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fS.
Künstliche Neuronale Netze suisse I ITG

Ideen aus der Natur zur Lösung technischer Probleme

Wie aus dem Zusammenwirken von Nervenzellen im

menschlichen Gehirn kognitive Leistungen zustande
kommen, ist bei Weitem nicht geklärt. Spannend ist aber,
dass bereits die Nutzung einfachster Prinzipien aus dem

biologischen Vorbild technische Lösungen ermöglicht. So

fanden künstliche Neuronale Netze in den letzten Jahren
in vielen Gebieten Anwendungen, bei denen herkömmliche

Methoden oft weniger erfolgreich waren. Aufgaben
wie die Mustererkennung, Prognosen, Diagnosen sowie
Bewegungssteuerungen in der Robotik können oft mit
neuronaler Technik effizient gelöst werden.

Rolf Leuenberger

Als «beängstigend menschlich»
bezeichnete 1950 «Der Spiegel» die damals

ersten, programmierbaren, elektronischen

Rechenmaschinen. [1] Man sprach
von Elektronengehirnen und glaubte, mit
einer elektronischen Rechenmaschine

von der Grösse eines Wolkenkratzers
könnte die Leistungsfähigkeit des

menschlichen Gehirns erreicht werden.
Heute wissen wir, dass riesige Rechenleistung

alleine nicht genügt, um die
fantastischen Leistungen des menschlichen
Gehirns nachzubilden.

Doch selbst wenn man die schwer
definierbaren Fähigkeiten des Gehirns, wie
etwa Wahrnehmung, Emotionen oder
Kreativität, ausschliesst, bleiben immer
noch Eigenschaften, die aus technischer
Sicht ausgesprochen interessant sind. Der
Gedanke, technische Systeme mit ähnlichen

Eigenschaften, wie sie unser Gehirn
hat, auszustatten, gewann in den letzten
50 Jahren zunehmend an Attraktivität.

Vorbild Gehirn
Besonders interessant ist die Lernfähigkeit

des Gehirns. Sie gibt uns
Menschen eine enorme Anpassungsfähigkeit
an gegebene Umstände und ermöglicht
uns auch, unsere Verhaltensmuster für
beste Überlebenschancen optimal
anzupassen. Im Gegensatz zu fest programmierten

oder konstruierten Maschinen
kann die Lernfähigkeit technischen
Systemen neue Dimensionen eröffnen.

Es ist aber auch die enorme
Rechengeschwindigkeit, die unser Gehirn auszeichnet.

Sehen wir zum Beispiel plötzlich das

Gesicht einer bekannten Person in einer

Menschenmenge, dauert es wenige
Zehntelsekunden, und wir erkennen diese Person

- bezüglich Bildverarbeitung eine

gigantische Leistung, die das Gehirn in
diesem Augenblick vollbringt. Der Schlüssel

dazu heisst parallele Signalverarbeitung.

Diese 1,31 graue Masse Hirn
besteht nämlich aus einer beachtlichen
Anhäufung von Nervenzellen. Man nimmt
an, dass es etwa 100 Milliarden Einzelzellen

sind, wovon jede im Mittel mit einigen
Tausend benachbarten Zellen verbunden
ist. Das Ganze bildet also ein Netz mit
etwa einer Billiarde Verbindungspunkten.
Die Sinnesreize werden diesem Netz
zugeführt, und über die gegenseitigen Ver¬

knüpfungen sind sofort eine grosse
Anzahl Nervenzellen gleichzeitig mit der

Verarbeitung der Reize beschäftigt. Die
Verarbeitung der Signale erfolgt also
parallel mit vielen Nervenzellen. Interessanterweise

sind die einzelnen Nervenzellen
für unsere Begriffe gar nicht so schnell,
ihre Wiederholungsrate beträgt etwa
200 Hz, während wir mit PCs arbeiten,
die Taktraten von über 1 GHz aufweisen.
Es ist die massive, vom Prinzip her gegebene

Parallelität in der Signalverarbeitung,

welche uns beispielsweise ein
Gesicht so blitzschnell erkennen lässt.

Eine weitere technisch interessante

Eigenschaft unseres Gehirns ist die
Fehlertoleranz. So müssen wir zwar damit
rechnen, dass nach einem feucht-fröhlichen

Abend ganze Reihen von Gehirnzellen

im hohen Alkoholpegel absterben.

