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KUnstliche Neuronale Netze

electro
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Ideen aus der Natur zur Losung technischer Probleme

Wie aus dem Zusammenwirken von Nervenzellen im
menschlichen Gehirn kognitive Leistungen zustande
kommen, ist bei Weitem nicht geklart. Spannend ist aber,
dass bereits die Nutzung einfachster Prinzipien aus dem
biologischen Vorbild technische Lésungen erméglicht. So
fanden kinstliche Neuronale Netze in den letzten Jahren
in vielen Gebieten Anwendungen, bei denen herkdmm-
liche Methoden oft weniger erfolgreich waren. Aufgaben
wie die Mustererkennung, Prognosen, Diagnosen sowie
Bewegungssteuerungen in der Robotik kénnen oft mit
neuronaler Technik effizient geldst werden.

Rolf Leuenberger

Als «bedngstigend menschlich» be-
zeichnete 1950 «Der Spiegel» die damals
ersten, programmierbaren, elektroni-
schen Rechenmaschinen. [1] Man sprach
von Elektronengehirnen und glaubte, mit
einer elektronischen Rechenmaschine
von der Grosse eines Wolkenkratzers
konnte die Leistungsfahigkeit des
menschlichen Gehirns erreicht werden.
Heute wissen wir, dass riesige Rechen-
leistung alleine nicht gentigt, um die fan-
tastischen Leistungen des menschlichen
Gehirns nachzubilden.

Doch selbst wenn man die schwer de-
finierbaren Fahigkeiten des Gehirns, wie
etwa Wahrnehmung, Emotionen oder
Kreativitdt, ausschliesst, bleiben immer
noch Eigenschaften, die aus technischer
Sicht ausgesprochen interessant sind. Der
Gedanke, technische Systeme mit dhnli-
chen Figenschaften, wie sie unser Gehirn
hat, auszustatten, gewann in den letzten
50 Jahren zunehmend an Attraktivitat.

Vorbild Gehirn

Besonders interessant ist die Lernfa-
higkeit des Gehirns. Sie gibt uns Men-
schen eine enorme Anpassungsfahigkeit
an gegebene Umstédnde und ermdglicht
uns auch, unsere Verhaltensmuster fiir
beste Uberlebenschancen optimal anzu-
passen. Im Gegensatz zu fest program-
mierten oder konstruierten Maschinen
kann die Lernfahigkeit technischen Sys-
temen neue Dimensionen erdffnen.

Es ist aber auch die enorme Rechenge-
schwindigkeit, die unser Gehirn auszeich-
net. Sehen wir zum Beispiel plétzlich das
Gesicht einer bekannten Person in einer
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Menschenmenge, dauert es wenige Zehn-
telsekunden, und wir erkennen diese Per-
son — beziiglich Bildverarbeitung eine gi-
gantische Leistung, die das Gehirn in
diesem Augenblick vollbringt. Der Schliis-
sel dazu heisst parallele Signalverarbei-
tung. Diese 1,31 graue Masse Hirn be-
steht namlich aus einer beachtlichen An-
hiufung von Nervenzellen. Man nimmt
an, dass es etwa 100 Milliarden Einzelzel-
len sind, wovon jede im Mittel mit einigen
Tausend benachbarten Zellen verbunden
ist. Das Ganze bildet also ein Netz mit
etwa einer Billiarde Verbindungspunkten.
Die Sinnesreize werden diesem Netz zu-
gefiihrt, und tiber die gegenseitigen Ver-
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kniipfungen sind sofort eine grosse An-
zahl Nervenzellen gleichzeitig mit der
Verarbeitung der Reize beschiftigt. Die
Verarbeitung der Signale erfolgt also pa-
rallel mit vielen Nervenzellen. Interessan-
terweise sind die einzelnen Nervenzellen
fiir unsere Begriffe gar nicht so schnell,
ihre Wiederholungsrate betrdgt etwa
200 Hz, wéahrend wir mit PCs arbeiten,
die Taktraten von iiber 1 GHz aufweisen.
Es ist die massive, vom Prinzip her gege-
bene Parallelitdt in der Signalverarbei-
tung, welche uns beispielsweise ein Ge-
sicht so blitzschnell erkennen lasst.

