Zeitschrift: bulletin.ch / Electrosuisse

Herausgeber: Electrosuisse

Band: 103 (2012)

Heft: 1

Artikel: Leuchtmittel-Tendenzen im Fokus

Autor: Kallmann, Roland

DOI: https://doi.org/10.5169/seals-857262

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Leuchtmittel-Tendenzen im Fokus

Ausgewählte Beispiele für den Retro-Bereich

Der aktuelle schnelle Wandel in der Beleuchtungstechnik ist beispiellos. Wurden vor Kurzem noch Stromsparlampen als die modernste Technologie vorgestellt, lautet nun das Zauberwort «LED». Einige Beispiele illustrieren die Entwicklung der Leuchten von der klassischen Glühlampe zur Halogenlampe, zur kompakten Leuchtstofflampe und schliesslich zur neusten LED-Lampe. Zudem wird gezeigt, wie mit einfachen Mitteln der Wirkungsgrad vorhandener Leuchten erhöht werden kann.

Roland Kallmann

Der Markt der elektrischen Beleuchtung befindet sich in einer starken Wandlung. Die klassische Glühlampe wurde – mit einem Kohlenfaden und einer Lichtausbeute von 1,4 lm/W – 1879 von Thomas Alva Edison erfunden. Ihre Konstruktion (Doppelwendel-Draht aus Wolfram mit einer mittleren Lebensdauer von 1000 h) hat seit 1934 praktisch keine Änderung mehr erfahren. Die Serien der Glühlampe mit Leistungen von 15, 25, 40, 60, 75, 100, 150 und 200 W sind im Aussterben begriffen. Eine 100-W-Glühlampe kommt auf 13,4 lm/W.

Die Glühlampe wird seit 2009 kontinuierlich durch die Halogenlampe, deren Lichtausbeute um 25% höher ist und deren Lebensdauer 2000 h beträgt, ersetzt. Die erste Halogenlampe wurde 1958 durch General Electric erfunden. Es stehen folgende Leistungen zur Verfügung: 18, 28, 42, 52, 70, 105 und 140 W [1,2]. Der Lichtfluss einer 70-W-Halogenlampe beträgt 1200 lm. Dies ergibt eine Lichtausbeute von 17,1 lm/W.

Die kompakte Leuchtstofflampe – volkstümlich Energiesparlampe genannt – ist seit 1983 auf dem Markt. Der erste Typ (Philips Prismatic SL 18) war recht gross, schwer und teuer (18 W, 900 lm, 50 lm/W, 520 g, 32 CHF). Die mittlere Lebensdauer war mit 5000 h angegeben, und die Lichtqualität liess zu wünschen übrig. Erst seit etwa 2002 erobern die kompakten Leuchtstofflampen die Haushalte und das Gewerbe. Ihre mittlere Lebensdauer beträgt 6000 bis 12 000 h. Die Energie-Ersparnisse gegenüber der Glühlampe betragen 75 %. Die Lichtausbeute mit 60 lm/W ist recht hoch.

Die fünfte Revolution¹⁾ der Leuchtmittel-Technologie ist seit 2009 in vollem Gange mit der Markteroberung durch die LED-Lampen. Diese haben eine mittlere Lebensdauer von 25 000 h und enthalten im Vergleich zur kompakten Leuchtstofflampe kein Quecksilber. LED-Lampen sind noch recht teuer, aber Einzelrechnungen zeigen, dass es sich lohnt, gute LED-Lampen einzusetzen, wenn man die gesparten Energiekosten berücksichtigt. Man findet eine riesige Menge von ausgereiften, aber auch mangelhaften Produkten auf den Markt.

Mittlerweile sind kompakte Leuchtstofflampen und LED-Lampen erhältlich, die mittels Phasen-Anschnittsteuerung dimmbar sind.

Kompakte Leuchtstofflampe mit hoher Leistung

Die für den Hausgebrauch bestimmten kompakten Leuchtstofflampen haben eine Leistung zwischen 5 und 20 W, selten auch 30 W. Ist es aber möglich, vorhandene Glühlampen mit 150 W und mehr, Mischlicht-Lampen mit 160 W und 250 W sowie Quecksilberdampflampen und Natriumdampflampen durch kompakte Leuchtstofflampen zu ersetzen, ohne dass dazu eine neue Leuchte installiert werden muss?