Trotzdem werden wir keine Abnahme
unserer Intelligenz feststellen können.
Wir verfügen also über ein System, das

trotz Ausfall einiger Funktionseinheiten
seine Funktionsfähigkeit nicht verliert.
Genauso fehlertolerant ist das Gehirn
bezüglich der einkommenden Signale.
Selbst wenn darin Rauschen oder
Unterbrüche vorhanden sind, kann das Gehirn
sinnvolle Verarbeitungsresultate liefern.

Lernfähigkeit, hohe Verarbeitungsgeschwindigkeit

und Fehlertoleranz sind
also Eigenschaften, die auch für techni-
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Tangens Hyperbolicus

Bild 2 Funktion eines künstlichen Neurons.

sehe Systeme interessant und hilfreich
sein könnten. Kein Wunder, dass sich die

Ingenieure sehr bald für die Einsichten der

Neurologen zu interessieren begannen.
Wesentliche Denkansätze zum

Verständnis des menschlichen Gehirns
entstanden übrigens zur gleichen Zeit wie
die ersten elektronischen Rechenmaschinen.

Es waren der Psychiater Warren
McCulloch und sein Mitarbeiter Walter
Pitts, die in den 1940er-Jahren ein einfaches

Modell für die Funktionsweise von
Nervenzellen, auch Neuronen genannt,
postulierten. [2] Sie wiesen nach, dass mit
einer endlichen Anzahl der nach ihnen
benannten McCulloch-Pitts-Neuronen
alle berechenbaren mathematischen
Funktionen berechnet werden können.
Mit ihrer Erkenntnis legten sie den
Grundstein für eine neuartige Technik,
für die Neuroinformatik.

Der Natur abgeguckt
Das Prinzip, das McCulloch und Pitts

vorschlugen, ist denkbar einfach und lässt

sich aus einer vereinfachten Darstellung
eines natürlichen Neurons ableiten. Die
in Bild 1 als Dendriten bezeichneten
verzweigten Strukturen im oberen Teil der
Zelle bilden die Eingänge des Neurons.
Dort sind die Verbindungspunkte zu
anderen Neuronen im Netz angebracht. In
jeder Verbindungsstelle, auch Synapse

genannt, wird bestimmt, wie stark das

ankommende Signal in das Neuron
eingekoppelt wird. Die synaptische
Verbindungsstärke oder das synaptische
Gewicht bestimmt auch, ob das Signal positiv,

also unterstützend, oder negativ,
dementsprechend hemmend, auf das

Neuron einwirken soll. Alle synaptischen
Gewichte zusammen bestimmen die

Funktionen des Gehirns. So sind also alle

Erinnerungen in unserem Gedächtnis
und alles, was wir jemals im Leben gelernt
haben, nicht in den Gehirnzellen
abgespeichert, sondern in den synaptischen
Verbindungsstärken. Lernen heisst
demnach nichts anderes, als die synaptischen
Gewichte richtig einzustellen. In der
Nervenzelle selber werden die einkommenden,

gewichteten Signale aufsummiert.
Erreicht das Summensignal im Innern
einen bestimmten Schwellenwert, wird
ein Signal über den austretenden Faden,
Axon genannt, zu den Endverzweigungen
weitergeleitet. Man sagt in dem Falle, das

Neuron feuert. Die Endverzweigungen
führen dann wieder über synaptische
Verbindungen zu weiteren Neuronen.

Künstliche Neuronen
Im Bild 2 ist dieses Prinzip als künstliches

Neuron mit drei Eingängen dargestellt.

Jeder Eingang e wird mit dem dazu¬

gehörenden synaptischen Gewicht w
multipliziert (gewichtet) und aus allen

Eingängen zusammen die Summe gebildet.

Ist der Summenwert s kleiner als der
Schwellenwert einer Sprungfunktion,
steht am Ausgang o des Neurons der Wert
Null. Übersteigt aber der Summenwert die

Schwelle der Sprungfunktion, schaltet der

Ausgang o auf Eins. Häufig und mit gutem
Grund wird anstelle der Sprungfunktion
eine stetige Funktion, wie etwa die Tan-

gens-Hyperbolicus-Funktion, verwendet.
Neuronen mit stetigen Funktionen können

dann beliebige Ausgangswerte, zum
Beispiel im Intervall [—1, + 1], annehmen.
Entscheidend ist, dass die eingesetzte
Funktion nichtlinear ist. Genau darin liegt
der Trick und die Stärke künstlicher
Neuronaler Systeme - im Zusammenwirken

von Nichtlinearitäten.