Eine weitere technisch interessante
Eigenschaft unseres Gehirns ist die Feh-
lertoleranz. So miissen wir zwar damit
rechnen, dass nach einem feucht-frohli-
chen Abend ganze Reihen von Gehirn-
zellen im hohen Alkoholpegel absterben.
Trotzdem werden wir keine Abnahme
unserer Intelligenz feststellen konnen.
Wir verfligen also {iber ein System, das
trotz Ausfall einiger Funktionseinheiten
seine Funktionsfahigkeit nicht verliert.
Genauso fehlertolerant ist das Gehirn
beziiglich der einkommenden Signale.
Selbst wenn darin Rauschen oder Unter-
briiche vorhanden sind, kann das Gehirn
sinnvolle Verarbeitungsresultate liefern.

Lernfahigkeit, hohe Verarbeitungsge-
schwindigkeit und Fehlertoleranz sind
also Eigenschaften, die auch fiir techni-
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Tangens Hyperbolicus /// .

Bild 2 Funktion eines kiinstlichen Neurons.

sche Systeme interessant und hilfreich
sein konnten. Kein Wunder, dass sich die
Ingenieure sehr bald fiir die Einsichten der
Neurologen zu interessieren begannen.

Wesentliche Denkansédtze zum Ver-
standnis des menschlichen Gehirns ent-
standen iibrigens zur gleichen Zeit wie
die ersten elektronischen Rechenmaschi-
nen. Es waren der Psychiater Warren
McCulloch und sein Mitarbeiter Walter
Pitts, die in den 1940er-Jahren ein einfa-
ches Modell fiir die Funktionsweise von
Nervenzellen, auch Neuronen genannt,
postulierten. [2] Sie wiesen nach, dass mit
einer endlichen Anzahl der nach ihnen
benannten McCulloch-Pitts-Neuronen
alle berechenbaren mathematischen
Funktionen berechnet werden konnen.
Mit ihrer Erkenntnis legten sie den
Grundstein fiir eine neuartige Technik,
fiir die Neuroinformatik.

Der Natur abgeguckt

Das Prinzip, das McCulloch und Pitts
vorschlugen, ist denkbar einfach und lésst
sich aus einer vereinfachten Darstellung
eines natiirlichen Neurons ableiten. Die
in Bild 1 als Dendriten bezeichneten ver-
zweigten Strukturen im oberen Teil der
Zelle bilden die Eingédnge des Neurons.
Dort sind die Verbindungspunkte zu an-
deren Neuronen im Netz angebracht. In
jeder Verbindungsstelle, auch Synapse
genannt, wird bestimmt, wie stark das an-
kommende Signal in das Neuron einge-
koppelt wird. Die synaptische Verbin-
dungsstdrke oder das synaptische Ge-
wicht bestimmt auch, ob das Signal posi-
tiv, also unterstiitzend, oder negativ,
dementsprechend hemmend, auf das
Neuron einwirken soll. Alle synaptischen
Gewichte zusammen bestimmen die
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Schwellenwert

Funktionen des Gehirns. So sind also alle
Erinnerungen in unserem Gedéchtnis
und alles, was wir jemals im Leben gelernt
haben, nicht in den Gehirnzellen abge-
speichert, sondern in den synaptischen
Verbindungsstédrken. Lernen heisst dem-
nach nichts anderes, als die synaptischen
Gewichte richtig einzustellen. In der Ner-
venzelle selber werden die einkommen-
den, gewichteten Signale aufsummiert.
Erreicht das Summensignal im Innern
einen bestimmten Schwellenwert, wird
ein Signal iiber den austretenden Faden,
Axon genannt, zu den Endverzweigungen
weitergeleitet. Man sagt in dem Falle, das
Neuron feuert. Die Endverzweigungen
fithren dann wieder {iber synaptische Ver-
bindungen zu weiteren Neuronen.

Kiinstliche Neuronen

Im Bild 2 ist dieses Prinzip als kiinstli-
ches Neuron mit drei Eingédngen darge-
stellt. Jeder Eingang e wird mit dem dazu-

Eingangsschicht

gehorenden synaptischen Gewicht w
multipliziert (gewichtet) und aus allen
Eingdngen zusammen die Summe gebil-
det. Ist der Summenwert s kleiner als der
Schwellenwert einer Sprungfunktion,
steht am Ausgang o des Neurons der Wert
Null. Ubersteigt aber der Summenwert die
Schwelle der Sprungfunktion, schaltet der
Ausgang o auf Eins. Haufig und mit gutem
Grund wird anstelle der Sprungfunktion
eine stetige Funktion, wie etwa die Tan-
gens-Hyperbolicus-Funktion, verwendet.
Neuronen mit stetigen Funktionen kon-
nen dann beliebige Ausgangswerte, zum
Beispiel im Intervall [-1,+1], annehmen.
Entscheidend ist, dass die eingesetzte
Funktion nichtlinear ist. Genau darin liegt
der Trick und die Stérke kiinstlicher Neu-
ronaler Systeme - im Zusammenwirken
von Nichtlinearitdten.

