Zeitschrift: bulletin.ch / Electrosuisse

Herausgeber: Electrosuisse

Band: 106 (2015)

Heft: 11

Artikel: Strom aus handwarmem Wasser

Autor: Vogel, Benedikt

DOI: https://doi.org/10.5169/seals-856738

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Strom aus handwarmem Wasser

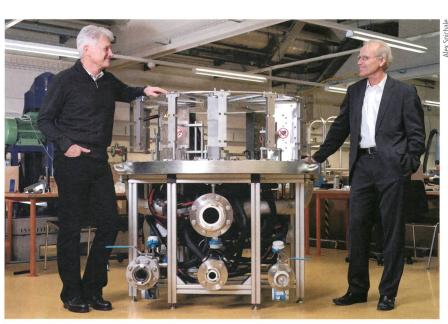
Entwicklung eines thermomagnetischen Motors

Nikola Tesla und Thomas Alva Edison haben bereits Ende des 19. Jahrhunderts beschrieben, wie sich aus einer Wärmedifferenz unter Zuhilfenahme magnetischer Kräfte elektrischer Strom erzeugen lässt. Die kommerzielle Nutzung dieses physikalischen Phänomens in einem thermomagnetischen Motor ist bis heute ausgeblieben. Nun könnte die Suche nach umweltschonenden Energiequellen die alte Idee einen Schritt weiterbringen. Ein Technikfreak aus Zurzach hat zusammen mit der Fachhochschule Nordwestschweiz einen Prototypen entwickelt, der Strom im Kilowatt-Bereich liefert.

Benedikt Vogel

Die heutigen Computer haben ihren Ursprung - so erzählt man sich - in den Garagen technikbegeisterter Bastler im US-Bundesstaat Kalifornien. An diese Erzählungen fühlt man sich erinnert, wenn man die Geschichte von Dr. Nikolaus Vida hört, einem aus Ungarn stammenden Augenarzt: Vida kam 2005 zusammen mit seiner Frau Sabine in die Schweiz und betreibt seither in Bad Zurzach eine Arztpraxis. Die Augenheilkunde aber ist nicht Vidas einzige Leidenschaft. Neben seinem Beruf geht er in einer Garage einer ganz besonderen Freizeitbeschäftigung nach. Dort arbeitet er an der Konstruktion einer Maschine, die aus der Wärmedifferenz zwischen zwei Flüssigkeiten einen elektrischen Strom erzeugen kann.

Demonstrator mit 80 W Leistung


«Die Idee kam mir 1994 in Russland. Dort erzählten mir Wissenschaftler von der Idee, eine schwimmende Meeresplattform autark mit Energie zu versorgen, dies mit Strom, der durch Ausnutzung der Temperaturdifferenz zwischen dem warmen Oberflächenwasser und jenem in der Tiefe gewonnen werden sollte.» Die Idee liess Nikolaus Vida nicht mehr los. Nachdem Vida 2005 in der Schweiz angekommen war, ging er daran, die Idee dieser neuartigen Stromerzeugungsmaschine technisch umzusetzen. In seiner Garage baute er zuerst in einer Tupperware-Dose ein Modell der neuartigen Maschine.

Später folgte ein funktionsfähiges Modell, zuerst kleiner, dann grösser. Unterstützt wurde er von russischen, georgischen und weiteren Wissenschaftlerfreunden, die Komponenten beisteuerten, die sie in Labors in Moskau und Tiflis gefertigt hatten und die in der Schweiz zusammengebaut wurden. Im März 2013 stellte er der Öffentlichkeit im Thermalbad Zurzach erstmals einen Demonstrator der neuartigen Strommaschine vor. Dieser nutzte 36°C und 18°C warmes Wasser und produzierte daraus eine mechanische Leistung von 80 W. Das reichte zwar nur für den Betrieb einiger LED-Lampen. Doch der Demonstrator zeigte: der thermomagnetische Motor funktioniert!

Altes Prinzip neu entdeckt

Wie man eine Differenz zwischen zwei relativ niedrigen Temperaturen zur Erzeugung eines elektrischen Stroms nutzen kann, hatten 1888 und 1892 schon die Erfinder Nikola Tesla und Thomas Alva Edison beschrieben. Seither ist das Gerät unter den Namen thermomagnetischer Motor, magnetokalorischer Motor und «Tesla-Motor» bekannt. Gebaut wurde ein kommerziell nutzbares Gerät trotz vieler Versuche bisher aber noch nicht. Auf anderen Wegen liess sich elektrischer Strom einfacher und kostengünstiger gewinnen. Auf der Suche nach nicht-fossilen Energiequellen ist nun aber die Zeit des thermomagnetischen Motors gekommen, ist Nikolaus Vida überzeugt.

