
Zeitschrift: bulletin.ch / Electrosuisse

Herausgeber: Electrosuisse

Band: 104 (2013)

Heft: (10)

Artikel: Inhärente Ordnung als Prinzip

Autor: Novotny, Radomir

DOI: https://doi.org/10.5169/seals-856546

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-856546
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


INFORMATIK

INFORMATIQUE

Inhärente Ordnung als Prinzip
Ein Gespräch mit dem ACM-Turing-Preisträger Nikiaus Wirth

Anfang der 1970er-Jahre entwickelte Nikiaus Wirth als

Reaktion auf die zunehmende Komplexität der
Programmiersprachen die Sprache Pascal, die sich an
Hochschulen einer hohen Beliebtheit erfreute. Modula und
Oberon folgten. Zudem baute er - Jahre bevor Apple
damit erfolgreich war - nach Studienaufenthalten bei

Xerox einen Computer mit Maus und GUI an der ETH. Im

Gespräch geht er auf die Informatikgeschichte, auf
Bildungssysteme und auf aktuelle IT-Entwicklungen ein.

Radomir Novotny

Bulletin SEV/VSE: Vor 14 Jahren
haben Sie zwar Ihr ETH-Büro verlassen,
sind aber immer noch aktiv und arbeiten

zu Hause beispielsweise an einer
neuen Oberon-Version. Waren Sie

eigentlich kontinuierlich aktiv oder
haben Sie Ihren Ruhestand auch
zwischendurch genossen?

Nikiaus Wirth: Ich war eigentlich
immer aktiv, vielleicht nicht so intensiv wie
im letzten Jahr. Ich mache meine Arbeit

gerne. Es interessiert mich immer noch,
meine früheren Sachen aufzubereiten,
auf einen neuen Stand zu bringen.

Wie kann man die Leidenschaft so
lange bewahren?

Ich weiss es auch nicht. Neugierde.
Von Jugend an war ich interessiert an
Technik. Ich wollte immer wissen, wie
etwas funktioniert. Der Computer war
natürlich Ende der 1950er-Jahre etwas

Mysteriöses. Da konnte noch Neuland
erschlossen werden.

Sie haben zunächst Elektrotechnik
an der ETH studiert. Wie sind Sie zur
Informatik gekommen?

Direkt nach dem Studium bin ich mit
einem Auswanderungsvisum - nicht mit
einem Studentenvisum oder Stipendium

- ausgewandert. Ich wollte arbeiten.
Dann hat sich herausgestellt, dass es

unmöglich war, von hier aus eine Stelle zu
finden, und ich bin an eine Universität
geraten, an der ich eine Assistenzstelle
bekommen habe. Mit 180 Dollar monatlich.

Zunächst dachte ich, dass ich mit
einem ETH-Diplom das höchste, das

man sich erwerben kann, hatte. Etwas,
das überall anerkannt ist. Da dem nicht

so war, habe ich noch in einem Jahr ein
Master-Studium absolviert. Dann hat

man mich ermutigt zu doktorieren, woran

ich früher nie gedacht hätte. Aber ich
habe dann auch gemerkt, dass mich der

Ingenieurberuf in der Industrie nicht
befriedigt hätte, und ich habe es probiert.
Die harten Prüfungen in Berkeley habe
ich dann bestanden und machte weiter.
Zunächst interessierte mich die medizinische

Elektronik, aber da war dort nicht
viel los. Danach habe ich mich für
Informationstheorie interessiert, aber eher,
weil eine Assistenzstelle offen war. Nach
einem halben Jahr konnte ich dann zu
einem Professor wechseln, der Computer
entwickelt hat. Das hat mich fasziniert.
So bin ich hineingeraten. Mehr oder we¬

niger per Zufall habe ich dann Kontakt
mit einer kleinen Arbeitsgruppe
aufgenommen, die im Kellerraum gearbeitet
hat. Die haben etwas «Gschpässigs»
gemacht: Sie haben an einem Programm
gearbeitet, das Programmiersprachen
übersetzt - heute nennt man das Compiler.