Kiinstliche Neuronale Netze

Verbindet man mehrere der eben be-
schriebenen kiinstlichen Neuronen mit-
einander, entsteht ein kiinstliches Neuro-
nales Netz. Die Frage ist nun: Wie viele
solcher Neuronen sollen zusammenge-
fiigt werden und in welcher Art? Gliick-
licherweise konnen wir uns auf einige
einfache Grundstrukturen beschrdnken,
mit denen fast alle Aufgaben gelost wer-
den konnen. Zwei Grundtypen werden
unterschieden:

B Netzwerke, bei denen die Signale nur
vorwérts durchs System laufen (feed
forward).

B Netzwerke mit Riickkopplungen (re-
current), bei denen Ausgangssignale
teilweise wieder an vorhergehende
Eingédnge zuriickgefiihrt werden.
Eine weitere Vereinfachung besteht da-

rin, dass bei den vorwartsgerichteten

Netzwerken die Neuronen in Schichten

Schicht 2

Schicht 1

Bild 3 Dreischichti-
ges, vorwartsgerich-
tetes, kiinstliches
Neuronales Netz.
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angeordnet sind und nur Verbindungen
von einer Schicht zur nachfolgenden vor-
gesehen sind. Zudem ldsst sich zeigen,
dass bereits drei Schichten mit Neuronen
geniigen, um alle moglichen Klassierungs-
oder Modellierungsaufgaben zu losen.
Bild 3 zeigt ein solches Netzwerk. Es hat
sich eingebiirgert, dass bei kiinstlichen
Neuronalen Netzen die Neuronen einfach
als Kreise dargestellt werden und die Ver-
bindungslinien die synaptischen Gewichte
darstellen. Auch die Eingangswerte wer-
den in Kreisen dargestellt, obschon hier
keine aktiven Neuronen vorhanden sind.
Darum gilt das Netz in Bild 3, das mit den
Eingdngen zusammen vier Schichten auf-
weist, nur als dreischichtig.

Die Anzahl Neuronen in der Ein-
gangs- und der Ausgangsschicht ist durch
die Aufgabenstellung gegeben. Stehen
beispielsweise in einer Anwendung die
Signale eines Distanz- und eines Ge-
schwindigkeitssensors zur Verfligung,
geniigen zwei Eingénge, und um eine
daraus bestimmte Bremskraft zu steuern,
geniigt ein Ausgang. Unbestimmter dage-
gen ist die Anzahl der Neuronen in den
Zwischenschichten 1 und 2 (hidden lay-
ers). Ein Verfahren zur Optimierung der
Neuronenzahl beginnt mit einer grosse-
ren Anzahl Zwischenneuronen, um da-
nach - in einem sogenannten Pruning-
Verfahren - solche Neuronen auszumer-
zen, die nichts oder nur wenig zur Lo-
sung der Aufgabe beitragen. Es sei
bemerkt, dass auch in unseren Men-
schengehirnen in der Zeit zwischen Ge-
burt und Adoleszenz ein Pruning-Prozess
stattfindet.

Kiinstliche Neuronale Netze im prak-
tischen Einsatz bestehen aus einigen we-
nigen bis einigen Tausend Neuronen,
wobei jedes zusitzliche Neuron unter
Umstédnden die Anzahl Verbindungen,
also die Anzahl synaptischer Gewichte,
deutlich erhdhen kann.

Viele einfache Prozessoren

Der Berechnungsvorgang im kiinstli-
chen Neuronalen Netz ist durch den ein-
fachen Algorithmus in den einzelnen
Neuronen bestimmt: also die Multiplika-
tion eines Eingangswertes mit einem Ge-
wichtswert, das Aufsummieren solcher
Produkte und die Bestimmung des dar-
aus resultierenden Funktionswertes in
einer nichtlinearen Funktion. Zuerst
werden die Ausgangswerte fiir alle Neu-
ronen berechnet, die direkt mit den Ein-
gingen verbunden sind, danach die Aus-
gdnge der Neuronen in der folgenden
Schicht, und so weiter. Da Neuronale
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Dehnmessstreifen

Bild 4 Ein Neuronales Netz wird auf den Zusammenhang zwischen den Systembusdaten und der

Belastung der Scharniere trainiert.

