Zeitschrift: bulletin.ch / Electrosuisse
Herausgeber: Electrosuisse

Band: 101 (2010)

Heft: (20)

Artikel: Scrum : lieber spat als nie!

Autor: Jocham, Ralph

DOl: https://doi.org/10.5169/seals-856141

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-856141
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

SOFTWARE ENTWICKLUNGSMETHODEN

LOGICIEL METHODES DE DEVELOPPEMENT

Scrum — lieber spat als nie!

Wie empirische Softwareentwicklung zum Erfolg flihrt

Nicht definiert, sondern empirisch; «Leadership and
Collaboration» anstatt «Command and Control» — fir
diese Denkweise steht Scrum. Dieser empirische Ansatz,
der der Komplexitat der meisten Softwareprojekte
gerechter wird als sequenzielle Entwicklungsprozesse,
hat die Chance, die Softwareentwicklung zu revolutio-

nieren.

Ralph Jocham

Bis heute hat es die Softwareindustrie
nicht geschafft, die Entwicklung unter
Kontrolle zu bringen. Im Jahr 2008 sind
knapp 30% der Projekte fehlgeschlagen.
Was waren die Griinde? Die noch weit-
verbreiteten definierten und sequenziel-
len Entwicklungsprozesse kénnen die
Komplexitdt der Softwareentwicklung
nicht gentigend abbilden. Solche Pro-
zesse wurden Ende der 1960er-Jahre als
Antwort auf das Ad-hoc-Programmieren
eingefiihrt. Wohlgemerkt waren zu die-
sem Zeitpunkt schon positive Erfahrun-
gen mit disziplinierter iterativer und in-
krementeller Entwicklung bekannt. Ei-
nige dieser Projekte wurden in den spa-
ten 1950er-Jahren durchgefiihrt. Doch
der Wasserfallprozess, Synonym fiir alle
sequenziellen Entwicklungsprozesse, hat
sich breit durchgesetzt. Warum? Dies
geht zum Grossteil auf Winston Royce
zuriick. In seinem Artikel «Managing the
Development of Large Software Sys-
tems» (Proceedings of IEEE, 1970) be-
schreibt Royce den Wasserfall als Bei-
spiel. Sein Kommentar: «Ich glaube an
das Konzept, jedoch die Umsetzung, die
oben beschrieben wird, ist voller Risiken
und schwort Fehler herbei. (...) Die Test-
phase, welche zum Schluss der Entwick-
lung vorkommt, ist das erste Ereignis, bei
welchen Zeitaspekte, Speicher, Ein-Aus-
gabe, Ubertragung usw. im Unterschied
zur Analyse erlebt werden.» Er verwen-
dete den Wasserfall also als Negativbei-
spiel und beschreibt auf den folgenden
Seiten einen Prozess mit Feedbackschlei-
fen. Doch leider hat so gut wie niemand
den Artikel zu Ende gelesen, und so ist
nur die Darstellung des Wasserfalls in
Erinnerung geblieben. Somit erlangte
Royce als «Erfinder» des Wasserfallpro-
zesses undankbarerweise Weltruhm. Da-

X_S:_E electrosuisse »

vid Meyerbeer ging es nicht anders: Er
verfasste den Standard DOD MIL-STD
2167A, der 1988 vom US Departement
of Defense als Softwareentwicklungspro-
zess vorgeschrieben wurde. Dieser Was-
serfallprozess war die Vorlage fiir andere
Prozesse weltweit: JSP-188 (Grossbritan-
nien), GAM-T-17 (Frankreich) und V-
Model (Deutschland), der als Basis fiir
Osterreich und die Schweiz (Hermes)
diente. Diese Entscheidung kam den
Steuerzahler sehr teuer zu stehen. 1994,
nach nur sechs Jahren, wurde der DOD
MIL-STD 2167A durch den DOD MIL-
498 abgelost. Dieser neue Prozess unter-
stiitzt bewusst iterative und inkremen-
telle Softwareentwicklung. Leider beka-
men die anderen Lénder dies nicht mit
oder ignorierten die bedeutende Ande-
rung. Der Glaube an ein definiertes Vor-
gehen mit sequenziellen Prozessen hat
sich dort langer gehalten oder hélt sich
immer noch.