Das war faszinierend, weil das

Programm eine Sprache verarbeitet hat, in
der es selbst programmiert war. Rekursion,

Bootstrapping usw. Dann dachte

ich, dies sei ein geeignetes Dissertationsthema,

da es neu war. Es war damals eine

unglaubliche Bastelei und ich dachte, da

könne man etwas Systematik,
wissenschaftliche Ordnung hineinbringen.

Sie haben sozusagen die Schweizer
Ordnungsliebe ins Programmieren
gebracht.

Das ist richtig. Aber ich habe auch
gemerkt, dass das recht komplexe Systeme
sind - komplexer als Maschinen. Und
dass da die einzige Rettung ist, wenn
man Ordnung hineinbringt bzw. von
Anfang an hat. Das war eigentlich das

Thema meiner ganzen Karriere. Software
ist ja bekannt dafür, dass sie manchmal

versagt. Ich war mir bewusst, dass das ein
inhärentes Problem ist, sobald man
komplexe Systeme entwickelt. Die Korrektheit

muss sozusagen von Anfang an
eingeplant werden.

Die Zuverlässigkeit und Einfachheit der Informatik haben bei Nikiaus Wirth oberste Priorität.

electrosuissej^ ^!|Bulletin 10s/2013 ITG-Sonderausgabe/Numéro spécial ITG



INFORMATIK

INFORMATIQUE

Diese USA-Zeit hat Ihre Ziele
geprägt, Ihren Weg bestimmt.

Absolut.

Wie konnten Sie dies an der ETH

einbringen?
Man hat geplant, Informatik an der

ETH einzuführen. Damals nannte man
es noch Computerwissenschaft. Das hat
mich dazu bewogen, 1968 den Ruf an die

ETH anzunehmen. Es vergingen dann
allerdings 12 oder 13 Jahre, bis ein Lehrgang

«Informatik» eingeführt wurde.
Konkrete Vorschläge hatten wir schon
1970 eingebracht, aber man ist dann
nicht einmal so sehr auf Widerstand ge-

stossen, sondern einfach auf Desinteresse.

1980 kam dann die Meldung an die

ETH, nicht an mich, dass gewisse
Industriebetriebe Softwareaufträge ins Ausland

vergeben müssten, da in der Schweiz

zu wenig Kompetenz vorhanden ist.
Wörtlich: «Ob wir eigentlich geschlafen
hätten?» Das war hart. Weil ein eigener
Studiengang aber nicht zustande gekommen

ist, konnte ich mehr Zeit für die

Forschung, für Programmiersprachen
und Compiler, aufwenden. Es hat also
auch seine positive Seite gehabt. Bis
1980 waren wir eigentlich nur vier
Professoren. Heute sind es über 30.

Sie haben nebst Programmiersprachen

auch Hardware entwickelt. Pascal

war ja ein durchschlagender Erfolg.
Aber von Ihrer Hardware hört man
kaum etwas. Wieso diese Diskrepanz?

Ich war bis 1977 im Gebiet der
Software verblieben. Dann hatte ich ein

Urlaubsjahr und konnte eine glückliche
Wahl treffen, denn ich ging ins kalifornische

Xerox-Forschungslabor, wo sie die
Idee des Personal Computer entwickelt
hatten. In meinem kleinen Büro wurde
mir eine solche Maschine, die mich absolut

fasziniert hat, zur Verfügung gestellt.
Das war sehr grosszügig. Ich erkannte,

dass dies eine komplett andere Welt ist. Zu
Hause hatte man ein Terminal, das mit
einem im Keller stehenden Computer, der

von vielen anderen genutzt wurde, mittels
dünnem Draht verbunden war. Und da

hatte ich nun einen, der mir alleine zur
Verfügung stand - mit einem hochauflösenden