Grundsätzlich ja. Die 1994 in Deutschland gegründete Firma Megaman ist der einzige Hersteller, der seit 2007 kompakte Leuchtstofflampen der Reihe Clusterlite anbietet. Die Auswahl ist recht gross:

- Mit integriertem Vorschaltgerät und E27-Fassung: 40, 60, 80 und 100 W.
- Mit externem Vorschaltgerät:E27-Fassung: 56 W; E40-Fassung:80, 120, 200 und 320 W.

Die Lampen mit integriertem Vorschaltgerät können in bestehenden Leuchten verwendet werden, man muss lediglich die Vorschaltdrossel oder das Vorschaltgerät überbrücken. Es gibt allerdings eine Einschränkung: Wegen der grossen Lichtfläche und dem weniger gebündelten Lichtfluss der Leuchtstofflampe können vorhandene Leuchten mit dem gleichen Reflektor nur für eine maximale Aufstellhöhe

Bild 1 Von links: Glühlampe 150 W, 200 W, Quecksilberdampflampe 80 W, kompakte Leuchtstofflampe 30 W, 60 W (siehe **Tabelle 2**).

von 5,5 m verwendet werden. Fälle für Höhen über 5,5 m müssen einzeln untersucht werden. Deshalb werden kompakte Leuchtstofflampen mit grossen Leistungen kaum für Strassenleuchten mit Höhen zwischen 8 und 12 m eingesetzt.

Niedervolt-Halogenlampen

Niedervolt-Halogenlampen erobern die Welt seit 1960, sei es als Projektorlampen oder als Spiegellampen für die Akzentbeleuchtung in Wohnungen und Schaufenstern. Die niedrige Spannung erlaubt eine dickere Wendel, womit die Betriebstemperatur auf 3000 K steigt und die Betriebsdauer 2000 h erreicht (heute mit weiteren Optimierungen sogar 3000 bis 5000 h). In diesem Bereich konnte aus konstruktiven Gründen (Kompaktheit, Leistungsdichte) die kompakte Leuchtstofflampe nicht konkurrieren.

Erst seit 2010 sind LED-Spiegellampen auf dem Markt. Das Sortiment ist noch unvollständig, und grössere Leistungen (LEDs mit 8 und 10 W) werden 2012 auf den Markt kommen.

Reflektor steigert Wirkungsgrad

Seit 2001 bietet die Frauenfelder Produktgestaltungsfirma Stockwerk3 die Pendelleuchtenserie «Hangover» an, die aus jeder Glühlampe eine Leuchte macht (Bild 2). Die Lieferung besteht aus einer Keramik-Fassung E27 mit Kabel und Deckenabschluss sowie zwei farblosen anodisierten Aluminiumschirmen. Diese können einzeln oder zusammen in verschiedenen Reihenfolgen und Ausrichtungen direkt auf eine Glühlampe, Halogenlampe, Kompaktleuchtstofflampe in Classic-Form (wie Glühlampe) oder LED-Lampe montiert werden. Die maximale Leistung beträgt 100 W. Die Leuchte wurde eigentlich entwickelt, damit nach einem Umzug auf schnelle und einfache Art ein effizientes und elegantes Licht am Abend des ersten Tages zur Verfügung steht. Ein nützliches Objekt wurde zur eleganten Leuchte.