Netze sehr oft auf konventionellen Com-
putern implementiert werden, wird in
diesem Schritt-fiir-Schritt-Berechnungs-
prozess ein wertvolles Potenzial der neu-
ronalen Technik verschenkt. Erst wenn
jedem Neuron ein eigener Prozessor zu-
geordnet wird und diese alle gleichzeitig
ihre Berechnung durchfiihren, kann die
hohe Reaktionsgeschwindigkeit von
Neuronalen Netzen genutzt werden. Zu
diesem Zweck sind verschiedene Hard-
ware-Chips auf dem Markt oder in Ent-
wicklung, auf denen einige zehn bis ei-
nige tausend Neuronen realisiert sind.
Aktuell werden vermehrt Grafikprozes-
soren eingesetzt, welche grundsétzlich
fiir die parallele, effiziente Berechnung
der Summe von Produkten (multiply ac-
cumulate), wie sie fiir Neuronale Netze
bendtigt werden, optimiert sind.

Lernen

Wie bereits erwdhnt, besteht eine Be-
sonderheit Neuronaler Netze in ihrer
Lernfihigkeit. Die Aufgabe des Lernpro-
zesses ist es, alle synaptischen Gewichte
im Netz so einzustellen, dass das Netz-
werk als Ganzes die verlangte Aufgabe
erfiillt. In vielen Aufgabenstellungen ste-
hen Muster zur Verfiigung, mit denen das
Neuronale Netz trainiert werden kann.
Ein typisches Beispiel ist die Erkennung
von Sprengstoff im Fluggepick, eine An-
wendung, die bereits aus der Friihzeit der
neuronalen Technik stammt und die ei-
nige Publizitét erreicht hat.[3] In dieser
Anwendung werden Fluggepackstiicke
einer Neutronenstrahlung ausgesetzt und
das Spektrum der daraus resultierenden
Gammastrahlung gemessen. Die erhalte-
nen Spektren geben Aufschluss tiber die
Materialien, die im Gepéckstiick vorhan-
den sind. Naturgemadss sind die Spektren
der verschiedenen Gepéckstiicke sehr
unterschiedlich. Enthélt ein Gepéck-

stiick jedoch Sprengstoff, tritt eine nicht
einfach zu erkennende Auspridgung im
Spektrum auf. Die Idee ist nun, die Spek-
tren mit Hilfe eines Neuronalen Netzes
zu interpretieren. Dazu wird fiir jede der
200 Spektrallinien ein Eingangsneuron
festgelegt, darauf folgend zwei Zwischen-
schichten und ein Ausgangsneuron, das
angeben soll, ob Sprengstoff vorhanden
ist oder nicht. Wie iiblich bei Neuronalen
Netzen im Anfangszustand, werden zu-
erst alle synaptischen Gewichte auf Zu-
fallswerte gesetzt. Das Netz hat also
quasi «keine Ahnung» von seiner Auf-
gabe. Fiir die nun folgende Trainings-
phase stehen eine Menge gemessener
Spektren als Lernmuster zur Verfiigung,
von denen man weiss, ob Sprengstoff da-
rin erscheint oder nicht. Diese Muster
werden nun immer wieder in zufélliger
Reihenfolge dem Neuronalen Netz als
Eingangswerte vorgegeben. Die Antwort
des Ausgangsneurons - Sprengstoff ja /
Sprengstoff nein - ist am Anfang rein zu-
fallig. Stimmt die Aussage zufilliger-
weise, wird nichts unternommen und das
nédchste  Eingangsmuster  angelegt.
Stimmt die Antwort nicht, wird jedes sy-
naptische Gewicht im ganzen Netz ein
ganz klein wenig verdndert, entspre-
chend seinem Beitrag zum Ausgangs-
wert. Dieser Vorgang wird mit Hilfe der
vorhandenen Lernmuster vielleicht meh-
rere Tausend Mal wiederholt, und zwar
moglichst so lange, bis das Neuronale
Netz jedes Lernmuster richtig klassiert.
Die Strategien, um welchen Wert die Ge-
wichte in jedem Iterationsschritt verin-
dert werden sollen, sind einfach und ent-
sprechen bekannten Optimierungsver-
fahren, wie zum Beispiel den Gradien-
tenverfahren.