Bildschirm. Heute sage ich, dass

das Computerzeitalter erst damit angefangen

hat. Mitte der 1970er-Jahre. Die Leute

können sich heute nicht vorstellen, wie

man damals mit Computern gearbeitet hat

- über ein Terminal mit dünnem Draht.
Heute ist alles hoch interaktiv. Da mich
das sehr fasziniert hat, wollte ich in der
Schweiz nicht zum alten System zurück.
Ich habe mich sofort darauf kapriziert, so

etwas zu entwickeln, und habe ein Labor

von Null auf mit relativ primitiven Mitteln
aufgebaut. Wir hatten damals keine

Hardware-Entwicklung. Der Initialkredit
betrug 56000 CHF! Wir haben zwei Lilith-
Prototypen entwickelt. Ein Nachbau des

Alto-Computers mit ein wenig modernerer

Technologie. Eigentlich ist er zu früh
gekommen, denn die Leute haben die Vorteile

nicht erkannt. Erst drei Jahre später
kam jemand, der es fördern und entwickeln

wollte. Es wurde eine Firma gegründet,

an der ich mich nicht beteiligen wollte,
da ich mit dem Unterricht und der
Forschung ausgelastet war. Das hat dann
leider nicht gut funktioniert. Es wurden
immerhin ein paar 100 solcher Computer
hergestellt. Aber es hat an Kunden und an
einem wirklichen Businessplan gefehlt.

Apple hat es dann mit einem
vergleichbaren Computer besser gemacht.

Ja, aber das, was wir 1980 hier gehabt
haben, das hat Apple erst fünf Jahre spä¬

ter auf den Markt gebracht. Wir und
unsere Doktoranden hatten den Vorteil,
zukunftsträchtige Software auf moderner
Hardware entwickeln zu können.

Die ETH ist eine Universität, die vor
allem für den Unterricht und für die
Forschung zuständig ist, aber nicht für die

Entwicklung industrieller Produkte. Die
Marktlösungen müssen von den Industrien

kommen.

Heute versucht die ETH, via Industry

Relations Kontakte zur Industrie
zu knüpfen. Wie beurteilen Sie dies?

Das ist positiv. Es gibt ja Stellen an der
ETH zur Förderung von Spin-Offs. Das ist
eine amerikanische Idee, die in den 1990er-

Jahren bei uns eingeführt worden ist. Ich
finde das sehr gut, aber man muss aufpassen,

dass man es nicht übertreibt.
Heute bauen meiner Ansicht nach zu

viele Forscher grosse Forscherteams auf
und haben dann die Aufgabe, Drittmittel
einzutreiben. Der Professor mutiert zum
Fundraiser - für die Forschung bleibt
weniger Zeit und für den Unterricht gar
keine. Das machen dann die Assistenten.
Das ist schade. An der ETH haben sie ja
ein Budget von fast einer Milliarde. Da
sollte es eigentlich nicht nötig sein,
Drittmittel einholen zu müssen. Ich hatte
immer um die vier von der Schule bezahlte
Etat-Stellen. Heute hat jeder Informatikprofessor

mindestens ein Dutzend
Assistenten und muss dann die Saläre eintreiben

können. Sie werden dann mehr oder

weniger von den Bedürfnissen, die an sie

gestellt werden, gesteuert. Die Industrie
gibt zurecht nicht Geld für nichts aus.

Das ist ein Spannungsfeld, in dem
man leben muss. Kurzfristige Erfolge
stehen dann im Vordergrund.

Die Industrie denkt nicht auf 50 Jahre
hinaus. Das wäre eigentlich die Aufgabe
der Universitäten. Vielleicht ist 50
übertrieben. Zehn ist schon viel. Ich behaupte,
dass eine Entwicklung wie Pascal heute an
Universitäten schlechthin unmöglich
wäre. Das muss auf längere Zeit geplant
werden, und man muss überzeugt davon

sein, dass es längerfristig nützlich ist.

Damals in den 1960er-Jahren war die

grosse Frage, ob Programmiersprachen
überhaupt eine Zukunft haben. Ist es nicht
gescheiter, in Assembler zu programmieren?

