.0

Le concept Industrie 4.0 est aujourd'hui un thème en vogue qui soulève encore de nombreuses questions et pour lequel une multitude de produits arrive sur le marché. De nombreuses entreprises se demandent donc si l'utilisation d'Industrie 4.0 pourrait leur permettre de rendre leur fabrication plus efficace.

Pour une numérisation réussie, il faut en premier lieu optimiser d'autres domaines: la pratique montre que la mise en œuvre de la numérisation n'est profitable que si les objectifs de l'entreprise ont été clairement définis au préalable, si les travaux d'optimisation nécessaires sont réalisés au niveau des processus de fabrication et lorsque les collaborateurs sont intégrés au processus de transformation et reçoivent les formations correspondantes. La transformation doit en outre être réalisée de manière à rester gérable et contrôlable, tout en tenant compte des questions de sécurité (protection des données, cyberattaques). En commençant par de petites implémentations, il est possible de développer le savoir-faire et l'expérience qui permettront plus tard d'éviter les erreurs et de se lancer dans de plus grandes transformations.

tentreiber bei der Realisierung und Wartung von Schnittstellen.»

Gefahren lauern

Nebst den Einsatz- und Schnittstellenfragen trägt eine weitere, durch die Vernetzung besonders brisante Frage zur Unsicherheit bei: die Frage nach äusseren «Einwirkungen»: Industriespionage, Cyberattacken, Bedrohungen der funktionalen Sicherheit. Dies sei heute gemäss Fischer der grösste Disabler von Industrie 4.0. Diese Gefahren sind natürlich bei modularen, flexiblen Anlagekomponenten höher als bei konventionellen Fertigungslösungen mit bekannten, planbaren Konfigurationen. Alle sicherheitsrelevanten Daten und Parameter müssen deshalb überwacht werden und die dynamische Anlagenkonfiguration muss sicherheitstechnisch beherrschbar sein. Für van de Venn steht fest, dass «eine Überwachung bei Industrie-4.0-Anwendungen deshalb nur automatisch erfolgen kann, da kein Anlagenbediener in der Lage sein wird, die auftretenden, komplexen Konfigurations- und Überwachungsaufgaben in allen Situationen zu beherrschen.» Diese Herausforderung könne heute aber mit Sicherheitssteuerungen gemeistert werden, die unter anderem über Schutzfunktionen wie Knowhow-, Kopier- und Zugriffsschutz verfügen. Zudem müssen die aus dem IT-Bereich bewährten Massnahmen wie rechtzeitige Software- und Firmware-Updates ausgeführt werden, um erkannte Sicherheitslücken zu schliessen. Van de Venn weist auf eine weitere Gefahr hin: «Eines der grössten Sicherheitsrisiken ist der Mensch selbst. Unachtsamkeit und Nachlässigkeit öffnen potenziellen Angreifern viele Einfallstore, welche unbedarften Mitarbeitern meist nicht bekannt sind, oder als unwahrscheinlich abgetan werden.»

Ausbildungsbedarf

Van de Venn und Fischer betonen, dass der Ausbildungsbedarf im Bereich Industrie 4.0 grundsätzlich sehr hoch ist. Da das Gebiet interdisziplinär ist, hat der Industrie-4.0-Ingenieur ein anderes Profil als der heutige Automationsingenieur. Die IT bekommt dabei zwar einen höheren Stellenwert, aber reine IT-Spezialisten haben zu wenige Kenntnisse bezüglich Automatisierungstechnik. Van de Venn macht auf eine weitere Herausforderung aufmerksam: «Zunächst müssen wir uns darüber im Klaren sein, dass die Innovationszyklen heute deutlich kürzer sind als die Ausbildungszyklen, d. h. bei einer normal langen Studiendauer kann bereits das am Anfang des Studiums erlernte Wissen zwar noch richtig, aber nicht mehr aktuell sein.» Er plädiert deshalb für eine zweispurige Strategie: dem Lernen aus der industriellen Praxis sowie dem Transfer von neuem Wissen aus der angewandten Forschung und Entwicklung direkt in die Industrie. Dazu schlägt er eine Reihe von Massnahmen vor, die die Initiierung und Förderung von Modellprojekten gemeinsam mit der Industrie, die Einrichtung und Förderung von Best-Practice-Netzwerken sowie die Förderung von neuen Industrie-4.0spezifischen Lerninhalten und interdisziplinärer Zusammenarbeit zwischen den Ingenieurdisziplinen und der IT umfassen.

Fazit

Das Konzept Industrie 4.0 ist heute ein Hype-Thema, bei dem viele Fragen offen und eine Fülle von entsprechend angepriesenen Produkten auf dem Markt sind. Die Praxis zeigt, dass sich der Einsatz der Digitalisierung lohnen kann, wenn vorher die Unternehmensziele klar definiert wurden, die nötigen Optimierungsarbeiten an den Fertigungsprozessen durchgeführt und die Mitarbeitenden in den Transformationsprozess einbezogen und entsprechend ausgebildet werden. Zudem sollte der Umbau so ausgeführt werden, dass er überschaubar und kontrollierbar bleibt. Mit kleineren Implementierungen können Know-how und Erfahrung aufgebaut werden, die es später ermöglichen, Fehler mit grösseren finanziellen Auswirkungen zu vermeiden und das für grössere Transformationen nötige Selbstvertrauen aufzubauen.