Die beiden Schirme können auch auf vorhandenen Leuchten verwendet werden. Wir haben die Messungen in einem Restaurant mit einer originalen Pendelleuchte mit Gegengewicht (Bild 2) aus dem Jahre 1920 gemacht, wobei der ursprüngliche Glasschirm dazu weggenommen wurde. Die Resultate sind eindeutig: Die Beleuchtungsstärke auf der Messfläche, die eine Distanz von 1 m zur Fassung aufweist, steigt je nach Lampentyp um 100 bis 340 %. Die Glühlampe mit 25 W gibt mit dem Reflektor

Lampentyp	Glüh- lampe	Halogen- lampe	Kompakte Leucht- stofflampe	LED- Lampe	LED- Lampe
Leistung P [W]	60	42	11	12	3) 8
Lichtfluss [lm]	730	630	600	810	420
Lichtausbeute [lm/W]	12,2	15	54,5	67,5	52,2
Energie-Klasse	Е	C	Α	Α	Α
Lichttemperatur [K]	2700	2900	2700	2700	2700
Lichtwiedergabefaktor R_a	100	100	80	80	80
Lichttyp	1027	1027	827	827	827
Regelbarkeit <i>U</i> (auf der Spannungs-Amplitude)	ja	ja	nein	nein	nein
Regelbarkeit α (auf dem Phasenwinkel der Spannungskurve)	ja	ja	nein	ja	ja
Auf dem Markt	bis 2011	ab 2009	ab 2003	ab 2011	ab 2011
Mittlere Betriebsdauer [h]	1000	2000	15 000	25 000	25 000
Hersteller der gewählten Lampe 2)	-	-	Philips	Osram	Megaman
Richtpreis einer Lampe [CHF]	1,50	3,50	19,00	71,00	36,00
Energie für 10 000 h [kWh]	600	420	110	120	80
Gesparte Energie gegenüber Glühlampe [kWh]	-	180	490	480	520
Energiekosten $K_{\rm E}$ für 10 000 h mit Energiepreis von 0,18 CHF/kWh [CHF]	108,00	75,60	19,80	21,60	14,40
Anzahl Lampen für Betrieb mit 10000 h	10	5	0,67	0,40	0,40
Anschaffungskosten $K_{\rm A}$ für 10 000 h Betrieb [CHF]	15,00	17,50	12,70	28,40	14,40
Betriebskosten $K_{\rm B} = K_{\rm E} + K_{\rm A}$ für 10 000 h [CHF]	123,00	93,10	32,50	50,00	28,80
Ersparnisse gegenüber Glühlampe [CHF]	_	29,90	90,50	73,00	94,20

Tabelle 1 Es lohnt sich wirtschaftlich und ökologisch [5], den Betrieb mittels Glühlampe aufzugeben, ebenfalls, den Schritt Halogenlampe zur kompakten Leuchtstofflampe oder LED-Leuchte zu tätigen.

eine Beleuchtungsstärke von 80 lm, die LED-Leuchte mit 8 W gibt ohne Reflektor eine solche von 81 lm. Es gibt also keine Gründe, Glühlampen, die in einer optimierten Leuchte montiert sind, zu verbieten.

Die klare Maiskolben-Lampe von Osram mit 2 W (eine LED-Leuchte mit 42 LEDs auf 3 Seitenflächen und einer Frontfläche) ist eine Alternative für Girlanden im Freien.

Reflektoren in Wohnhäusern

Dem Autor wurde 2004 folgendes Problem gestellt: Wie kann in Wohnhäusern

die Beleuchtungseffizienz an verschiedenen Orten verbessert werden, ohne neue Leuchten montieren zu müssen? Die Einrichtungen aus dem Jahre 1984 waren noch in tadellosem Zustand. Damals wurden folgende Lampen eingesetzt:

- Kochfeld: 2 klare Glühlampen-Kerzen 40 W, E14 (400 lm).
- Spiegelkasten: 2 klare Standard-Glühlampen 40 W, E27 (430 lm).
- Reduit: 1 klare Glühlampe 40 W (430 lm) mit horizontal angeordneter Fassung.
- Treppenhaus (pro Stock): 1 klare Glühlampe 60 W (730 lm) in einer

Hintergrund

Lichtkosten in der Schweiz

Die Beleuchtung verbraucht in der Schweiz rund 15 % der elektrischen Energie. Etwa 8000 GWh oder 1,3 Mia. CHF (also im Mittel 0,1625 CHF/kWh) werden jedes Jahr für Licht benötigt. Beim verantwortungsvollen Umgang mit der Energie ist die Effizienz der Beleuchtung wichtig. Das Qualitätslabel Minergie stellt deshalb konkrete Anforderungen an die Beleuchtung [3].

