Zeitschrift: bulletin.ch / Electrosuisse

Herausgeber: Electrosuisse

Band: 101 (2010)

Heft: (12)

Artikel: Renaissance de la géothermie profonde helvétique

Autor: Schill, Eva / Geinoz, Nicolas

DOI: https://doi.org/10.5169/seals-856171

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Renaissance de la géothermie profonde helvétique

La Suisse romande en pôle position

Le 2 novembre dernier, 5 entreprises électriques provenant des trois principales régions linguistiques suisses ont créé Geo-Energie Suisse SA. Le but de ce consortium est de produire à terme de l'électricité et de la chaleur grâce à la géothermie profonde. En Suisse romande, plusieurs projets sont entrés ce printemps en phase de réalisation alors qu'à St-Gall, le premier forage d'un ambitieux projet devrait commencer sous peu.

Pour tenter de comprendre le potentiel concret qu'offre l'exploitation des aquifères profonds en Suisse, nous avons rencontré deux spécialistes du Centre d'hydrogéologie et de géothermie de l'Université de Neuchâtel (CHYN). La professeure Eva Schill dirige le Laboratoire suisse de géothermie, qui est la seule institution universitaire suisse qui se consacre à la géothermie. Quant à son collègue, le D^r François Vuataz, il est responsable du domaine Transfert de technologie dans ce même laboratoire.

Bulletin SEV/VSE: Comment expliquez-vous la renaissance de la géothermie helvétique après l'échec de l'expérience bâloise à la fin 2006?

Eva Schill: Les entreprises électriques et les services industriels des autres cantons ont tiré les leçons de cette expé-

rience et plusieurs d'entre eux continuent à compter sur la géothermie pour leur fournir de la chaleur et du courant.

Faut-il en déduire que l'exploitation de la chaleur souterraine en grande profondeur ne représente pas de réel danger?

François Vuataz: C'est évident, sinon il n'y aurait pas de forages prévus aux quatre coins du pays. A Bâle, on a eu

recours à la technique expérimentale EGS (voir p. 39). Celle-ci implique de fracturer la roche souterraine pour permettre à l'eau de circuler au sein d'un massif rocheux souterrain et d'en prendre sa chaleur. Cette stimulation hydraulique est une technique bien connue dans l'industrie du pétrole et du

gaz et se fait en injectant de l'eau sous haute pression, ce qui induit toute une série de microséismes imperceptibles en surface, avec parfois quelques rares événements sismiques de magnitude un peu plus élevée. Or, les projets en cours recherchent des zones où la roche est naturellement perméable, ne nécessitant pas de stimulation massive par fracturation hydraulique, comme c'est le cas depuis plus de 15 ans à la centrale géothermique de Riehen (BS), qui fournit de la chaleur à 200 bâtiments.

Qu'est-ce qui pousse actuellement les entreprises électriques à investir des millions de francs dans la recherche d'aquifères profonds (nappes d'eau chaude situées entre 400 et 5000 m sous terre)?

Eva Schill: Le gros atout de la géothermie c'est qu'elle fournit de l'énergie renouvelable en ruban, 24 h sur 24, et pendant 90% des jours de l'année. Elle est

Tour de forage d'un chantier de géothermie profonde à Insheim, Rhénanie-Palatinat, Allemagne.

Le projet européen EGS à Soultz-sous-Forêts en Alsace est à la fois le plus important et le plus avancé.

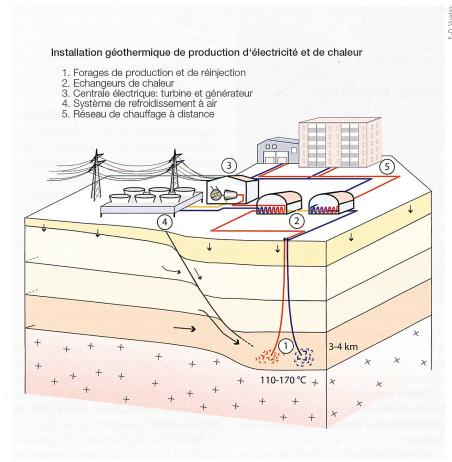


Schéma des ressources géothermiques en aquifères profonds. Cela correspond par exemple aux projets GP La Côte (entre Nyon et Aubonne) ainsi que St-Gall. Le cas de Riehen aussi, mais le réservoir est moins profond et donc moins chaud (1,5 km et 65 °C).

le complément idéal de l'éolien ou du solaire qui produisent par intermittence en fonction des aléas météo. En outre, depuis peu, certaines entreprises électriques s'intéressent à développer le chauffage à distance (CAD) ce qui leur permettra de valoriser au maximum la chaleur fournie par la géothermie.

