Zeitschrift: bulletin.ch / Electrosuisse

Herausgeber: Electrosuisse

Band: 102 (2011)

Heft: 3

Artikel: Unterwasser-Motorpumpen im PM-Synchontechnik

Autor: Huth, Gerhard / Löhlein, Bernd

DOI: https://doi.org/10.5169/seals-856795

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Unterwasser-Motorpumpen in PM-Synchrontechnik

Vorteile von permanentmagneterregten Synchronmotoren

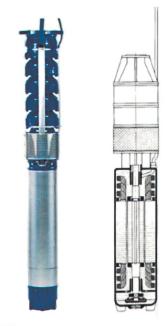
Unterwasser-Motorpumpen kommen als Bohrlochpumpen bei der Trinkwassergewinnung sowie bei der Entwässerung von Gebieten oder Anlagen zum Einsatz. Ihr Leistungsbereich erstreckt sich von wenigen kW bis hin zu einigen MW. Der Wechsel von der konventionellen Asynchrontechnik zur permanentmagneterregten Synchrontechnik bietet verschiedene Vorteile.

Gerhard Huth, Bernd Löhlein

Wegen des begrenzenden Bohrlochdurchmessers werden Unterwasser-Motorpumpen (U-Motorpumpen, Bild 1) extrem schlank ausgeführt. Die meist mehrstufige Kreiselpumpe wird mit dem U-Pumpenmotor – heute nach wie vor standardmässig der Käfigläufermotor – starr gekuppelt und dabei oberhalb des Motors angeordnet. Die Förderflüssigkeit strömt so am Gehäuse des U-Pumpenmotors entlang und kühlt dabei den Motor.

Auch bei U-Motorpumpen ist die Steigerung der Energieeffizienz ein erklärtes Weiterentwicklungsziel. Neben der Steigerung der Energieeffizienz durch eine entsprechende drehzahlveränderbare Prozessführung [2] ist es notwendig, den Wirkungsgrad der einzelnen Antriebskomponenten zu verbessern. Da das Wirkungsprinzip des Asynchronmotors die Existenz der Stromwärmeverluste im Käfigläufer bedingt, ist der Übergang zum PM-U-Pumpenmotor ein nächster Innovationsschritt. Die Möglichkeiten hierzu sollen im Weiteren am Beispiel eines 6"-U-Pumpenmotors aufgezeigt werden.

Wassergefüllter U-Pumpenmotor in PM-Synchrontechnik


Der permanentmagneterregte U-Pumpenmotor funktioniert nach dem Prinzip des AC-Servomotors in Sinusstromtechnik [2]. Hierbei wird der PM-U-Pumpenmotor so ausgeführt, dass das vom PM-Luftspaltfeld induzierte Spannungssystem einen möglichst sinusförmigen Verlauf aufweist. Ferner wird das sinusförmige Ständerstromsystem in Abhängigkeit der Rotorlage über einen stromgeregelten Pulswechselrichter derart eingeprägt, dass die Drehmomentbildung ma-

ximal ist. Dieser Betrieb wird erreicht, wenn das eingeprägte Ständerstromsystem und das induzierte Strangspannungssystem in Phase sind.

Konstruktiver Aufbau

Da U-Pumpenmotoren entsprechend ihrer Anwendung höheren Drücken ausgesetzt sind, wird der Motorinnenraum zweckmässig mit einer Flüssigkeit befüllt. Dies ist in der Regel Wasser, das mit einem Frost- bzw. Korrosionsschutz angereichert ist. Ständer- und Läuferaktivteil sind so bestimmungsgemäss «nass», und die Ständerwicklung wird von der Füllflüssigkeit umspült.