Künstliche Neuronale Netze
Verbindet man mehrere der eben

beschriebenen künstlichen Neuronen
miteinander, entsteht ein künstliches Neuronales

Netz. Die Frage ist nun: Wie viele
solcher Neuronen sollen zusammengefügt

werden und in welcher Art?
Glücklicherweise können wir uns auf einige
einfache Grundstrukturen beschränken,
mit denen fast alle Aufgaben gelöst werden

können. Zwei Grundtypen werden
unterschieden:

Netzwerke, bei denen die Signale nur
vorwärts durchs System laufen (feed

forward).
Netzwerke mit Rückkopplungen
(recurrent), bei denen Ausgangssignale
teilweise wieder an vorhergehende
Eingänge zurückgeführt werden.
Eine weitere Vereinfachung besteht

darin, dass bei den vorwärtsgerichteten
Netzwerken die Neuronen in Schichten

electro
*"
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Lernen

Messwerte der

Dehnmessstreifen

Bild 4 Ein Neuronales Netz wird auf den Zusammenhang zwischen den Systembusdaten und der

Belastung der Scharniere trainiert.

angeordnet sind und nur Verbindungen
von einer Schicht zur nachfolgenden
vorgesehen sind. Zudem lässt sich zeigen,
dass bereits drei Schichten mit Neuronen
genügen, um alle möglichen Klassierungsoder

Modellierungsaufgaben zu lösen.
Bild 3 zeigt ein solches Netzwerk. Es hat
sich eingebürgert, dass bei künstlichen
Neuronalen Netzen die Neuronen einfach
als Kreise dargestellt werden und die

Verbindungslinien die synaptischen Gewichte
darstellen. Auch die Eingangswerte werden

in Kreisen dargestellt, obschon hier
keine aktiven Neuronen vorhanden sind.
Darum gilt das Netz in Bild 3, das mit den

Eingängen zusammen vier Schichten
aufweist, nur als dreischichtig.

Die Anzahl Neuronen in der

Eingangs- und der Ausgangsschicht ist durch
die Aufgabenstellung gegeben. Stehen

beispielsweise in einer Anwendung die

Signale eines Distanz- und eines

Geschwindigkeitssensors zur Verfügung,
genügen zwei Eingänge, und um eine
daraus bestimmte Bremskraft zu steuern,
genügt ein Ausgang. Unbestimmter dagegen

ist die Anzahl der Neuronen in den
Zwischenschichten 1 und 2 (hidden
layers). Ein Verfahren zur Optimierung der
Neuronenzahl beginnt mit einer grösseren

Anzahl Zwischenneuronen, um
danach - in einem sogenannten Pruning-
Verfahren - solche Neuronen auszumerzen,

die nichts oder nur wenig zur
Lösung der Aufgabe beitragen. Es sei

bemerkt, dass auch in unseren
Menschengehirnen in der Zeit zwischen
Geburt und Adoleszenz ein Pruning-Prozess
stattfindet.

Künstliche Neuronale Netze im
praktischen Einsatz bestehen aus einigen
wenigen bis einigen Tausend Neuronen,
wobei jedes zusätzliche Neuron unter
Umständen die Anzahl Verbindungen,
also die Anzahl synaptischer Gewichte,
deutlich erhöhen kann.

Viele einfache Prozessoren
Der Berechnungsvorgang im künstlichen

Neuronalen Netz ist durch den
einfachen Algorithmus in den einzelnen
Neuronen bestimmt: also die Multiplikation

eines Eingangswertes mit einem
Gewichtswert, das Aufsummieren solcher
Produkte und die Bestimmung des daraus

resultierenden Funktionswertes in
einer nichtlinearen Funktion. Zuerst
werden die Ausgangswerte für alle

Neuronen berechnet, die direkt mit den

Eingängen verbunden sind, danach die

Ausgänge der Neuronen in der folgenden
Schicht, und so weiter. Da Neuronale

Netze sehr oft auf konventionellen
Computern implementiert werden, wird in
diesem Schritt-für-Schritt-Berechnungs-
prozess ein wertvolles Potenzial der
neuronalen Technik verschenkt. Erst wenn
jedem Neuron ein eigener Prozessor
zugeordnet wird und diese alle gleichzeitig
ihre Berechnung durchführen, kann die
hohe Reaktionsgeschwindigkeit von
Neuronalen Netzen genutzt werden. Zu
diesem Zweck sind verschiedene Hard-
ware-Chips auf dem Markt oder in
Entwicklung, auf denen einige zehn bis
einige tausend Neuronen realisiert sind.