Beleuchtung als Heizquelle

Ersetzt man eine Glühlampe mit 100 W durch eine LED-Lampe mit 20 W, so entlastet man die weltweite Energiebilanz nicht durch die elektrisch eingesparten 80 W, sondern durch gut thermisch 240 W, weil der Strom weltweit grösstenteils durch thermische Kraftwerke erzeugt wird. Bezogen auf die Lebensdauer der LED von 25 000 bis 50 000 h spart man somit thermische 6000 bis 12 000 kWh und erspart der Erdatmosphäre damit einen CO₂-Eintrag von etwa 9 bis 18 t [4].

Ersatz der Glühlampen lohnt sich

Eine Untersuchung der Empa St. Gallen zeigt, dass es sich in jedem Fall lohnt, die Glühlampe durch eine Halogenlampe oder kompakte Leuchtstofflampe zu ersetzen, da beim Ersetzen einer Glühlampe durch eine Halogenlampe die Umweltbelastungen um 40 %, mit einer kompakten Leuchtstofflampe sogar um 80 % sinken. Für LEDs fehlen noch detaillierte Angaben [5].

Lampentyp	Glüh- lampe	Glüh- lampe	Misch- licht- lampe	Quecksil- berdampf- lampe	Kompakte Leuchtstoff- lampe	Kompakte Leuchtstoff- lampe
Leistung P [W]	150	200	160	80	30	60
Lichtfluss [lm]	2100	2950	3200	4000	2000	4000
Lichtausbeute [lm/W]	13,1	14,8	20,0	50	66,7	. 66,7
Energie-Klasse	E	Е	C	В	Α	Α
Lichttemperatur [K]	2700	2700	3600	3400	2700 oder 4000	2700 oder 4000
Lichtwiedergabefaktor $R_{\rm a}$	100	100	65	60	82	82
Lichttyp	1027	1027	636	634	827 oder 840	827 oder 840
Auf dem Markt	bis 2009	bis 2009	ca. seit 1940	ca. seit 1940	ab 2007	ab 2007
Mittlere Betriebsdauer [h]	1000	1000	10 000 4)	24 000 4)	15 000	15 000
Hersteller der gewählten Lampe ²⁾	_ 6)	_ 6)	Philips	Philips	Megaman	Megaman
Hersteller-Bezeichnung	-	_ 6)	ML	HPL 4	Liliput Plus	Clusterlite
Wiedereinschaltung im heissen Zustand	ja	ja	nein	nein	ja	ja

Tabelle 2 Vergleich zwischen Glühlampe, Mischlichtlampe, Quecksilberdampflampe und kompakter Leuchtstofflampe (Bild 1).

quadratischen Leuchte von Regent mit flachem integrierten Reflektor.

Die Antworten kamen erst im Zeitraum 2007–2009 mit der Montage von Reflektoren (gebogene Alubleche mit einer Dicke von 0,3 mm) und dem Austausch der Lampen. Dies war erst möglich, als die entsprechenden Halogenund kompakten Leuchtstofflampen auf dem Markt waren. Messungen mit verschienen Lampentypen haben gezeigt, dass die Beleuchtungsstärke um 26 bis 98% zugenommen hat. Die neuen Bestückungen lauten:

- Kochfeld: 1 kompakte Leuchtstofflampe Philips Master PL Electronic 10 W E14 (600 lm).
- Spiegelkasten: 1 kompakte Leuchtstofflampe Philips Master PL-C4P 13 W (900 lm) mit Arcotronic-Adapter.
- Reduit: 1 Halogenlampe 18 W (200 lm) oder LED 2 W (95 lm, Maiskolben).
- Treppenhaus (pro Stock): 1 Halogenlampe 42 W (630 lm). Künftig auch möglich: LED 10 bis 12 W (680 bis 810 lm).

Reflektoren erlauben den Einsatz einer geringeren Leistung (25 W statt

Bild 2 Alt und neu vereint: Eine Pendelleuchte mit Gegengewicht aus dem Jahre 1920 bestückt mit dem Reflektorsatz «hangover_no. 1». Der untere Reflektor verbessert die Lichtstärke um einen Faktor 4.