In der hier betrachteten wassergefüllten Ausführung ist der U-Pumpenmotor komplett gedichtet, sodass wassergeschmierte Axial- und Radialgleitlager zum Einsatz kommen. Der Wellendurchgang wird mit einer Wellendichtung ausgeführt. Unterhalb des Axiallagers befindet sich eine Druckausgleichsmembrane, die den Überdruck infolge der Motorer-

Bild 1 Unterwasser-Motorpumpe [1]

wärmung ausgleicht. Ein Austausch von Füllflüssigkeit und Förderflüssigkeit kann so nicht stattfinden.

Da die Ständerwicklung wasserumspült ist, kommen PVC-isolierte Wickeldrähte zum Einsatz, die eine maximale Leitertemperatur von 60–70°C ermöglichen. Bild 2 zeigt hierzu einen typischen Nutaufbau. Bei PVC-isolierten Wickeldrähten ist der Mindestbiegeradius von besonderer Bedeutung, sodass die Wickelköpfe, im Vergleich zu Wicklungsausführungen mit üblichen Lackdrähten, deutlich stärker ausladen.

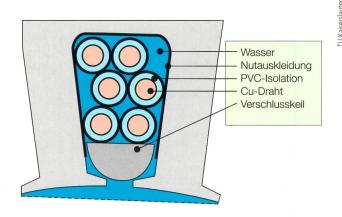
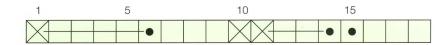



Bild 2 Prinzipdarstellung einer wasserbenetzten Ständernut mit PVC-isolierten Wickeldrähten.

Bild 3 Strang-Zonenplan der Wicklungsvariante für das 6"-Funktionsmuster ($N_1 = 18$, 2p = 4, $q = \frac{3}{2}$).

Aufgrund der sehr schlanken Bauform kommt für den PM-Läufer besonders eine Ausführung mit am Luftspalt angeordneten Seltenerde-Magneten in Betracht. Die Bestückung des Läufers mit Schalenmagneten ist automatisierbar, und die Sicherung der Magnete mittels einer Bandage oder einer dünnen Edelstahlhülse ist gängige Praxis.

Ständerausführung

Beim Ständerwicklungssystem handelt es sich allgemein um eine Bruchlochwicklung, die als klassische verteilte Wicklung oder auch als Zahnspulenwicklung ausgeführt sein kann. Unter Berücksichtigung der schlanken Abmessungen des 6"-U-Pumpenmotors sowie der Mindestbiegeradien der PVC-isolierten Wickeldrähte sind höherpolige verteilte Wicklungen sowie Zahnspulenwicklungen nicht ausführbar. Die Wicklungswahl für das Funktionsmuster fällt daher auf eine 4-polige Bruchlochwicklung mit der Nutenzahl $N_1 = 18$ sowie der Lochzahl $q = \frac{3}{2}$. Diese in Bild 3 dargestellte Wicklungsausführung hat ferner den grossen fertigungstechnischen Vorteil, dass sie als Einschichtwicklung ausgeführt werden kann. Entsprechend dem Zähler der Lochzahl besitzt diese $q={}^3/_2$ -Wicklung genau drei sich periodisch wiederholende Wicklungsfaktoren, die sich gemäss Gleichung 1 darstellen.

 $|\xi_{\rm p}| = 0.945$; $|\xi_{-5\rm p}| = 0.140$; $|\xi_{7\rm p}| = 0.061$ (1)

6"-Funktionsmuster in PM-Synchrontechnik

Unter Verwendung eines serienmässigen 6"-U-Pumpenmotors in Asynchrontechnik mit den Bemessungsdaten 5,5 kW/48,17 s⁻¹ wurde durch Austausch der Aktivteile das Funktionsmuster in PM-Synchrontechnik erstellt. Da sich an dem Entwärmungskonzept grundsätzlich nichts ändert, kann die thermische Auslegung in guter Näherung auf der Basis der «erwärmungsäquivalenten Verluste» für eine mittlere Wicklungstemperatur von 60°C erfolgen.