Lernprozesse, bei denen Lernmuster
zur Verfligung stehen, von denen man
weiss, welche Ausgangswerte das Netz-
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werk liefern muss, werden als iiberwachte
Lernprozesse (supervised learning) oder
«Lernen mit Lehrer» bezeichnet. In ei-
nem anderen, breiten Anwendungsgebiet
Neuronaler Netze steht wohl eine grosse
Zahl von Daten zur Verfiigung, aber
keine dazugehorenden Sollwerte. Die
Aufgabe der Neuronalen Netze ist es in
diesen Fillen, Strukturen innerhalb der
gegebenen Daten festzustellen. Beispiele
fiir solche uniiberwachten Lernprozesse
(unsupervised learning) sind Bildmuster-
erkennung oder Data Mining.

Neuronale Netze kénnen

verallgemeinern

Im Beispiel mit dem erkannten
Sprengstoff im Fluggepédck konnte man
annehmen, dass das Neuronale Netz im
Laufe des Lernprozesses die vielen Lern-
muster «auswendig lernt», also einfach
zu einem aufgabenspezifischen Gedécht-
nis wird. Das kann tatsédchlich passieren,
falls der Lernprozess nicht rechtzeitig
abgebrochen wird. Entscheidend fiir den
Nutzen eines Sprengstoffdetektors ist na-
tiirlich, dass er im trainierten Zustand
nun auch irgendwelche fremden Gepack-
stiicke mit Sprengstoff sicher erkennt.
Das ist auch der Fall, und es ist eine Ei-
genart trainierter Neuronaler Netze, dass
sie nicht nur die Lernmuster richtig ein-
ordnen, sondern auch beliebige unbe-
kannte Muster. Neuronale Netze konnen
also verallgemeinern. Das bedeutet, dass
das trainierte neuronale Netz die Gesetz-
massigkeit erfasst, welche in den Lern-

ng electro 99
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Neuronalen Netzes
(Kreise).
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mustern vorhanden war. Damit kénnen
trainierte Neuronale Netze Zusammen-
hénge aufdecken, die nicht offensichtlich
sind. In vielen erfolgreichen Anwendun-
gen wird diese Fahigkeit fiir Prognose-
oder Diagnoseaufgaben genutzt. Anhand
fritherer Ereignisse, also Lernmuster mit
zugehorigem Sollwert, kann ein trainier-
tes Netz voraussagen, welcher Ausgangs-
wert bei einem zukiinftigen Eingangs-
muster zu erwarten ist. Anwendungen
dieser Art reichen von lokalen Wetter-
prognosen iiber Borsenkursvoraussagen
oder medizinischen Diagnosen bis zur
Qualitétsiiberwachung in Produktionsbe-
trieben.

Modellbildung

Dank der Fahigkeit Neuronaler Netze,
anhand eines Lernprozesses den Zusam-
menhang zwischen Eingangs- und Aus-
gangswerten eines Systems herzustellen,
werden sie oft zur Modellbildung heran-
gezogen. In einem Beispiel aus der Avia-
tik war es wichtig, die Belastung der
Scharniere von Fliigelklappen zu bestim-
men, um bei zu hoher Dauerbelastung
rechtzeitig die notigen Unterhaltsmass-
nahmen zu treffen. Durch Anbringen von
Dehnmessstreifen an den belasteten Tei-
len der Scharniere kann diese Belastung
wihrend dem Flugbetrieb gemessen und
aufgezeichnet werden. Diese Messein-
richtung am Flugzeug anzubringen, ist
aufwendig, nicht dauerhaft und im Kon-
zept des Flugzeuges nicht vorgesehen.
Eigentlich aber hétte man eine ganze
Reihe von Messwerten, wie Geschwin-
digkeiten, Bewegungen, Ruderstellungen
usw. grundsétzlich immer an Bord auf
dem Systembus zur Verfiigung. Hatte
man ein genaues Modell, das den Zusam-
menhang zwischen den Systembuswer-
ten und den Belastungen der Scharniere
beschreiben wiirde, konnte man auf die
direkte Messung an den Scharnieren ver-
zichten.