Referenzen

- Giorgio V. Müller, «Standardisierung der Prozesse kommt vor der Digitalisierung», NZZ, 17. April 2018, S. 28.
- [2] Bettina Reckter, «Digitalise rung», N22, 17. April 2016, 5. 2Fückgewinnung», VDI Nachrichten, 18. Mai 2018, S. 1.

Autor

Radomír Novotný ist Chefredaktor Electrosuisse.

- → Electrosuisse, 8320 Fehraltorf
- → radomir.novotny@electrosuisse.ch

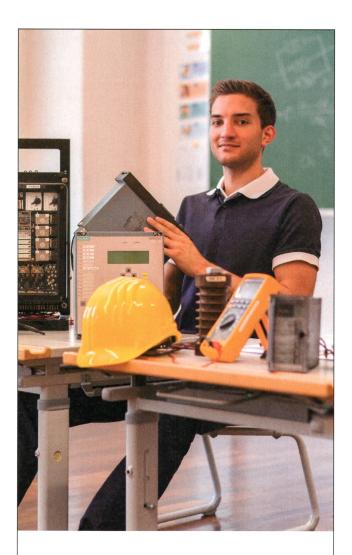
Korrigendum

Bulletin SEV/VSE 6/2018, S. 14

Im Beitrag «Mobilität in Bewegung» wurde die Einheit TW (Leistung) statt

der korrekten Einheit TWh (Energie) verwendet. Wir bitten für diesen Fehler um Entschuldigung. Auf bulletin.ch/

de/news-detail/mobilitaet-in-bewegung.html steht die korrigierte Version als PDF zur Verfügung.


Corrigendum

Bulletin SEV/AES 6/2018, p. 14

Dans l'article «Mobilité en mouvement», l'unité TW (puissance) a malheureusement été utilisée à la place de TWh (énergie). Nous vous prions de nous excuser pour cette erreur. La version corrigée est disponible en format pdf sur bulletin.ch/fr/news-detail/la-mobilite-en-mouvement.html.

"Wissen ist ein wichtiges Gut, das sich vermehrt, wenn man es teilt."

Erweitern Sie Ihr technisches Wissen in Theorie und Praxis mit den Kursen der OMICRON Academy. Finden Sie Ihr Thema unter www.omicronenergy.com/kurse wie beispielsweise:

- > CAS in «Elektrische Energiesysteme Systembetrieb», Lehrgang an der Hochschule für Technik und Architektur in Freiburg (CH) in Zusammenarbeit mit OMICRON. 24.10.2018 – 14.05.2019
- > Schutzprüfung mit dem OMICRON Test Universe, 09.–11.10.2018, Klaus (AT)
- > Grundlagen der Teilentladungsmessung mit dem MPD, 15.–17.01.2019, Erlangen (DE)

Für Ihre speziellen Anforderungen bieten wir Ihnen zusätzlich individuelle Trainings der OMICRON Academy.

Branchenlösungen zu Netztechnik

Jetzt bestellen und profitieren!

NEPLAN°DACH – Beurteilungssoftware für Netzrückwirkungen

Die Software ermöglicht die professionelle Beurteilung von Netzrückwirkungen durch Verbraucher- und Erzeugeranlagen. www.strom.ch/neplan

NeDisp® – Der Qualitätsausweis für Ihren Netzbetrieb

Mit der Software werden die Verfügbarkeitskennzahlen (SAIDI, CAIDI, SAIFI) ermittelt und Auswertungen lassen sich einfach erstellen. www.strom.ch/nedisp

NeQual® – Power Quality Monitoring EN 50160

Software zur Auswertung von Spannungsqualitätsmessungen. Der Regulator (ElCom) empfiehlt den Verteilnetzbetreibern die Teilnahme am Programm NeQual! www.strom.ch/nequal

LANZ protected®

Funktionserhalt E90 brandgeschützte Stromschienen

sorgen im Brandfall für Funktionserhalt vom Trafo zu Haupt-, Neben- und Etagenverteilern und den wichtigsten Hochstrom-Leitungen in Gebäuden.

Wählen Sie Sicherheit. Verwenden Sie die "LANZ fire protected®" Funktionserhalt Stromschienen mit 435 A – 3680 A Bemessungsstrom.

Verlangen Sie unser Angebot 062 388 21 21

•• STS4_2

LANZ ist BIM Ready! BIM-fähige Revit-Familien für LANZ Stromschienen stehen auf www.lanz-oens.com zum Download zur Verfügung.