Die elektromagnetische und thermische Auslegung erfolgte iterativ auf der Basis eines Matlab-Simulationsprogramms sowie ergänzender FEM-Simulationen. Das Ergebnis dieses Entwurfprozesses führt auf die folgende Ständerauslegung:

■ Blechpaketlänge: 229 mm

■ Blechpaketaussendurchm.: 139 mm

Bohrungsdurchmesser: 68 mm

■ Blechqualität M330-35 A

■ PVC-Wickeldraht, Innen-/

Aussendurchmesser: 1,4/2,2 mm

■ Leiter pro Nut: 22

Bild 4 zeigt den Ständer des Funktionsmusters mit teilweise eingelegter Ständerwicklung aus PVC-isolierten Wickeldrähten. Aufgrund der auftragenden PVC-Isolierung der Wickeldrähte liegt der auf den reinen Cu-Querschnitt bezogene Nutfüllfaktor unter 20%.

Der Läufer des Funktionsmusters (Bild 5) besteht ebenfalls aus einem Blechpaket, auf das die bereits magnetisierten Magnetschalen zur Unterdrückung der Nutrastung um eine halbe Ständernutteilung gestaffelt aufgeklebt wurden. Pro Pol sind 2 Magnetschalen tangential angeordnet.

Um die Magnetschalen zusätzlich zu sichern sowie den hydraulischen Widerstand des Läufers zu minimieren, wurde eine Glasfaser-Bandage mit einer Stärke von ca. 0,3 mm um die Magnetschalen gelegt. Die wichtigsten Läuferdaten:

■ Magnetmaterial Vacodym 633 Hl

Remanenzinduktion (20°C): 1,35 T

■ Magnetschalenhöhe: 3 mm

Polbedeckungsgrad: 0,88

Bild 4 Ständerblechpaket des Funktionsmusters, teilweise bewickelt.

Stationäres Betriebsverhalten und Konzeptvergleich

Als Pumpen-Lastkennlinie wurde eine quadratische Kennlinie unterstellt, was die Realität im Drehzahlstellbereich 25-50 s⁻¹, in welchem die U-Motorpumpe nahezu ausschliesslich arbeitet, gut abbildet. Für den Bemessungspunkt bei 50 s-1 ergibt sich bei einer thermischen Wicklungsausnutzung von 60°C eine Bemessungsleistung von rund 10 kW. Der berechnete Motorwirkungsgrad entlang der Pumpen-Lastkennlinie liegt im Drehzahlstellbereich 25-50 s⁻¹ im Bereich zwischen 89 und 91%. Betrachtet man das gesamte System aus U-Pumpenmotor und Pulsumrichter, so ergibt sich ein Systemwirkungsgrad von 87 - 89%

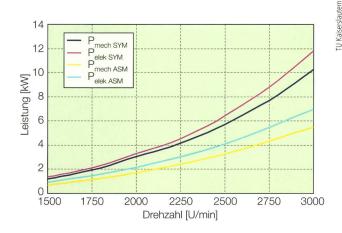
Zur Validierung der Simulationsergebnisse wurde das Funktionsmuster auf dem Prüfstand vermessen. Da die Einprägung des Ständerstromsystems in Abhängigkeit der Rotorlage erfolgen muss, wurde ein Servoumrichter verwendet, der über eine sensorlose Regelung verfügte.

U-Pumpenmotoren liegen im Förderstrom und werden so aktiv gekühlt. Um auch unter Volllast eine ausreichende Kühlung zu gewährleisten, darf die Strömungsgeschwindigkeit der Förderflüssigkeit an der Aussenwand des Motors einen bestimmten Grenzwert nicht unterschreiten.