Ein solches Modell konnte erfolgreich
mit einem Neuronalen Netz realisiert
werden (Bild 4). Dazu wurde ein einziges
Flugzeug mit Dehnmessstreifen an den
Scharnieren ausgeriistet. In verschiede-
nen Flugmanovern wurden dann diese
Messdaten gleichzeitig mit den Daten
des Systembusses aufgezeichnet. Mit den
so gewonnenen Datensétzen konnte ein
Neuronales Netz trainiert werden, das
heisst, dass die Gewichte im Netz so

Neuronales
Netzwerk

Bild 6 Bewegungsentstehung und -steuerung bei einer 6-beinigen Gehmaschine mit Hilfe Neuro-

naler Netze.
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lange angepasst wurden, bis es an seinem
Ausgang in jedem Fall die gleichen Werte
lieferte wie die Messeinrichtung an den
Scharnieren. Somit stellt das Netzwerk
ein Modell dar, das den Zusammenhang
zwischen den Flugdaten des Systembus-
ses und der effektiven Belastung an den
Klappenscharnieren nachbildet. Von da
an war es moglich, die Belastung der
Scharniere - bei allen Flugzeugen des
gleichen Typs - ohne zusétzliche Mess-
einrichtung aus den vorhandenen Sys-
tembus-Daten zu bestimmen.

Bild 5 zeigt einen Ausschnitt aus den
kontinuierlich aufgezeichneten Messwer-
ten an drei Scharnierstellen wahrend
eines kurzen Flugmandévers. Die einge-
zeichneten Kreise entsprechen den Wer-
ten, die das trainierte Neuronale Netz
anhand der Systembuswerte bestimmte.
Die Ubereinstimmung ist sehr gut und fiir
die Lastbestimmung durchaus geniigend.

Neuronale Netze in der

Robotik

Ein Bereich, in dem Neuronale Netze
eine zunehmende Bedeutung erlangen,
ist die Robotik, insbesondere die Erzeu-
gung und Steuerung von Bewegungen.
Gemeint sind nicht die Bahnsteuerungen
bei Robotern, die Prizisionsarbeiten in
der industriellen Produktion oder im
Operationssaal ausfithren, sondern die
Bewegungen von mobilen, geldndegéngi-
gen oder humanoiden Robotern. Aus der
Natur haben wir gelernt, dass Bewegun-
gen nicht vollstdndig von einem Nerven-
zentrum aus gesteuert werden, sondern
vielmehr lokal im Zusammenwirken von
Korper, Umwelt und Nervenzellen ent-
stehen. [4] Dieses Konzept wird zum Bei-
spiel in einer sechsbeinigen Gehma-
schine gemdss Bild 6 angewendet. Jedem
Bein des Gehroboters ist ein sehr kleines
Neuronales Netz zugeordnet. Die Ein-
ginge dieses Netzes erhalten als Signale
die aktuellen Winkel von Hiift- und Knie-
gelenken sowie die Information iiber den
Bodenkontakt des Fusses. Die Ausgédnge
des Netzes steuern die Aktoren an, wel-
che die Bewegung der Beine verursa-
chen. In diesem Falle handelt es sich um
ein riickgekoppeltes Neuronales Netz, da
die Ausgange der Neuronen iiber synap-
tische Gewichte wieder zu den eigenen
FEingéngen zuriickgefiihrt werden. Zu-
sdtzlich sind alle Neuronen untereinan-
der vernetzt. Ein wichtiger Riickkopp-
lungspfad entsteht aber iiber die Kraft-
wirkung der neuronal angesteuerten
Aktoren, welche in Wechselwirkung mit
dem Boden den Korper des Roboters in
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Bewegung bringen. Als Folge dieser Be-
wegung werden die Winkel der Beinge-
lenke verstellt, und mit den Winkelsigna-
len wird der Kreis iiber das Neuronale
Netz geschlossen. Damit entsteht ein
nichtlineares, riickgekoppeltes System,
das neben stabilen Zustdnden auch soge-
nannte Grenzzyklen aufweisen kann, die
sich als andauernd wiederholte Bewe-
gungsabldufe manifestieren. Im Idealfall
sind die Bewegungsabléufe so, dass der
Roboter dem Gelidnde angepasst vor-
wartsschreitet. Eine sinnvolle Bewegung
kann durch die richtige Einstellung der
synaptischen Gewichte im Neuronalen
Netz erreicht werden. Um die Bewegung
aller Beine untereinander zu koordinie-
ren, werden auch die Netze der Beine
miteinander iiber synaptische Gewichte
verbunden.