Das ist effizienter, man kann Instruk-

Als Mäuse noch keine Mikroprozessoren benötigten: Schweizer Dépraz-Mâuse (links) aus den

1980er-Jahren treffen auf dem Wirthschen Arbeitstisch auf kalifornische Xerox-Mäuse.

Das Computerzeitalter hat erst Mitte der 1970er-Jahre mit der
Maus und dem hochauflösenden Bildschirm angefangen.

electrosuissej^
Bulletin 10s/2013 ITG-Sonderausgabe/Numéro spécial ITG



INFORMATIK

INFORMATIQUE

Auch heute ist Nikiaus Wirth noch aktiv: Da der Mikroprozessor für seinen neuen Oberon-Rechner

nicht mehr verfügbar ist, hat er einen FPGA-Prozessor (auf Leiterplatte zwischen den Tastaturen

sichtbar) als Ersatz enwickelt.

tionen sparen usw. Davon redet schon

lange niemand mehr. Aber man musste die

fortschreitende Technik abwarten, um zu

erkennen, dass sich das «Knübeln» an
einzelnen Instruktionen nicht mehr lohnt,
sondern dass Zuverlässigkeit und Korrektheit

viel wichtiger sind. Um dies mit
Assemblercode hinzukriegen - das ist der
falsche Weg. Das ist mit modernen
Programmiersprachen schwierig genug.

Apropos Programmiersprachen:
Stellen Sie eine örtliche Konzentration

gewisser Sprachen fest?
Beispielsweise dass Lisp eher in den USA

verbreitet ist?
Das gibt es schon. Aber heute dominiert

das, was von den grossen Firmen
kommt - C# von Microsoft, Apple, Linux,
Android, Java, Go. Eine funktionale
Programmiersprache wie Lisp ist natürlich
etwas anderes - eine andere Art, um über

Algorithmen nachzudenken. Lisp stand

am Anfang: 1962, McCarthy, MIT, Stanford.

Es gibt auch heute noch Personen,
die auf funktionale Sprachen eingeschworen

sind. Das Zentrum liegt aber nicht in

Kalifornien, sondern in England und
Schottland. Da geschahen die wesentlichen

Weiterentwicklungen. Die funktio¬

nale Programmierung hat schon attraktive
Seiten, und ich versuche auch, sie in
meine Art der prozeduralen Programmierung

einzubringen. Rein funktionale
Programmierung hat es sowieso eigentlich nie

gegeben, denn der Computer ist eine
Maschine mit Zuständen. Funktionen haben
keine Zustände. Man muss da immer ein

wenig «betrügen».
Heute wird natürlich alles von den

kommerziellen Sprachen dominiert. Leider

- ich sage es jetzt ganz offen - muss
ich das bedauern, denn die Sprachen sind

zwar sehr mächtig, aber man kann
Abstraktionen sehr leicht durchbrechen und
damit Unsicherheiten einführen wie
damals bei der Assemblersprache.

Überhaupt hat sich das Programmieren

gewandelt. Es gibt nur eine Minderheit

von Programmierern, die neue
Algorithmen entwickeln. Meist geht man heute
in Libraries und sucht sich seine

Programmteile. Die Idee ist gut, aber es

kommt darauf an, wie gut die Teile und
ihre Schnittstellen programmiert sind. Oft

geschieht, dass man dann Systeme
zusammenstellt, von denen man 90% meist gar
nicht braucht. Wenn man kompakte
Systeme machen will, sollte man sie von
Grund auf aufbauen, statt sich in Libraries

zu bedienen.

Dann würden Sie also auf Libraries
verzichten?

Ich mache das, aber ich bin da ein
spezieller Fall.

Aber in der Industrie braucht man
Sprachen, die alle Bedürfnisse abdecken.

Erstens das, zweitens braucht man
Sprachen, die andere auch benutzen -
man will sich ja absichern - und drittens
kommt es nicht so sehr darauf an, dass

sie optimiert und möglichst wenig
Ressourcen brauchen und effizient sind,
sondern dass das Resultat möglichst schnell
realisierbar ist. Time-to-market lautet das

Schlagwort.