Die zentrale Herausforderung beim Bau eines thermomagnetischen Motors besteht darin, ein ferromagnetisches Material durch zwei unterschiedlich warme Flüssigkeiten in schnellem Wechsel zu erwärmen und wieder abzukühlen. Durch den Temperaturwechsel wechselt das Material vom ferromagnetischen in den paramagnetischen Zustand – dieser Wechsel kann in mechanische und dann über einen Generator in elektrische Energie umgewandelt werden. Vida ist überzeugt, mit einem Drehrad, das sich um fixierte Permanentmagnete dreht, eine taugliche technische Lösung gefun-

Nikolaus Vida (I.) und Kurt Heiniger haben gemeinsam den Prototypen eines thermomagnetischen Motors (auf dem Foto ist nur ein Teil der Bestandteile zu sehen) entwickelt.

Darstellung des industrietauglichen Prototypen des thermomagnetischen Motors. Das Herzstück der Maschine ist im Betrieb unter einer Kunststoffabschirmung verborgen.

den zu haben: «Unsere Konstruktion ist von einem Mühlenrad inspiriert. Uns gelingt es, die magnetische Eigenschaft des ferromagnetischen Materials in Millisekunden zu ändern, also – bildlich gesprochen – Eisen zu Plastik zu machen. Das ist viel schneller als bei einem uns bekannten japanischen Funktionsmuster.»

Ein Hochschulprofessor mit im Boot

Da behauptet einer, in seiner heimischen Garage nichts weniger als eine neue Form der Stromerzeugung entdeckt zu haben und in Millisekunden «Eisen zu Plastik» zu machen. Ist das die Arbeit eines ernsthaften Forschers? Oder nur der Bluff eines selbsternannten Erfinders? Genau diese Frage stellte sich Kurt Heiniger, Professor an der Hochschule für Technik an der Fachhochschule Nordwestschweiz (FHNW), als er 2012 erstmals von der Wundermaschine hörte. Immerhin war es nicht das erste Mal, dass ein Technikfreak den langjährigen Direktor des Instituts für Thermo- und Fluid-Engineering von der Genialität seiner Erfindung zu überzeugen versuchte.

«Vida hat sich an PSI und Empa gewandt - sie haben ihn alle fast ausgelacht. Und als er dann zu mir gekommen ist, habe ich ihn auch ausgelacht.» Doch Heiniger liess sich überreden, eine Energiebilanz von Vidas Demonstrator zu erstellen, also die Leistung und den Wirkungsgrad zu errechnen. Heiniger, der promovierte Ingenieur der ETH, wusste: Die Verwendung von Wasser mit 36°C und 18°C würde einen maximalen Wirkungsgrad (Carnot-Wirkungsgrad) von 5,8% erlauben, verglichen mit herkömmlichen Kraftwerken ein sehr tiefer Wirkungsgrad. «Trotzdem habe ich gestaunt», erzählt Heiniger. «Aus dieser kleinen Temperaturdifferenz hat Vida mit einer an sich einfachen technischen Lösung eine respektable Leistung herausgeholt.»

Kleinanlage im industriellen Piloteinsatz

Damit war Kurt Heiniger mit im Boot. Mitte 2013 sagte das Bundesamt für Energie dem Projekt seine Unterstützung zu, um einen ersten industrietauglichen Prototypen zu entwickeln. Diese Anlage, die noch kein konkretes Wirkungsgradziel verfolgt, wurde im ersten Quartal 2015 in der Energiezentrale einer Aargauer Klinik aufgebaut und seither im Teilbetrieb erfolgreich getestet. Sie nutzt 53°C warmes Abwasser der Klinik (10 m³/h) und 14-grädiges Aarewasser (14 m³/h), um aus der Temperaturdifferenz eine elektrische Leistung von 1 bis 1,4 kW zu generieren. Diese Anlage soll nun in einem nächsten Schritt in einer industriellen Umgebung und im Fernbetrieb eingesetzt werden und im Dauerbetrieb (4000 h) ihre Praxistauglichkeit beweisen. Zu dem Zweck wird der Prototyp in einem Holcim-Zementwerk aufgestellt. Als Wärmequelle nutzt sie dort das Abwasser aus der Zementproduktion, das bisher über einen Kühlturm gekühlt

Zur kommerziellen Nutzung des thermomagnetischen Motors hat Vida die Firma Swiss Blue Energy AG gegründet. «Innerhalb von fünf Jahren wollen wir ein marktfähiges Produkt mit einer Leistung im Megawatt-Bereich entwickeln», sagte Vida. Bis zu diesem Ziel, sagt Heiniger, seien noch wichtige Hürden zu nehmen. Eine zentrale Herausforderung liegt bei der Wahl des ferromagnetischen Materials. Bisher wird hierzu Gadolinium ver-