Aktuell werden vermehrt Grafikprozessoren

eingesetzt, welche grundsätzlich
für die parallele, effiziente Berechnung
der Summe von Produkten (multiply
accumulate), wie sie für Neuronale Netze

benötigt werden, optimiert sind.

Lernen
Wie bereits erwähnt, besteht eine

Besonderheit Neuronaler Netze in ihrer
Lernfähigkeit. Die Aufgabe des Lernprozesses

ist es, alle synaptischen Gewichte
im Netz so einzustellen, dass das Netzwerk

als Ganzes die verlangte Aufgabe
erfüllt. In vielen Aufgabenstellungen
stehen Muster zur Verfügung, mit denen das

Neuronale Netz trainiert werden kann.
Ein typisches Beispiel ist die Erkennung
von Sprengstoff im Fluggepäck, eine
Anwendung, die bereits aus der Frühzeit der
neuronalen Technik stammt und die

einige Publizität erreicht hat. [3] In dieser

Anwendung werden Fluggepäckstücke
einer Neutronenstrahlung ausgesetzt und
das Spektrum der daraus resultierenden

Gammastrahlung gemessen. Die erhaltenen

Spektren geben Aufschluss über die

Materialien, die im Gepäckstück vorhanden

sind. Naturgemäss sind die Spektren
der verschiedenen Gepäckstücke sehr
unterschiedlich. Enthält ein Gepäck¬

stück jedoch Sprengstoff, tritt eine nicht
einfach zu erkennende Ausprägung im
Spektrum auf. Die Idee ist nun, die Spektren

mit Hilfe eines Neuronalen Netzes

zu interpretieren. Dazu wird für jede der
200 Spektrallinien ein Eingangsneuron
festgelegt, darauf folgend zwei Zwischenschichten

und ein Ausgangsneuron, das

angeben soll, ob Sprengstoff vorhanden
ist oder nicht. Wie üblich bei Neuronalen
Netzen im Anfangszustand, werden
zuerst alle synaptischen Gewichte auf
Zufallswerte gesetzt. Das Netz hat also

quasi «keine Ahnung» von seiner
Aufgabe. Für die nun folgende Trainingsphase

stehen eine Menge gemessener
Spektren als Lernmuster zur Verfügung,
von denen man weiss, ob Sprengstoff darin

erscheint oder nicht. Diese Muster
werden nun immer wieder in zufälliger
Reihenfolge dem Neuronalen Netz als

Eingangswerte vorgegeben. Die Antwort
des Ausgangsneurons - Sprengstoff ja /
Sprengstoff nein - ist am Anfang rein
zufällig. Stimmt die Aussage zufälligerweise,

wird nichts unternommen und das

nächste Eingangsmuster angelegt.
Stimmt die Antwort nicht, wird jedes
synaptische Gewicht im ganzen Netz ein

ganz klein wenig verändert, entsprechend

seinem Beitrag zum Ausgangswert.

Dieser Vorgang wird mit Hilfe der
vorhandenen Lernmuster vielleicht mehrere

Tausend Mal wiederholt, und zwar
möglichst so lange, bis das Neuronale
Netz jedes Lernmuster richtig klassiert.
Die Strategien, um welchen Wert die
Gewichte in jedem Iterationsschritt verändert

werden sollen, sind einfach und
entsprechen bekannten Optimierungsverfahren,

wie zum Beispiel den
Gradientenverfahren.