Eine Lernmethode aus der

Natur

Auch in dieser Anwendung mochten
wir die Neuronalen Netze mittels Trai-
ning auf ihre Aufgabe konditionieren.
Das Problem ist, dass uns dazu keine
Lernmuster zur Verfligung stehen. Hilfe
bietet uns die Natur mit ihrem enorm
starken Lernverfahren, der Evolution.
Wie iiblich werden am Anfang sdmtliche
synaptischen Gewichte auf zufillige
Werte gesetzt. Das verursacht kaum eine
sinnvolle Bewegung der Beine, sondern
héchstens eine kleine Kniebiegung oder
ein Zittern des Korpers. Nun befasst sich
aber die Evolution nicht mit dem einzel-

nen Individuum, sondern mit ganzen
Populationen von mehreren Lebewesen.
Also kreieren wir auch in der techni-
schen Simulation eine Menge von gleich-
artigen Robotern. Unterschieden sind sie
einzig durch die zufélligen Anfangsge-
wichte in ihren Neuronalen Netzen. Je-
dem dieser Roboter gestatten wir, «Kin-
der zu bekommen», die grundsétzlich
Kopien ihrer Eltern sind, aber eben nicht
ganz. Bei der Reproduktion entstehen
kleine Verdnderungen, sogenannte Muta-
tionen. Die synaptischen Gewichte der
Kinder unterscheiden sich also ganz we-
nig, aber rein zufillig, von denen ihrer
Eltern, was zur Folge hat, dass auch das
Bewegungsverhalten der Kinder anders
ist als das der Eltern. Hier setzt das Evo-
lutionsprinzip an, das heisst: «survival of
the fittest», also «Uberleben des am bes-
ten Angepassten». Aus der ganzen Kin-
derschar der Roboter werden diejenigen
ausgelesen, welche am besten die Auf-
gabe erfiillen, die wir von ihnen verlan-
gen. In unserem Falle sind das diejeni-
gen, die ein bisschen vorwirtskommen
mit ihren Bewegungen und dabei mdg-
lichst wenig Energie verbrauchen. Diesen
Auserlesenen gestatten wir, sich wieder,
wie ihre Eltern, zu reproduzieren. Alle
anderen sterben aus. Der Prozess der Re-
produktion, mit zufélligen Mutationen
und Selektion der am besten Geeigneten,
wird so oft wiederholt, bis nach und nach
Individuen auftreten, welche eine sehr
natiirlich wirkende Gangart aufweisen
und ziigig vorwértskommen.

m Les réseaux de neurones artificiels

Des idées inspirées par la nature pour résoudre des problémes techniques

La question consistant a savoir comment l'interaction entre des cellules nerveuses dans le
cerveau humain peut produire des performances cognitives est loin d'étre résolue. Mais il est
intéressant de constater que déja |'utilisation des plus simples principes issus de I'exemple de
la biologie permet d’en déduire des solutions techniques. Ainsi, les réseaux de neurones
artificiels ont trouvé ces derniéres années des applications dans de nombreux domaines ol
les méthodes traditionnelles ont souvent eu moins de succes. La technologie neuronale
permet souvent de résoudre efficacement des taches telles que la reconnaissance de formes,
les pronostics, les diagnostics, ainsi que le contréle de mouvements dans la robotique.

Mais en dépit des nombreuses applications réussies de réseaux neuronaus, il convient de
garder a I'esprit les limites de cette technologie. Un point de critique majeur est le
comportement de boite noire. Bien qu’un réseau neuronal soit capable d'apprendre par le
biais de I'entrainement les lois d'un systéme, nous ne recevons jamais une description
explicite de ces lois. Tout le savoir est réparti dans le réseau sous forme de poids synap-

tiques et n'est pas interprétable.

Il est vivement conseillé de ne pas utiliser des réseaux neuronaux sans motif, mais de
rechercher des solutions techniques dans la mesure du possible sur la base de méthodes basées
sur des régles ol le rapport entre I'entrée et la sortie peut étre formulé en termes clairs et
compréhensibles. Toutefois, si ce rapport n'est pas connu, complexe ou hautement non linéaire,
des réseaux de neurones apprenant leur tache au moyen d'un entrainement peuvent en effet

constituer une alternative précieuse ou simplement rendre le probléme enfin résoluble. No
o VS=
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Neuere Studien mit humanoiden Ro-
botern zeigen, dass die Interaktion der
Roboter mit der Umwelt deutlich verbes-
sert werden kann, wenn im Roboter sel-
ber zusitzlich ein Modell iiber seine
Wechselbeziehung zur Umwelt vorhan-
den ist.[5] Solche Modelle werden eben-
falls als lernfdhige Neuronale Netze rea-
lisiert.

Denn sie wissen nicht, was

sie tun ...