Nachruf

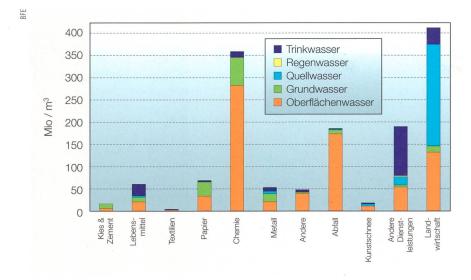
Kurt Heiniger in memoriam

Kurt Heiniger, langjähriger Professor an der Hochschule für Technik der Fachhochschule Nordwestschweiz (FHNW), hat die Entwicklung eines thermomagnetischen Motors massgeblich vorangetrieben. Im Juni dieses Jahres ist Kurt Heiniger auf einer Tour in seinen geliebten Bergen ums Leben gekommen. Wir haben mit ihm einen Freund und Kollegen verloren, der sich mit ganzer Energie und seiner grossen Erfahrung in dieses Projekt eingebracht hat. Nun ist der Prototyp des neuartigen Stromgenerators zu seinem Vermächtnis geworden. Wir setzen alles daran, seine Arbeit mit Unterstützung der Fachhochschule Nordwestschweiz weiterzuführen.

Dr. Nikolaus Vida, Swiss Blue Energy AG

Hintergrund

Funktionsprinzip


Unter dem Namen Curie-Pendel hat das Experiment Eingang in den Physikunterricht gefunden: Positioniert man einen Permanentmagneten neben ein Pendel aus einem ferromagnetischen Material, wird das Pendel vom Magneten angezogen und bleibt an ihm haften. Erhitzt man das Pendel nun mit einer Kerze, verliert es seine magnetische Eigenschaft und pendelt vom Magneten weg. Da sich das Pendel nun nicht mehr über der Kerze befindet, kühlt es sich ab, wird damit wieder magnetisch – und wird wieder vom Magneten angezogen. Bis die Kerze das Pendel erneut erhitzt...

Die Temperatur, bei der das Pendel seine magnetische Eigenschaft ändert, heisst Curie-Temperatur, benannt nach dem französischen Physiker Pierre Curie, der diesen Effekt 1895 entdeckt hat. Die Curie-Temperatur ist materialabhängig. Diesen Effekt nutzt der thermomagnetische Motor von Vida. Als Material wird Gadolinium, ein Metall der seltenen Erden mit einer Curie-Temperatur von 19,3 °C genutzt. Die Proben sind auf einem Drehrad mit 70 cm Durchmesser befestigt. Durch eine geschickte technische Konstruktion wird das Gadolinium zuerst auf über 19,3 °C erwärmt (und damit entmagnetisiert), dann auf unter 19,3 °C abgekühlt (und damit magnetisiert). Während einer Umdrehung des Rades erfolgt dieser Wechsel der Temperatur (und damit der magnetischen Eigenschaft) fünfmal.

Neben dem Drehrad sind fünf Permanentmagnete so im Kreis angeordnet, dass die Gadolinium-Proben in kurzem Wechsel angezogen und dann wieder magnetisch neutral sind. Als Folge dieses Vorgangs setzt sich das Drehrad in Bewegung. Die Rotationsenergie des Drehrades kann über eine Welle auf einen Generator übertragen und in Strom umgewandelt werden. Während das Drehrad beim Prototypen mit rund 16 Hz rotiert, dauert ein Magnetisierungs-Entmagnetisierungs-Zyklus rund 115 ms. Die Konstrukteure mussten also einen «thermischen Schalter» entwickeln, der den Wechsel von Temperatur und Magneteigenschaften in dieser kurzen Zeit ermöglicht. Das war (und ist) eine der wesentlichen Herausforderungen für die Erfinder des thermomagnetischen Motors.

Der thermomagnetische Effekt funktioniert auch umgekehrt, um also aus elektrischem Strom eine Temperaturdifferenz zu erzeugen. Seit einigen Jahren versuchen Techniker, diesen Effekt für einen «magnetokalorischen» Kühlschrank zu nutzen.

Wasserverbrauch verschiedener Branchen: Eine ökonomische Studie im Auftrag des BFE hat die Chemie-, Metall-, Papier- und Nahrungsmittelindustrie als potenzielle Standorte für thermomagnetische Generatoren identifiziert.