Heute sieht man auch Tendenzen,
bei denen Nachhaltigkeit eine grössere

Rolle spielt. Beurteilungskriterien
für die Nachhaltigkeit von

Software werden entwickelt.
Und wie gut sie erweiterbar ist - das

ist auch ein Faktor. Wir haben in der In¬

formatik aber eine gewaltige Hypothek,
denn man hat alles mit Werkzeugen
aufgebaut, die nicht ideal sind. Das wird
man heute nicht mehr los. Benutzer wollen

nichts Neues, das nicht kompatibel
mit dem Alten ist. Es muss so weitergehen,

wie man es gehabt hat. Schon besser,

aber die alten Sachen müssen weiterlaufen

können.

Sie haben nach Pascal noch
Modula 2 und Oberon entwickelt. Wo wird
Oberon heute eingesetzt?

Zuerst muss ich noch sagen, dass
Modula eine Weiterentwicklung von Pascal

ist und Oberon von Modula. Die drei
Sprachen bilden eine Familie im gleichen
Stil. Pascal hat das strukturierte
Programmieren eingeführt, Modula hat die
modulare Programmierung ermöglicht,
Oberon die objektorientierte. Oberon ist

einfacher, aber mächtiger als Pascal. Es

sind eigentlich nur Einzelkämpfer, die
das Oberon einsetzen, aber es gibt z.B.
eine wachsende Verbreitung in Russland.

Da wird es an Universitäten und Begab-
tenschulen gefördert, die den Wert der

Systematik und der Einfachheit sehen.

Man kann sich dann auf die Sache
konzentrieren und muss keine Nebensächlichkeiten

mitschleppen. Ich denke, der
Zustrom wächst wieder langsam, ist aber
klein im Vergleich zur Industrie. Es ist
schade, wenn man sich an Universitäten
nicht auf solche Werkzeuge konzentriert,
weil Grundideen herauskristallisiert werden

können. Dazutun kann man später
immer noch.

Die funktionale Programmierung hat schon attraktive
Seiten, und ich versuche auch, sie in meine Art der prozeduralen

Programmierung einzubringen.

Bulletin 10s/2013 ITG-Sonderausgabe/Numéro spécial ITG
electrosuisse^> ^§<j



INFORMATIK

INFORMATIQUE

Xl| electrosuisse^>
Bulletin 10s/2013 ITG-Sonderausgabe/Numéro spécial ITG

Niklaus Wirth rückt das Ressourcenbewusstsein in den Vordergrund.

Wieso gerade Russland?
Gute Frage, ich habe darauf keine

Antwort. Letztlich hängt es von einzelnen
Leuten ab. In der Sowjetunion hatten sie

ein ausgezeichnetes Bildungssystem. Das

wollte man ja bei uns nie wahrhaben. Ein
Bildungssystem, das besonders die Begabten

gefördert hat. Die Professoren hatten
mehr Musse und den Drang, das

Wissenschaftliche sauber einzusetzen. Dadurch
hat auch Oberon eine Basis, eine Plattform

an Interessenten. Ich war 1990 das

erste Mal in Russland, wo ich das
akademische Informatik-Zentrum bei Novosibirsk

besucht habe. Das war für mich sehr
interessant. Es hat meine Augen dafür
geöffnet, dass es da nicht nur ein politisches

System gab, sondern das da
Menschen leben wie wir. Dort hat eine

Gruppe von jungen Leuten den Lilith-
Computer, den ich vor 1980 entworfen
habe, aufgegriffen und einen eigenen

Computer mit eigener Elektronik gebaut.
Das war schon eindrücklich. Allerdings
haben sie die wichtigsten Sachen
ausgelassen: Die Maus und den hochauflösenden

Bildschirm. Sie haben sich auf die

Hardware-Entwicklung und die
Implementierung von Modula spezialisiert.