Trotz vieler erfolgreicher Anwendun-
gen von Neuronalen Netzen miissen
klar auch die Grenzen dieser Technik im
Auge behalten werden. Ein wichtiger
Kritikpunkt ist das Black-Box-Verhal-
ten. Obschon ein Neuronales Netz die
Gesetzmaéssigkeiten eines  Systems
durch Training erlernen kann, erhalten
wir nie eine explizite Beschreibung die-
ser Gesetzmaissigkeiten. Das ganze Wis-
sen ist in Form von synaptischen Ge-
wichten im Netz verteilt und nicht inter-
pretierbar. Das Neuronale Netz bleibt
eine Black-Box. Besonders nachteilig ist
in diesem Zusammenhang die Eigen-
schaft, dass wir keine gesicherten Aussa-
gen iiber das Verhalten des Netzes ma-
chen konnen. Tritt beispielsweise ein-
mal ein Eingangsmuster auf, das vollig
anders ist, als es die Lernmuster je wa-
ren, kann auch die Antwort des Neuro-
nalen Netzes vollstindig unerwartet
sein. Damit ist auch ein zweiter Kritik-
punkt angesprochen: némlich, dass
Neuronale Netze «die Gefangenen ihrer
Lernmuster» seien. Tatséchlich ist ein
Neuronales Netz nur so gut wie seine
Lernmuster waren, bei denen man vor-
aussetzt, dass sie den Bereich aller Mog-
lichkeiten moglichst umfassend abde-
cken.

Es ist durchaus ratsam, nicht grund-
los Neuronale Netze einzusetzen, son-
dern technische Problemlésungen mog-
lichst auf der Basis von regelbasierten

Methoden anzustreben, bei denen der
Zusammenhang zwischen Ein- und Aus-
gang klar und verstandlich formuliert
werden kann. Viele Aufgaben der Regel-
technik gehoren zum Beispiel in diesen
Bereich. Ist dieser Zusammenhang je-
doch nicht bekannt, komplex oder
hochst nichtlinear, konnen Neuronale
Netze, die ihre Aufgabe in einem Trai-
ning erlernen, sehr wohl eine wertvolle
Alternative darstellen oder das Problem
tiberhaupt erst I6sbar machen.

Rolf Leuenberger, A robot learning to walk:
http://youtu.be/sJ2BIn4UXjc

Georg Martius, Playful Machines — self-learning
robots:
http:/www.youtube.com/watch?v=tliKMaMo-t0
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Eine bewegte Geschichte

Kiinstliche Neuronale Netze (NN) blicken auf eine bewegte Geschichte
zurlick. Die Entwicklung des sogenannten Perzeptrons — ein elementa-
res NN mit nur einer Lage von Neuronen — durch Frank Rosenblatt am
Ende der 1950er-Jahre stellt sicherlich einen Meilenstein in der KI
(kiinstlichen Intelligenz) dar. Damit konnten auf Basis eines 20x20
Pixel grossen Bildsensors schon einfache OCR-Aufgaben (Optical Cha-
racter Recognition) gel6st werden. Allerdings fiihrte am Ende der
1960er-Jahre die Erkenntnis, dass selbst einfache Klassifikationspro-
bleme wie das XOR-Problem nicht mit dem Perzeptron geldst werden
konnten, zu einem schlagartigen Ende des ersten Hypes.

Im Verlaufe der 1970er-Jahre konnte dann aber mathematisch gezeigt
werden, dass durch die Erweiterung des Perzeptrons zu mehrlagigen

NN beliebige Klassifikationsprobleme (u.a. auch das XOR-Problem)
geldst werden kénnen. Und so kam es in den 1980er- und 1990er-Jahren erneut zu einem
Boom der NN. Vor allem der Lernvorgang der NN durch den sogenannten Backpropagation-
Algorithmus wurde intensiv untersucht. Aufgrund verschiedener Kritikpunkte wurden dann
aber am Ende der 1990er- und im Verlaufe der 2000er-Jahre die NN im Bereich der KI durch
alternative Klassifikatoren (z.B. Support-Vektor-Maschinen) ersetzt.

Jiingst konnten NN mit Riickkopplungen in verschiedenen Kategorien wie z.B. OCR oder der
Erkennung von Verkehrsschildern ihre Uberlegenheit gegeniiber allen anderen Methoden un-
ter Beweis stellen und teilweise Fehlerraten vergleichbar mit menschlichen Leistungen errei-

chen.

Eine aktuell sehr interessante Entwicklung in diesem Bereich stellt — trotz der zunehmenden
Kritik — auch das von der EU geférderte «Human Brain Project» dar, in welchem die Modellie-
rung des menschlichen Gehirns als kiinstliches NN einen Teilaspekt darstellt.
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