Lernprozesse, bei denen Lernmuster
zur Verfügung stehen, von denen man
weiss, welche Ausgangswerte das Netz-

Bulletin 10/2014
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Bild 5 Messung der

Scharnierbelastung

während eines

Flugmanövers und die

Ausgangswerte des

Neuronalen Netzes

(Kreise).

werk liefern muss, werden als überwachte

Lernprozesse (supervised learning) oder
«Lernen mit Lehrer» bezeichnet. In
einem anderen, breiten Anwendungsgebiet
Neuronaler Netze steht wohl eine grosse
Zahl von Daten zur Verfügung, aber
keine dazugehörenden Sollwerte. Die
Aufgabe der Neuronalen Netze ist es in
diesen Fällen, Strukturen innerhalb der

gegebenen Daten festzustellen. Beispiele
für solche unüberwachten Lernprozesse
(unsupervised learning) sind Bildmustererkennung

oder Data Mining.

Neuronale Netze können
verallgemeinern
Im Beispiel mit dem erkannten

Sprengstoff im Fluggepäck könnte man
annehmen, dass das Neuronale Netz im
Laufe des Lernprozesses die vielen
Lernmuster «auswendig lernt», also einfach

zu einem aufgabenspezifischen Gedächtnis

wird. Das kann tatsächlich passieren,
falls der Lernprozess nicht rechtzeitig
abgebrochen wird. Entscheidend für den

Nutzen eines Sprengstoffdetektors ist
natürlich, dass er im trainierten Zustand
nun auch irgendwelche fremden Gepäckstücke

mit Sprengstoff sicher erkennt.
Das ist auch der Fall, und es ist eine

Eigenart trainierter Neuronaler Netze, dass

sie nicht nur die Lernmuster richtig
einordnen, sondern auch beliebige
unbekannte Muster. Neuronale Netze können
also verallgemeinern. Das bedeutet, dass

das trainierte neuronale Netz die
Gesetzmässigkeit erfasst, welche in den Lern¬

mustern vorhanden war. Damit können
trainierte Neuronale Netze Zusammenhänge

aufdecken, die nicht offensichtlich
sind. In vielen erfolgreichen Anwendungen

wird diese Fähigkeit für Prognoseoder

Diagnoseaufgaben genutzt. Anhand
früherer Ereignisse, also Lernmuster mit
zugehörigem Sollwert, kann ein trainiertes

Netz voraussagen, welcher Ausgangswert

bei einem zukünftigen Eingangsmuster

zu erwarten ist. Anwendungen
dieser Art reichen von lokalen
Wetterprognosen über Börsenkursvoraussagen
oder medizinischen Diagnosen bis zur
Qualitätsüberwachung in Produktionsbetrieben.

Modellbildung
Dank der Fähigkeit Neuronaler Netze,

anhand eines Lernprozesses den
Zusammenhang zwischen Eingangs- und
Ausgangswerten eines Systems herzustellen,
werden sie oft zur Modellbildung
herangezogen. In einem Beispiel aus der Avia-
tik war es wichtig, die Belastung der
Scharniere von Flügelklappen zu bestimmen,

um bei zu hoher Dauerbelastung
rechtzeitig die nötigen Unterhaltsmass-
nahmen zu treffen. Durch Anbringen von
Dehnmessstreifen an den belasteten Teilen

der Scharniere kann diese Belastung
während dem Flugbetrieb gemessen und
aufgezeichnet werden. Diese Messeinrichtung

am Flugzeug anzubringen, ist
aufwendig, nicht dauerhaft und im Konzept

des Flugzeuges nicht vorgesehen.
Eigentlich aber hätte man eine ganze
Reihe von Messwerten, wie Geschwindigkeiten,

Bewegungen, Ruderstellungen
usw. grundsätzlich immer an Bord auf
dem Systembus zur Verfügung. Hätte
man ein genaues Modell, das den
Zusammenhang zwischen den Systembuswerten

und den Belastungen der Scharniere
beschreiben würde, könnte man auf die
direkte Messung an den Scharnieren
verzichten.

Ein solches Modell konnte erfolgreich
mit einem Neuronalen Netz realisiert
werden (Bild 4). Dazu wurde ein einziges
Flugzeug mit Dehnmessstreifen an den
Scharnieren ausgerüstet. In verschiedenen

Flugmanövern wurden dann diese

Messdaten gleichzeitig mit den Daten
des Systembusses aufgezeichnet. Mit den

so gewonnenen Datensätzen konnte ein
Neuronales Netz trainiert werden, das

heisst, dass die Gewichte im Netz so

Bild 6 Bewegungsentstehung und -Steuerung bei einer 6-beinigen Gehmaschine mit Hilfe Neuronaler

Netze.
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lange angepasst wurden, bis es an seinem

Ausgang in jedem Fall die gleichen Werte
lieferte wie die Messeinrichtung an den
Scharnieren. Somit stellt das Netzwerk
ein Modell dar, das den Zusammenhang
zwischen den Flugdaten des Systembusses

und der effektiven Belastung an den

Klappenscharnieren nachbildet. Von da

an war es möglich, die Belastung der
Scharniere - bei allen Flugzeugen des

gleichen Typs - ohne zusätzliche Mess-

einrichtung aus den vorhandenen
Systembus-Daten zu bestimmen.