Fehlten die technischen Mittel?
Ja. Sie haben mir auch die Maus, die

sie entwickelt haben, gezeigt. Ein unmögliches

Ding, ein grosses Monstrum, völlig
unpraktisch. Auch einen geeigneten
Bildschirm hatten sie nicht. Alle hochtechnischen

Entwicklungen waren in der
Sowjetunion dem Militär vorbehalten. Das

hat sich jetzt natürlich geändert, aber bis

1990 war das normal. Sie hatten auch
das Geld nicht, und der Zugang zum
Westen war verschlossen.

Ich kenne einen theoretischen Physiker

in Moskau, der Oberon aktiv verbreitet.

Er gibt in Gymnasien Kurse. Seine

Spezialität ist die Neutrinophysik. Er hat

gesagt, dass er gewisse Systeme mit Oberon

programmieren konnte, die er mit
anderen Sprachen nicht geschafft hat. Mit
diesen Programmen haben sie wesentliche

Resultate über Neutrinos erarbeitet.

Eigentlich sei dies ein wesentlich wichtigerer

Beitrag als die Entdeckung des

Higgs-Teilchens, das sich grosser medialer
Aufmerksamkeit erfreut. Für das Higgs-
Teilchen hätten wir ja in den letzten zehn

Jahren schon so viele Daten gesammelt,
dass es praktisch sicher gewesen ist, dass

die Theorie stimmt. Nun haben wir noch
die letzte Bestätigung. Bei den Neutrinos
konnte hingegen etwas fundamental
Neues berechnet werden. Oberon hat also

doch einen Beitrag geleistet...

Spüren Sie ein wachsendes Interesse

an der Informatik- und
Computergeschichte?

In letzter Zeit schon, aber es ist keine

grosse Welle. Man merkt es, weil früher gar
kein Interesse vorhanden war. Es waren
schon interessante Jahre. Das Computerzeitalter

hat aber, wie schon gesagt, 1975

angefangen, nicht mit Babbage und Boole.

Kürzlich wurde Zuse und dann
Turing gefeiert, sozusagen als Fixsterne
des Informatikhimmels. Wie stufen
Sie ihre Bedeutung ein?

z Zuse war ein beachtlicher Pionier,

| vor allem weil er die Sache in völliger
Isolation entwickelt hat. Die übrige
Welt hat gar nicht registriert, was er
geleistet hat. Immerhin hat er es geschafft,
eine Firma zu gründen. Zuse-Maschi-
nen wurden kommerziell hergestellt
und in der Wirtschaft in kleiner Zahl
verwendet. Dann wurde er von den
amerikanischen Produkten überrollt.
Bezüglich Turing habe ich kürzlich ein
sehr interessantes Buch gelesen. Er ist
auch eine Randfigur, ein Theoretiker. Er
hat grundlegend begriffen, dass die Idee

von Programmen, die sich selber
modifizieren, neue Aspekte eröffnen könnte.
Für ihn war das Thema «Artificial
Intelligence» wichtig. Aber ich würde sagen,
dass in der heutigen Zeit wenig vorhanden

ist, das auf ihn zurückgeht. Gut, das

kann man bei Zuse auch sagen, obwohl
Zuse auch technische Beiträge geleistet
hat. Die Turing-Maschine ist ein theoretisches

Konstrukt, das man nie brauchen

konnte, ausser um zu beweisen,
dass gewisse Sachen nicht berechenbar
sind.

Im zweiten Weltkrieg setzte er sich
dann aber praktisch ein.

Dafür wurde er bekannt, aber das hat
nichts mit der Entwicklung der IT zu tun.

Welche Personen würden Sie eher
ins Rampenlicht rücken?

Ganz sicher John von Neumann und
Leute aus seinem Kreis. Er hat die meisten

Beiträge geleistet. Übrigens: In dem
Buch, das ich bezüglich Turing erwähnt
habe, ist von Neumann prominenter als

Turing selbst. Es ist mir durch das Buch
auch bewusst geworden, wie stark die

Entwicklung der Computer mit der
Entwicklung der Atombombe verbunden
war. Computer sind sozusagen im
Schlepptau der Atombombe entstanden.