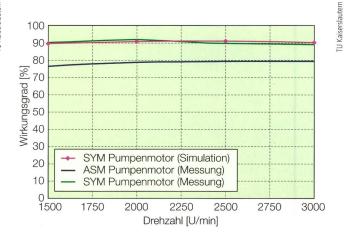
Zur möglichst praxisnahen Nachbildung der Förderparameter Volumenstrom/Strömungsgeschwindigkeit und Flüssigkeitstemperatur wurde im Labor eine aktive Kühlung mittels eines externen Kühlwasserrückkühlers realisiert. Der Pumpenmotor wurde mit einem Kühlmantel versehen, dessen Innendurch-

Bild 5 Läufer des Funktionsmusters mit Bandage.

messer einer 6"-Brunnenbohrung entspricht. Der Kühlmantel wurde mit zwei Anschlüssen versehen und von einem externen Kühlwasserrückkühler versorgt. Während der Messungen wurden der Volumenstrom sowie die Temperatur des Kühlmittels kontinuierlich überwacht.


Die Ergebnisse der Funktionsmustererprobung sind in Bild 6 im P(n)-Diagramm dargestellt. Um einen direkten Vergleich mit der aktuellen Asynchrontechnik zu ermöglichen, sind die entsprechenden Messwerte des umrichtergespeisten U-Pumpenmotors in Asynchrontechnik zusätzlich in Bild 6 aufgenommen. Im Bemessungspunkt 50 s⁻¹ gilt jeweils eine Wicklungsausnutzung von 60°C.

Betrachtet man den in Bild 7 über der Drehzahl aufgetragenen Motorwirkungsgrad, so bewegt sich der Wirkungsgrad des PM-U-Pumpenmotors im relevanten Drehzahlstellbereich zwischen den beachtlichen Werten von 90 und 92 %. Wer-


den die Messergebnisse mit der Simulation verglichen, so kann eine brauchbare Übereinstimmung festgestellt werden.

Vergleich PM-Synchrontechnik und Asynchrontechnik

Die Randbedingungen für den Konzeptvergleich am Beispiel des 6"-U-Pumpenmotors sind ein konstantes Aktivteilvolumen sowie eine identische thermische Ausnutzung der PVC-isolierten Wicklung im Bemessungspunkt 50 s⁻¹. Prinzipbedingt produziert die Asynchronmaschine Stromwärmeverluste im Läufer, wodurch der Steigerung der Energieeffizienz eine physikalische Grenze gesetzt ist, die durch den Übergang auf die PM-Synchrontechnik überwunden werden kann. Bild 6 zeigt deutlich, dass bei gleichem Aktivteilvolumen die mechanische Leistung, die in PM-Synchrontechnik erreicht werden kann, nahezu doppelt so gross ist wie in Asynchrontechnik.

Bild 6 Gemessene P(n)-Kennlinien für elektrische und mechanische Leistung für beide Motorprinzipien.

Bild 7 Vergleich der Wirkungsgrade aus Messung und Simulation entlang der Pumpenkennlinie.

TECHNOLOGIE L'EFFICACITÉ ÉNERGÉTIQUE

	Asynchrontechnik	PM Synchrontechnik	
Aktivteilvolumen $(\pi \cdot D^2_A \cdot \ell_{fe})$	11,4 dm³	10,9 dm ³	gleiches Aktivteilvolumen
Bemessungsleistung	5,5 kW	10 kW	+80 % Leistung
Motorwirkungsgrad bei 25–50 s ⁻¹	$\eta_{Mot.}{\leq}80\%$	$\eta_{Mot.}=90-92~\%$	im Mittel +10 % Wirkungsgrad
Kupfermasse Ständer	4 kg	2,3 kg	–43 % Kupfer
Wickelkopflänge	8 cm	5,5 cm	-33 % Wickelkopflänge

Tabelle Vergleich: 6"-U-Pumpenmotor in Asynchron- bzw. Synchrontechnik.