Bild 5 zeigt einen Ausschnitt aus den
kontinuierlich aufgezeichneten Messwerten

an drei Scharnierstellen während
eines kurzen Flugmanövers. Die
eingezeichneten Kreise entsprechen den Werten,

die das trainierte Neuronale Netz
anhand der Systembuswerte bestimmte.
Die Übereinstimmung ist sehr gut und für
die Lastbestimmung durchaus genügend.

Neuronale Netze in der
Robotik
Ein Bereich, in dem Neuronale Netze

eine zunehmende Bedeutung erlangen,
ist die Robotik, insbesondere die Erzeugung

und Steuerung von Bewegungen.
Gemeint sind nicht die Bahnsteuerungen
bei Robotern, die Präzisionsarbeiten in
der industriellen Produktion oder im
Operationssaal ausführen, sondern die

Bewegungen von mobilen, geländegängigen

oder humanoiden Robotern. Aus der
Natur haben wir gelernt, dass Bewegungen

nicht vollständig von einem
Nervenzentrum aus gesteuert werden, sondern
vielmehr lokal im Zusammenwirken von
Körper, Umwelt und Nervenzellen
entstehen. [4] Dieses Konzept wird zum
Beispiel in einer sechsbeinigen Gehmaschine

gemäss Bild 6 angewendet. Jedem
Bein des Gehroboters ist ein sehr kleines
Neuronales Netz zugeordnet. Die
Eingänge dieses Netzes erhalten als Signale
die aktuellen Winkel von Hüft- und
Kniegelenken sowie die Information über den

Bodenkontakt des Fusses. Die Ausgänge
des Netzes steuern die Aktoren an, welche

die Bewegung der Beine verursachen.

In diesem Falle handelt es sich um
ein rückgekoppeltes Neuronales Netz, da

die Ausgänge der Neuronen über synaptische

Gewichte wieder zu den eigenen
Eingängen zurückgeführt werden.
Zusätzlich sind alle Neuronen untereinander

vernetzt. Ein wichtiger Rückkopplungspfad

entsteht aber über die
Kraftwirkung der neuronal angesteuerten
Aktoren, welche in Wechselwirkung mit
dem Boden den Körper des Roboters in

Bewegung bringen. Als Folge dieser

Bewegung werden die Winkel der Beingelenke

verstellt, und mit den Winkelsignalen

wird der Kreis über das Neuronale
Netz geschlossen. Damit entsteht ein

nichtlineares, rückgekoppeltes System,
das neben stabilen Zuständen auch
sogenannte Grenzzyklen aufweisen kann, die
sich als andauernd wiederholte
Bewegungsabläufe manifestieren. Im Idealfall
sind die Bewegungsabläufe so, dass der
Roboter dem Gelände angepasst
vorwärtsschreitet. Eine sinnvolle Bewegung
kann durch die richtige Einstellung der

synaptischen Gewichte im Neuronalen
Netz erreicht werden. Um die Bewegung
aller Beine untereinander zu koordinieren,

werden auch die Netze der Beine
miteinander über synaptische Gewichte
verbunden.

Eine Lernmethode aus der
Natur
Auch in dieser Anwendung möchten

wir die Neuronalen Netze mittels Training

auf ihre Aufgabe konditionieren.
Das Problem ist, dass uns dazu keine
Lernmuster zur Verfügung stehen. Hilfe
bietet uns die Natur mit ihrem enorm
starken Lernverfahren, der Evolution.
Wie üblich werden am Anfang sämtliche

synaptischen Gewichte auf zufällige
Werte gesetzt. Das verursacht kaum eine

sinnvolle Bewegung der Beine, sondern
höchstens eine kleine Kniebiegung oder
ein Zittern des Körpers. Nun befasst sich
aber die Evolution nicht mit dem einzel¬

nen Individuum, sondern mit ganzen
Populationen von mehreren Lebewesen.