Von Neumann hat die Architektur
heutiger Computer geprägt. Könnte
man sich heute eine andere, effizientere

Architektur vorstellen.
Die wesentliche Idee von Neumanns

ist erstens die Idee, dass Programm und
Daten denselben Speicher verwenden,
wodurch der Computer seine

Programme selbst verändern kann, und
zweitens, dass ein intrinsischer Mechanismus

vorhanden ist, der Instruktionen
sequenziell ausführt, wodurch viel
weniger Hardware benötigt wird, da in
jedem Schritt immer wieder die gleiche



INFORMATIK

INFORMATIQUE

Hardware verwendet wird. Das ist auch
heute noch ein fundamentales Prinzip,
aber heute ist die Hardware so billig,
dass es attraktiv ist, viele von-Neumann-
Kerne zu verwenden, die dann
miteinander kooperieren. In dem Sinn
weicht man durch die Parallelisierung
schon vom reinen Single-Prozessor von
Neumann ab. Aber die Schwierigkeiten
sind natürlich enorm. Ein Prozessor, der
Millionen von Instruktionen absolut
fehlerlos durchführt, ist schon eine

Herausforderung. Bei mehreren Prozessoren

ist es noch schwieriger. Eigentlich
ist es ein Wunder, dass es so gut läuft
und dass die Hardware so zuverlässig
ist. Denken Sie: Milliarden von Instruktionen.

Wenn eine versagt, geht alles
unter. Das ist ein absurdes Konzept.
Aber es funktioniert.

Was ist für Sie das Überraschendste
an der IT-Welt der letzten Jahre?

Das Ausmass der explosionsartigen
Ausbreitung. Das wurde durch die
Verheiratung der Computerwelt mit der
Kommunikationswelt ermöglicht, die
nicht in den letzten paar Jahren stattgefunden

hat, sondern um 1980 begonnen
hat. Die meisten heutigen Computer
kann man in der Hand halten und sie

kommunizieren mit anderen Computern.
Kommunikation ist total integriert. Das
hatte man in den 1970er-Jahren noch
nicht so vorausgesehen.

Was bedauern Sie an der IT-Welt?
Dass sie so anfällig ist auf böswillige

Störungen. Viren kannte man vor 1990

nicht. Im Prinzip könnte man sie einfach
unterbinden, indem man sagt, man
könne keine Programme laden, sondern

nur Daten. Daten kann man nicht
ausführen. Das ist eine so grosse Restriktion,
dass sie heute niemand akzeptiert.
Heutzutage will man Programme, Programmteile

und Programmobjekte importieren,
die dann direkt ausgeführt werden. All
die Bilder, die sich bewegen, sind heute

unverzichtbar, aber der Preis dafür muss
bezahlt werden. Heute teilt man den

Computer in jeder Sekunde mit der übrigen

Welt. Bei meinem Rechner, den ich
selber entwickle, habe ich keinen Netz-
anschluss. Wenn etwas schiefgeht, weiss

ich, dass es mein Fehler ist.

Was halten Sie von der Open-
Source-Bewegung?

Das kann ich nicht in einem Satz
beantworten. An den Universitäten haben
wir seit eh und je Open Source gemacht.

Wir haben von Anfang an Pascal-Compiler

ausgeliefert. Es ist die Grundidee
der akademischen Welt, dass man
Gedanken und Informationsmittel
austauscht. Dass dies aber nun in der
kommerziellen Welt stattfindet, ist ein
Novum. Open Source lebt von vielen
Volontären. Das Problem scheint mir, dass

es nicht klar ist, wer wofür verantwortlich

ist, wenn etwas nicht mehr stimmt.
Aber bis jetzt hat es offenbar funktioniert.

Viele arbeiten mit Linux statt mit
Windows. Ich finde es eine durchaus

positive Entwicklung.

Idealerweise sollte man mit Modulen
arbeiten können, auf die man aufbauen
kann. Die Grundidee der Module ist,
dass man nicht wissen muss, wie diese

organisiert sind. Man stützt sich auf die
bekannte Schnittstelle ab. Open Source
ist eigentlich nicht nötig, es genügen
geschlossene Module mit wohldefinierten
Schnittstellen. Dann muss man nicht
wissen, wie es drinnen aufgebaut ist.