Peut-on évaluer le prix du kWh de courant géothermique en Suisse?

François Vuataz: Cela dépend de beaucoup de facteurs, tels que les investissements pour l'exploration, notamment les campagnes de géophysique et les premiers forages ainsi que la profondeur de la ressource et par conséquent sa température. Les techniques d'exploration possibles sont nombreuses et leur coût varie énormément. Quant à l'exploitation en soi, elle n'est pas très onéreuse. A Zurich, EWZ a réalisé un premier forage d'exploration de 2,4 km, malheureusement sans succès en terme de débit. L'ensemble du projet avait un budget d'environ 30 millions de francs. A St-Gall, les mesures sismiques ont coûté

environ 8 mio. CHF. A Bienne, notre laboratoire a débuté une campagne de gravimétrie qui permettra de comprendre la structure du sous-sol, comparativement à peu de frais. Si l'on détecte un potentiel géothermique intéressant, on pourrait imaginer de procéder dans un deuxième temps à une campagne de mesures sismiques à échelle réduite. La facture de l'exploration des ressources à Bienne de-

vrait donc se situer dans une fourchette très raisonnable.

En Suisse, quelles sont les zones les plus favorables à la géothermie profonde?

Eva Schill: C'est difficile à dire, car on n'a pas fait pour l'instant des sondages d'exploration dans tout le pays. Les zones les mieux connues sont le nord-est du pays et une partie de la Suisse romande. La plupart des données que l'on possède proviennent de l'industrie pétrolière et de la Nagra.

François Vuataz: Les données sur le sous-sol profond sont très lacunaires et concentrées dans des zones bien délimitées. On a pas moins de six forages pétroliers ou thermaux entre 0,5 et 3 km de profondeur autour d'Yverdon, mais aucun à Neuchâtel. Quant à la Nagra, elle a surtout foré dans le le triangle Olten–Zurich–Schaffhouse.

Comment pensez-vous arriver à trouver les zones potentiellement favorables avec les maigres moyens dont vous disposez?

François Vuataz: Depuis le début 2010, le canton de Neuchâtel et la Confédération subventionnent un programme de recherche dans notre région. L'idée c'est de décentraliser le travail de prospection qui précède les forages. Pour y parvenir, nous développons des outils relativement simples et bon marché, que nous allons transmettre au gré des projets à des bureaux d'ingénieurs et/ou de géologues (voir Programme GeoNE). Ainsi, ces professionnels pourront se former pour acquérir le savoir-faire de la prospection géothermique, sans que leur bureau n'ait nécessairement besoin d'engager de nouveaux spécialistes.

Propos recueillis par Nicolas Geinoz

Programme GeoNE

Des outils simples pour les ingénieurs

A la suite des récentes études sur le potentiel du canton de Neuchâtel (PGN, 2008 et PDGN, 2010), le Laboratoire suisse de géothermie de l'Université éponyme (CREGE) a entamé en 2010 un nouveau programme de développement de la géothermie (GeoNE). Il a pour but premier de développer la géothermie profonde dans le canton et notamment de prospecter les aquifères potentiels.

Le programme GeoNE comprend un travail d'information auprès des producteurs et des distributeurs d'énergie, des services cantonaux et communaux ainsi qu'un transfert de technologie visant à faire connaître les méthodes et les outils de la prospection géothermique auprès des bureaux d'ingénieurs. Les phases préliminaires prévues incluent un programme d'exploration avec la réalisation d'un modèle géologique 3D, des campagnes de mesures gravimétriques et une modélisation des températures et de la productivité.