Also kreieren wir auch in der technischen

Simulation eine Menge von
gleichartigen Robotern. Unterschieden sind sie

einzig durch die zufälligen Anfangsgewichte

in ihren Neuronalen Netzen.
Jedem dieser Roboter gestatten wir, «Kinder

zu bekommen», die grundsätzlich
Kopien ihrer Eltern sind, aber eben nicht

ganz. Bei der Reproduktion entstehen
kleine Veränderungen, sogenannte
Mutationen. Die synaptischen Gewichte der
Kinder unterscheiden sich also ganz
wenig, aber rein zufällig, von denen ihrer
Eltern, was zur Folge hat, dass auch das

Bewegungsverhalten der Kinder anders
ist als das der Eltern. Hier setzt das

Evolutionsprinzip an, das heisst: «survival of
the fittest», also «Überleben des am besten

Angepassten». Aus der ganzen
Kinderschar der Roboter werden diejenigen
ausgelesen, welche am besten die
Aufgabe erfüllen, die wir von ihnen verlangen.

In unserem Falle sind das diejenigen,

die ein bisschen vorwärtskommen
mit ihren Bewegungen und dabei
möglichst wenig Energie verbrauchen. Diesen
Auserlesenen gestatten wir, sich wieder,
wie ihre Eltern, zu reproduzieren. Alle
anderen sterben aus. Der Prozess der
Reproduktion, mit zufälligen Mutationen
und Selektion der am besten Geeigneten,
wird so oft wiederholt, bis nach und nach
Individuen auftreten, welche eine sehr
natürlich wirkende Gangart aufweisen
und zügig vorwärtskommen.

Les réseaux de neurones artificiels
Des idées inspirées par la nature pour résoudre des problèmes techniques
La question consistant à savoir comment l'interaction entre des cellules nerveuses dans le

cerveau humain peut produire des performances cognitives est loin d'être résolue. Mais il est

intéressant de constater que déjà l'utilisation des plus simples principes issus de l'exemple de

la biologie permet d'en déduire des solutions techniques. Ainsi, les réseaux de neurones

artificiels ont trouvé ces dernières années des applications dans de nombreux domaines où

les méthodes traditionnelles ont souvent eu moins de succès. La technologie neuronale

permet souvent de résoudre efficacement des tâches telles que la reconnaissance de formes,

les pronostics, les diagnostics, ainsi que le contrôle de mouvements dans la robotique.
Mais en dépit des nombreuses applications réussies de réseaux neuronaux, il convient de

garder à l'esprit les limites de cette technologie. Un point de critique majeur est le

comportement de boîte noire. Bien qu'un réseau neuronal soit capable d'apprendre par le

biais de l'entraînement les lois d'un système, nous ne recevons jamais une description

explicite de ces lois. Tout le savoir est réparti dans le réseau sous forme de poids synap-

tiques et n'est pas interprétable.
Il est vivement conseillé de ne pas utiliser des réseaux neuronaux sans motif, mais de

rechercher des solutions techniques dans la mesure du possible sur la base de méthodes basées

sur des règles où le rapport entre l'entrée et la sortie peut être formulé en termes clairs et

compréhensibles. Toutefois, si ce rapport n'est pas connu, complexe ou hautement non linéaire,

des réseaux de neurones apprenant leur tâche au moyen d'un entraînement peuvent en effet

constituer une alternative précieuse ou simplement rendre le problème enfin résoluble. No

electro VS=
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Neuere Studien mit humanoiden
Robotern zeigen, dass die Interaktion der
Roboter mit der Umwelt deutlich verbessert

werden kann, wenn im Roboter
selber zusätzlich ein Modell über seine

Wechselbeziehung zur Umwelt vorhanden

ist. [5] Solche Modelle werden ebenfalls

als lernfähige Neuronale Netze
realisiert.