Man muss es auch nicht modifizieren
können. Die Verantwortung bleibt beim
Modulentwickler. Ich bin auch heute
noch davon überzeugt, dass so zukünftige

zuverlässige Systeme aufgebaut sein

müssten. Open Source - heute ja, aber

eigentlich verletzen sie ein grundlegend
wichtiges Prinzip.

Was freut Sie an heutigen
IT-Entwicklungen?

Wenig... Heute ist die Hardware so

billig. Wir haben noch mit Systemen im
Kilobyte-Bereich gearbeitet. Lilith hatte
64 kB. Das war damals viel. Der erste

PDP-11, als ich hier ans Institut kam,
hatte 16 kB. Man kann heute mit
Ressourcen ganz anders umgehen, und
leider auch verschwenderischer. Die
«Abundance of Hardware» hat auf die

Disziplin der Softwareentwicklung
einen negativen Einfluss. Es gibt durchaus

Gebiete, die diese Hardware brauchen

- man denke an die grossen
Systeme zur Berechnung von Physikdaten,
die in Gigabyte-Quantität anfallen, oder

an die Wetterprognosen und Fahrplansysteme.

Aber heute werden mit grossem

Aufwand PC in Prospekten, die ins
Haus flattern, angepriesen, die 64 GB
haben. Da wird man dazu aufgefordert,

mit der Hardware verschwenderisch
umzugehen. Und das ist nicht nur in der
IT schlecht, auch sonst.

Wie finden Sie Ansätze wie
beispielsweise den Raspberry Pi, diesen
kreditkartengrossen Rechner, mit
dem sich Studierende hardwarenah
auseinandersetzen können?

Das ist eine interessante Entwicklung,
vor allem im Bereich des Unterrichts.
Was ich mache, ist das gleiche, abgesehen

davon, dass ich einen selbstgebauten
Prozessor statt eines kommerziell erhält¬

lichen einsetze und statt einer riesigen
Sprache wie Java oder C# mein Oberon
darauf laufen lasse. Das ist alles auf die
«Educational Usage» ausgerichtet, bei
der das ganze System und neuerdings
auch die Hardware in einem Buch detailliert

beschrieben ist.

Heute ist aus meiner Sicht problematisch,

dass die Leute nicht mehr wissen, wie
ein Computer funktioniert. Das war bis zu
einem gewissen Grad immer so, aber heute

hat sich dies verschärft. Selbst manche

sogenannte IT-Spezialisten haben keine

Ahnung, welcher Prozessor drin ist, wie er
aufgebaut ist, wie man ihn programmiert.
Selbst Fachleute werden zunehmend
abhängig von dem, was geliefert wird.

Wenn Ihr neues Oberon-Buch
veröffentlicht wird, möchten Sie es
kommerzialisieren?

Nein. Sie haben Open Source
erwähnt, und ich habe gesagt, wir haben
schon immer mit Open Source gearbeitet.

So wird es auch da sein. Wenn das

Buch fertig ist, werde ich es im Internet
gratis zur Verfügung stellen. Es wäre
schön, wenn das Buch auch in Buchform
erscheinen könnte.

Das ist die heutige Frage, eBook
oder gedrucktes Buch.

Es hat beides seine Vorteile, aber ich
habe ganz gerne etwas in der Hand. Dass

es im Internet auch noch ist, ist okay. Ist
manchmal sogar sehr vorteilhaft. Aber ich
hätte das System, das ich seit einem Jahr
entwickle, nicht ohne ein Hardcopy-Buch
auf dem Schreibtisch entwickeln wollen.

Herzlichen Dank für das Gespräch.

\ Open Source ist eigentlich nicht nötig, es genügen
geschlossene Module mit wohldefinierten Schnittstellen.

48 Bulletin 10s/2013 ITG-Sonderausgabe/Numéro spécial ITG
electrosuisse^>


	Inhärente Ordnung als Prinzip