Industrie	Potenzielle Anzahl Maschinen			Total
	1–5 kW	6–49 kW	50-200 kW	
Pharma			21	21
Stahl			5	5
Holzverarbeitung			2	2
Nahrungsmittel		38		38
Papier und Karton		9		9
Zement			1	1
Raffinerien			1	1
Kehrichtverbrennung			8	8
Total Maschinen Schweiz	0	47	38	85
Gesamtleistung Schweiz, kW	0	500	4800	5300
Gesamtes Marktpotenzial Schweiz, Mio. CHF	0	2,5	24	26,5

Eine ökonomische Studie im Auftrag des BFE schätzt das Marktpotenzial der thermomagnetischen Motoren in der Schweizer Industrie auf 85 Anlagen mit einer Gesamtleistung von 5,3 MW. Die Potenzialabschätzung gilt nur für Gadolinium-Anlagen (d.h. Kaltwassertemperatur < 15 °C).

wendet, ein Metall der seltenen Erden, das relativ teuer ist (100 – 300 Fr./kg), schnell korrodiert und nicht ganz im Einklang mit dem Gedanken der Nachhaltigkeit steht. Die Gewinnung und die Verarbeitung von Gadolinium sind sehr anspruchsvoll (Schmelzpunkt: 1312°C). Die Entwickler des thermomagnetischen Motors prüfen daher alternative Materialien. Alternativen sind auch gefragt, weil die Abwärme erst dann optimal genutzt werden kann, wenn verschiedene ferromagnetische Materialien eingesetzt werden können, deren Curie-Temperatur sich über die Wahl der Legierung genau «einstellen» lässt, angepasst an die verfügbaren Wassertemperaturen. Gadolinium hat eine fixe Curie-Temperatur von 19,3 °C und ist in diesem Sinn unflexibel.

Erheblicher Forschungsbedarf

«Um den Weg zu einer nachhaltigen Energieversorgung zu ebnen, müssen wir auch unkonventionelle Ansätze beispielsweise im Bereich von industriellen Abwässern mit niedriger Temperatur prüfen», sagt Roland Brüniger, der das BFE- Forschungsprogramm Elektrizitätstechnologien und -anwendungen leitet. So werden Kurt Heinigers Forscherkollegen in Zukunft auch alles daran setzen, die Prozesse rund um den thermomagnetischen Motor noch adäquater zu beschreiben und so die Simulationsmodelle zu optimieren. «Die Physik hinter dem Motor ist sehr komplex, die Bewegung des ferromagnetischen Materials im magnetischen Feld führt zu dynamischen Wechselwirkungen. Wir haben bisher erst 70 % der Physik verstanden.»

Trotz Schwierigkeiten glauben Heiniger und Vida an ihre Technologie. Nachdem die energetische Verwertung von Abwasser mit Temperaturen unter 100°C lange Zeit als nicht lohnend erschien, zielen heute verschiedene Forschungsund Entwicklungsaktivitäten genau in diese Richtung. Vida sieht weitere Anwendungen in der Geothermie (40- bis 60-grädiges Wasser) und der Solarthermie. Eine alternative Technologie ist der thermoelektrische Generator, der die Wärmedifferenzen direkt (thermoelektrischer Effekt/Seebeck-Effekt) in Strom umwandelt. Dasselbe Ziel verfolgt die Organic-Rankine-Cycle-Technologie (ORC), eine Dampfturbine, die anders als herkömmliche Dampfturbinen auch bei relativ geringen Temperaturdifferenzen laufen. «Unsere Technologie hat für Niedrigtemperaturbereich grösste Potenzial und ist viel einfacher», ist Kurt Heiniger überzeugt.

Links

- www.swiss-blue-energy.ch
- www.bfe.admin.ch/CT/strom

Autor

Dr. **Benedikt Vogel**, Wissenschaftsjournalist, im Auftrag des Bundesamts für Energie (BFE).

Dr. Vogel Kommunikation, DE-10437 Berlin vogel@vogel-komm.ch

Weitere Auskünfte zum Projekt erteilt Roland Brüniger (roland.brueniger@r-brueniger-ag.ch), Leiter des BFE-Forschungsprogramms Elektrizitätstechnologien und -anwendungen.

Résumé Une é

Une électricité produite à partir d'eau tiède

Conception d'un moteur thermomagnétique

Nikola Tesla et Thomas Alva Edison ont décrit dès la fin du 19e siècle comment une différence de chaleur permet de générer un courant électrique à l'aide de forces magnétiques. L'utilisation commerciale de ce phénomène physique, connu sous le nom du pendule de Curie, dans un moteur thermomagnétique demeure toujours inexploitée. La recherche de sources d'énergie écologiques pourrait désormais faire progresser cette idée ancestrale. En coopération avec la Haute école spécialisée du nord-ouest de la Suisse, un passionné de technique de Zurzach a conçu un prototype qui fournit de l'électricité à une puissance de l'ordre du kilowatt. D'après l'OFEN, cette technologie dispose d'un potentiel d'utilisation dans les secteurs de la chimie, des métaux, du papier et de l'industrie alimentaire.