Denn sie wissen nicht, was
sie tun
Trotz vieler erfolgreicher Anwendungen

von Neuronalen Netzen müssen
klar auch die Grenzen dieser Technik im

Auge behalten werden. Ein wichtiger
Kritikpunkt ist das Black-Box-Verhal-
ten. Obschon ein Neuronales Netz die

Gesetzmässigkeiten eines Systems
durch Training erlernen kann, erhalten
wir nie eine explizite Beschreibung dieser

Gesetzmässigkeiten. Das ganze Wissen

ist in Form von synaptischen
Gewichten im Netz verteilt und nicht
interpretierbar. Das Neuronale Netz bleibt
eine Black-Box. Besonders nachteilig ist
in diesem Zusammenhang die Eigenschaft,

dass wir keine gesicherten Aussagen

über das Verhalten des Netzes
machen können. Tritt beispielsweise
einmal ein Eingangsmuster auf, das völlig
anders ist, als es die Lernmuster je

waren, kann auch die Antwort des Neuronalen

Netzes vollständig unerwartet
sein. Damit ist auch ein zweiter Kritikpunkt

angesprochen: nämlich, dass

Neuronale Netze «die Gefangenen ihrer
Lernmuster» seien. Tatsächlich ist ein
Neuronales Netz nur so gut wie seine

Lernmuster waren, bei denen man
voraussetzt, dass sie den Bereich aller
Möglichkeiten möglichst umfassend abdecken.

Es ist durchaus ratsam, nicht grundlos

Neuronale Netze einzusetzen,
sondern technische Problemlösungen
möglichst auf der Basis von regelbasierten

Methoden anzustreben, bei denen der

Zusammenhang zwischen Ein- und
Ausgang klar und verständlich formuliert
werden kann. Viele Aufgaben der
Regeltechnik gehören zum Beispiel in diesen
Bereich. Ist dieser Zusammenhang
jedoch nicht bekannt, komplex oder
höchst nichtlinear, können Neuronale
Netze, die ihre Aufgabe in einem Training

erlernen, sehr wohl eine wertvolle
Alternative darstellen oder das Problem
überhaupt erst lösbar machen.

Youtube-Links
Rolf Leuenberger, A robot learning to walk:

http://youtu.be/sJ2Bln4UXjc
Georg Martius, Playful Machines - self-learning
robots:

http://www.youtube.com/watch?v=tliKMaMo-tO
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ITG-Statement

Eine bewegte Geschichte
Künstliche Neuronale Netze (NN) blicken auf eine bewegte Geschichte

zurück. Die Entwicklung des sogenannten Perzeptrons - ein elementares

NN mit nur einer Lage von Neuronen - durch Frank Rosenblatt am
Ende der 1950er-Jahre stellt sicherlich einen Meilenstein in der Kl

(künstlichen Intelligenz) dar. Damit konnten auf Basis eines 20x20
Pixel grossen Bildsensors schon einfache OCR-Aufgaben (Optical
Character Recognition) gelöst werden. Allerdings führte am Ende der

1960er-Jahre die Erkenntnis, dass selbst einfache Klassifikationsprobleme

wie das XOR-Problem nicht mit dem Perzeptron gelöst werden

konnten, zu einem schlagartigen Ende des ersten Hypes.

Im Verlaufe der 1970er-Jahre konnte dann aber mathematisch gezeigt
werden, dass durch die Erweiterung des Perzeptrons zu mehrlagigen
NN beliebige Klassifikationsprobleme (u.a. auch das XOR-Problem)

gelöst werden können. Und so kam es in den 1980er- und 1990er-Jahren erneut zu einem

Boom der NN. Vor allem der Lernvorgang der NN durch den sogenannten Backpropagation-

Algorithmus wurde intensiv untersucht. Aufgrund verschiedener Kritikpunkte wurden dann

aber am Ende der 1990er- und im Verlaufe der 2000er-Jahre die NN im Bereich der Kl durch

alternative Klassifikatoren (z.B. Support-Vektor-Maschinen) ersetzt.

Jüngst konnten NN mit Rückkopplungen in verschiedenen Kategorien wie z.B. OCR oder der

Erkennung von Verkehrsschildern ihre Überlegenheit gegenüber allen anderen Methoden unter

Beweis stellen und teilweise Fehlerraten vergleichbar mit menschlichen Leistungen
erreichen.

Eine aktuell sehr interessante Entwicklung in diesem Bereich stellt - trotz der zunehmenden

Kritik - auch das von der EU geförderte «Human Brain Project» dar, in welchem die Modellierung

des menschlichen Gehirns als künstliches NN einen Teilaspekt darstellt.

Prof. Dr. Klaus Zahn,
Leiter Forschungsgruppe

Computer

Vision, H S LU,

6048 Horw
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