Laboratoire suisse de géothermie – www.crege.ch

La technique EGS

La branche électrique doit agir

Contrairement à la géothermie profonde classique qui exploite les nappes d'eau souterraines naturelles (aquifères), la technologie des systèmes géothermiques stimulés (en anglais, Enhanced Geothermal Systems – EGS) permet en théorie de capter la chaleur du sous-sol partout où se trouvent des roches cristallines en profondeur. Autrement dit, dans la majeure partie de l'Europe. Par contre, cette technique n'est pas encore à 100 % au point. Chercheurs en géothermie à l'Université de Neuchâtel, Eva Schill et François Vuataz estiment que la technologie EGS nécessite encore passablement de recherche appliquée et d'expérimentation de terrain. Or, celle-ci ne se développera pas en Suisse sans l'impulsion conjuguée de l'industrie et des pouvoirs publics. La création à peu près simultanée du consortium Geo-Energie Suisse SA et d'un groupe de géothermie chez Axpo démontre l'intérêt de la branche pour la géothermie profonde. Mais sera-ce suffisant?

Une « Nagra pour la géothermie »

Pas forcément estiment les deux spécialistes de l'Uni Neuchâtel. Pour eux, le meilleur moyen pour drainer les fonds nécessaires serait de créer une Société coopérative nationale pour la géothermie sur le modèle de la Nagra. « Une motion allant plus ou moins dans cette direction a été déposée en 2007 par le conseiller national lucernois Georges Theiler », rappelle François Vuataz. Malgré une large acceptation par les deux Chambres fédérales, elle n'a pas abouti. La Commission des finances et le Conseil fédéral n'ont pas voulu la financer, aucun département n'étant prêt à ouvrir sa bourse. « Cet échec est très dommageable », déplore Eva Schill, « car une entité coopérative comme la Nagra permettrait de concentrer les fonds publics et privés en une seule main. D'où un gros gain d'efficacité! En plus, une «Nagra de la géothermie» diffuserait ses découvertes sans restriction, ce qui profiterait à tout le monde. »

Installation géothermique de production d'électricité et de chaleur

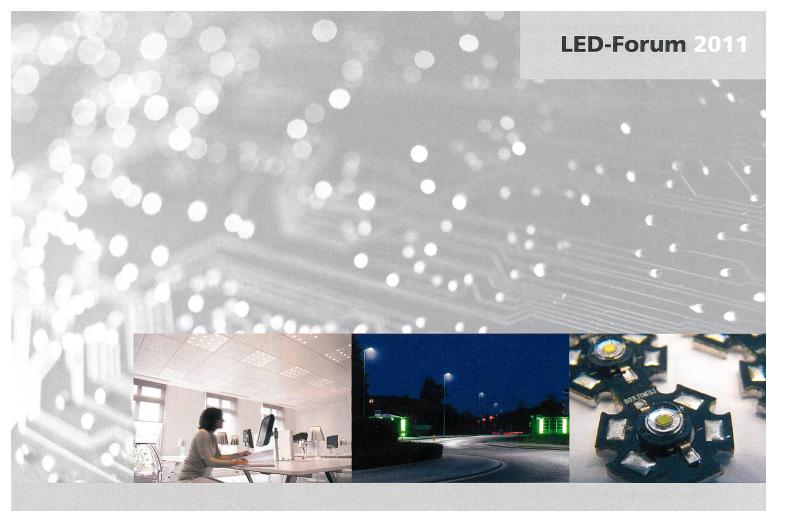

- 1. Forages de production, de réinjection et réservoir stimulé
- Echangeurs de chaleur
 Centrale électrique: turbine ORC et générateur Système de refroidissement à air
- 5. Réseau de chauffage à distance 4 (2)- 5 km₄ 130-190

Schéma des ressources géothermiques EGS (systèmes géothermiques stimulés). Ce type de géothermie correspond par exemple aux projets de Bâle (arrêté), de Soultz-sous-Forêts (centrale expérimentale en production) et Landau en Allemagne (à mi-chemin entre les systèmes en aquifère profond et les EGS).

Mauell AG Furtbachstrasse 17 · CH-8107 Buchs Tel. +41 44 847 42 42 Fax +41 44 844 44 56 www.mauell.ch

SOLUTIONS D'ÉCLAIRAGE AVEC LED

SÉMINAIRE ET EXPOSITION

mardi, 25 janvier 2011 Lausanne

www.electrosuisse.ch