Wird in Bild 7 der Motorwirkungsgrad betrachtet, so ermöglicht die PM-Synchrontechnik im betrachteten Drehzahlstellbereich eine Wirkungsgradsteigerung im Vergleich zur Asynchrontechnik von im Mittel rund 10 Wirkungsgradpunkten. Durch die sehr einfache 4-polige Einschicht-Bruchlochwicklung im Ständer kann die Kupfermasse bei der PM-Synchrontechnik im Vergleich zur 2-poligen Asynchrontechnik deutlich reduziert werden. Besonders auffällig wird dies bei der Wickelkopfausladung.

Zusammenfassung

à aimants permanents

Es werden die Möglichkeiten zur Wirkungsgrad- und Ausnutzungssteigerung

durch Übergang von der konventionellen Asynchrontechnik auf die PM-Synchrontechnik am Beispiel eines 6"-U-Pumpenmotors aufgezeigt. Die Auslegung erfolgt jeweils bei gleichem Aktivteilvolumen für identische thermische Ausnutzung der PVC-isolierten Wicklung. Die experimentelle Erprobung erfolgt mittels eines Funktionsmusters, das aus dem Umbau eines handelsüblichen U-Pumpenmotors entstand. Beide Motorkonzepte wurden als umrichtergespeiste Antriebe erprobt. Die wesentlichen Ergebnisse sind in der Tabelle zusammengefasst.

Entsprechend der dargestellten Ergebnisse lässt sich feststellen, dass der Übergang zur PM-Synchrontechnik zahlrei-

che Vorteile bietet. Bei konstantem Aktivteilvolumen kann die Bemessungsleistung um 80 % gesteigert werden, bei gleichzeitiger Steigerung des Wirkungsgrads um im Mittel 10 %. Als Alternative zur Steigerung der Bemessungsleistung wäre eine signifikante Reduktion des Bauvolumens des U-Pumpenmotors denkbar.

Literatur

- KSB AG, Betriebsanleitung Aggregate mit Motoren < 1 kV, 2006.
- Bieniek K.: KSB Technische Berichte 23, Tauchmotoren und Nassläufermotoren zum elektr. Antrieb von Kreiselpumpen im Fördermedium, 1987.
- Huth G.: Zahnspulenwicklungen für permanent erregte AC-Servo- und Linearmotoren, Bulletin SEV/AES 17/2006, p. 36–40.
- Pfleiderer C.: Kreiselpumpen, Springer Verlag.
- Roclawski H.; Hellmann D.-H.: Rotor-stator-interaction of radial centrifugal pump stage with minimum stage diameter, CP, WSEAS Transactions on Fluid Mechanics, Greece, 2006, Vol. 1, No. 5, p. 457–64.

Referenzen

- Huth G.; Löhlein B.: Wassergefüllte U-Pumpenmotoren in PM-Synchrontechnik. Internationaler ETG-Kongress 2009, Düsseldorf, ETG-Fachbericht 119. S. 41 – 46.
- [2] HDT-Seminar: Energieeffiziente Pumpenantriebstechnik, Bad Dürkheim, 2009.

Angaben zu den Autoren

Prof. Dr.-Ing. **Gerhard Huth** hat seit 2001 den Lehrstuhl für Mechatronik und Elektrische Antriebssysteme der Technischen Universität Kaiserslautern.

TU Kaiserslautern, DE-67663 Kaiserslautern huth@eit.uni-kl.de

Dipl.-Ing. **Bernd Löhlein** ist Mitarbeiter am Lehrstuhl für Mechatronik und Elektrische Antriebssysteme der Technischen Universität Kaiserslautern.

TU Kaiserslautern, DE-67663 Kaiserslautern loehlein@eit.uni-kl.de

Résumé

Avantages des moteurs synchrones à aimants permanents

Les pompes à moteur submersibles sont utilisées dans les trous de forage pour pomper l'eau potable ainsi que pour le drainage de terrains ou d'installations. Leur plage de puissance varie de quelques kW à plusieurs MW. Cet article décrit les avantages que procure un passage de la technique asynchrone conventionnelle à la technique synchrone à aimants permanents.

Pompes submersibles munies de moteurs synchrones

Anzeig