Bild 3 Pure Nostalgie: Eine Pendelleuchte aus dem Jahre 1920, bestückt mit einer seit 1995 wieder durch Righi Licht gebauten Edison-Lampe Deluxe P64 klar mit langgezogener Glühwendel aus Wolfram: 40 W, 250 lm, 6,25 lm/W, mittlere Betriebsdauer 4000 h.⁶⁾

40 W). Der Übergang Glühlampe zur Halogenlampe erlaubt einen Rückgang um 2 Leistungsschritte (von Glühlampe 40 W auf Halogenlampe 18 W oder LED-Maiskolben 4 bis 6 W).

Schlussfolgerung

Der Markt ist weiterhin im Umbruch, besonders bei der LED-Leuchte, wo die Entwicklung noch sehr dynamisch ist. In den nächsten 20 Jahren werden die Retro-Leuchtmittel (Lampen neuer Technologie, die in älteren Leuchten ohne Umbau eingesetzt werden können) an Bedeutung abnehmen.

Vermehrt werden komplette LED-Lösungen angeboten. Die Leuchte und das Leuchtmittel bilden eine Einheit, die für den gewünschten Gebrauch optimiert ist. Rechnet man 25 000 bis 50 000 h Lebensdauer und eine jährliche Betriebsdauer von 4000 bis 5000 h, entspricht dies einer Nutzungsdauer von 6,25 bis 10 Jahren. Werden nach einer solch «langen» Zeit kompatible LED-Sätze noch erhältlich sein? Oder muss eine neue Leuchte mit jeweils zwei Reservesätzen gekauft werden? LED-Leuchten mit einer Lichtausbeute von 94 lm/W sind bereits auf dem Markt [7]. Solche mit 120 lm/W sollen Anfang 2012 auf den Markt kommen. Künftig ist mit einer Lichtausbeute von 140 lm/W zu rechnen. Dies ist das 100-Fache der Edison-Lampe von anno 1879!

Die LED-Technik erlaubt auch Massanfertigungen, wie die folgenden zwei Beispiele illustrieren:

- Die Stadt Genf hat für die Lichtgirlande rund um das Hafenbecken 5000 matte LED-Leuchten 1,5 W (ca. 60 lm) 827 E27 auf Mass in der Schweiz anfertigen lassen (Ersatz für matte Glühlampe 15 W). Dieses Lampenmodell wird patentiert.
- In der Altstadt von Regensburg (DE) werden LED-Leuchten mit 42 W (Ersatz für Quecksilberdampflampen 90 W) eingesetzt. Die LED sind auf einem schwarzen Kolben montiert

Lampentyp MR 16	Spiegel- halogen- lampe	Spiegel- LED- Lampen	Spiegel- LED- Lampen
Leistung P [W]	20	4	6
Abstrahlwinkel [°]	24	24	24
Lichtstärke [Cd]	2000	650	1300
Mittlere Betriebsdauer [h]	5000	30 000	25 000
Lichttemperatur [K]	3000	2800 oder 4000	2800 oder 4000
Hersteller der gewählten Lampe ²⁾		Megaman	Megaman

Tabelle 3 Vergleich zwischen Halogenlampe MR 16-Spiegellampen 12 V 20 W und LED-Leuchte 4 W und 6 W von Megaman. Die Leistung 6 W ist auch für einen Abstrahlwinkel von 36° erhältlich. Die LED-Leuchten sind eigentlich nicht regelbar. 5)

und einzeln nach der zu beleuchtenden Zone ausgerichtet [6].

Glühlampe und Halogenlampe mutieren zu Nischenprodukten. Normale und kompakte Leuchtstoff-Röhren sowie LEDs werden den Markt dominieren.

Referenzen

- [1] Katalog Elektro Datenbank Eldas 2012/2013, [Eldas, Basel 2011]. Der Griff S 19 enthält die grösste Auswahl an gängigen Leuchtmitteln. Da der Markt für die LED-Lampen in voller Entwicklung steht, wurden noch keine LED-Lampen aufgenommen.
- Verschiedene Kataloge der Firmen GE, Megaman, Osram, Philips, Righi Licht, 2008 bis 2011, und entsprechende Ad-hoc-Auskünfte, 2007 bis 2011. Die Leistung von 140 W als Halogenlampe wird nur durch Philips angeboten. Die Leistung von 11 W als Halogenlampe wird nicht angeboten (Ersatz für Glühlampe 15 W).
- Stefan Kull: Minergie und Lichtsteuerung. ET-Licht, August 2011, Sonderpublikation, S. 14-15. Beilage zu Elektrotechnik ET 8-11, 2011-08-22.
- [4] Hans R. Ris: Beleuchtungsanlagen als Heizquellen. ET-Licht, August 2011, Sonderpublikation, S. 5. Beilage zu Elektrotechnik ET 8-11, 2011-08-22
- Tobias Welz und Roland Hischier: Licht und Nachhaltigkeit - Ökologischer Sinn für Glühlampenersatz. ET-Licht März 2011, Sonderpublikation, S. 6-9. Beilage zu Elektrotechnik ET 3-11, 2011-03-21.
- Hans R. Ris: Retrofit-Lösung für die Altstadt LEDs in historischen Laternen [in Regensburg]. ET-Licht, August 2011, Sonderpublikation, S. 29-30. Beilage zu Elektrotechnik ET 8-11, 2011-08-22.
- Stefan Gasser: Grosse Fortschritte, aber noch Verbesserungspotenzial – LED-Ersatzglühlampen im Test. ET-Licht, März 2011, Sonderpublikation, S. 10-14. Beilage zu Elektrotechnik ET 3-11, 2011-03-21. Keine der 14 untersuchten LED-Lampen wird im vorliegenden Artikel erwähnt.

Angaben zum Autor

Roland Kallmann, dipl. El.-Ing. ETH, Fachjournalist BR SFJ, arbeitet als selbstständig Erwerbender seit 1993 in den Gebieten Verkehr, Energie und Beleuch-

tung. Seine Tätigkeiten umfassen Ingenieurarbeiten, Redaktionen, Übersetzungen und Terminologien.

Roland Kallmann, 3012 Bern, roland.kallmann@a3.epfl.ch

- 1) Die 1. Revolution mit der Glühlampe (1879); die 2. mit der Leuchtstoff-Röhre und Metalldampf-Lampe (ca. um 1940); die 3. mit der Halogenlampe (1958); die 4. mit der kompakten Leuchtstofflampe (1983).
- 2) Nur angegeben, wenn es sich um eine Spezialität eines Herstellers handelt.
- 3) Ab März 2012 auch mit 12 W erhältlich bei Megaman.
- 4) Mit noch 70 % des ursprünglichen Lichtstromes nach 3000 bis 4000 h.
- 5) Wird die Amplitude der Spannung reduziert, kann der Lichtfluss beeinflusst werden. Allerdings nicht linear, denn für die LED-Leuchte mit 6 W bei 5 V geht der Lichtfluss auf null zurück. Der Lichtfluss der LED-Leuchte mit 4 W kann bis einem Restwert von 30 % bei 6 V geregelt werden, danach flackert die Lampe und geht bei 5 V aus.
- 6) Glühlampen im Bereich 5 bis 300 W werden weiterhin durch die Firma Righi Licht AG in 6405 Immensee (LU) für Sonderzwecke hergestellt. Es werden kleine Serien bereits ab 50 Stück auf Mass hergestellt. www.righi-licht.ch.

Résumé **Tendances en matière** de sources lumineuses

Exemples choisis pour le domaine du rétrofit

L'article présente, à l'aide d'exemples choisis, l'évolution de la classique lampe à incandescence vers la lampe à halogène, la lampe fluo-compacte et la lampe à diodes électro-luminescentes (lampe à LED). Deux exemples montrent comment, à l'aide de moyens très simples, le rendement lumineux de certains luminaires peut être augmenté de 30 à 100 % et plus. RK/No

Anzeige

38