Definiert funktioniert nicht

Dass die Softwareentwickler in den
1960er-Jahren auf definierte und sequen-
zielle Entwicklungsprozesse setzten, ldsst
sich erkldren: Zum einen ging man da-
mals noch fest von dem Gedanken aus,
dass Computerprogramme wie Briicken
gebaut werden konnen: Einige wenige
analysieren das Problem, planen und ent-
werfen das Projekt. Bauarbeiter erhalten
die Pldne und setzen diese um. «Plan the
work, work the plan» - dieses Denken
war damals dominant. Ebenfalls wurde
viel Hoffnung in die Fahigkeit von Com-
putern und deren Programme gesetzt,
speziell im Bereich der kiinstlichen Intel-
ligenz. Diese Erwartungshaltung ist auch
in Stanley Kubricks Film «2001: A Space
Odyssey» aus dem Jahr 1968 klar zu er-

Bulletin 10s/2010

kennen: Der neurotische Computer H-A-
L 9000 an Bord von Discovery One ist
weltbekannt. Solche sich selbst program-
mierende Computer wurden damals als
Standard in 20 Jahren vorausgesagt.

Wo stehen wir heute, nach der doppel-
ten Zeitspanne, also iiber 40 Jahre spa-
ter? Der grosse Durchbruch ldsst noch
immer auf sich warten. Die erfolgreichs-
ten Innovationen in der Softwareent-
wicklung sind die Konzepte der Objekt-
orientierung und virtueller Maschinen.
Die wichtigste Erkenntnis ist jedoch
nicht bei der Technologie, sondern im
Management zu finden: Es ist die Ein-
sicht, dass ein definiertes Vorgehen im
Allgemeinen nicht funktioniert.

Zu hohe Komplexitat

Warum funktioniert «definiert» nicht?
Das Cynefin-Framework, 1999 vom IBM-
Forscher Dave Snowden entwickelt, ver-
anschaulicht die Problematik. Cynefin ist
ein walisisches Wort und bedeutet so viel
wie Lebensraum. In diesem Raum sind
vier Abschnitte definiert, nach denen
Projekte kategorisiert werden kénnen.
Simple (einfach), Complicated (kompli-
ziert), Complex (komplex), Chaotic (cha-
otisch).

Einfache und komplizierte Projekte
kénnen noch durch ein definiertes Vor-
gehen umgesetzt werden. Komplexe Pro-
jekte, bei denen weder die Anforderun-
gen noch die Technologie einfach und

A

Complex

RS U A T ST R
4 o

P-S-R
Emergent
‘Practice

Chaotic

A-S-R
Novel
Practice

2 R R N AR

Simple

S-C-R
Best
Practice

Bild 1 Das Cynefin-Framework definiert vier
Réume, nach denen Projekte kategorisiert
werden kénnen: Simple (einfach), Complicated
(kompliziert), Complex (komplex), Chaotic
(chaotisch).

ITG-Sonderausgabe / Numéro spécial ITG

25

26

SOFTWARE ENTWICKLUNGSMETHODEN

LOGICIEL METHODES DE DEVELOPPEMENT

ganz verstanden sind, jedoch nicht mehr.
Jedes nicht triviale Softwareprojekt fallt
in diese Kategorie. Sie benétigen ein em-
pirisches Vorgehen. Mit definierten se-
quenziellen Prozessen wird hier also das
falsche Management-Tool eingesetzt.
Grosse Probleme sind von Anfang an
programmiert.

Im Durchschnitt &ndern sich wihrend
der Entwicklung 35% der Anforderun-
gen, 60% der implementierten Anforde-
rungen werden selten oder nie vom End-
kunden verwendet. Dies zeigt, dass ein
Requirements Engineering (Definition
der Anforderungen) zu Beginn des Pro-
zesses nur sehr bedingt funktioniert. An-
forderungen miissen bis zum letzten Mo-
ment entdeckbar und dnderbar sein.

Zudem sind die heutigen mehrschich-
tigen Architekturen mit heterogenen
Technologien alles andere als einfach.
Kurz: Wir leben auch in der Softwareent-
wicklung in einer komplexen Welt.

Scrum: Einfache Regeln,

komplexe Umsetzung

Inspiriert vom Konzept Lean aus dem
Total Quality System von Toyota sowie
vom Artikel «The New New Product De-
velopment Game» von Takeuchi und
Hirotaka in der Harvard Business Re-
view begann Ken Schwaber gegen Ende
der 1980er-Jahre, den Scrum-Prozess zu
entwickeln. Sein Ziel war, einen iterati-
ven und inkrementellen Entwicklungs-
prozess zu definieren, der die oben ge-
nannten Einsichten beriicksichtigt. Dies
war kein leichtes Unterfangen, doch
1995 stellten Ken Schwaber und Jeff

Complex

Bulletin 10s/2010

Sutherland an der OOPSLA in Austin
den Scrum-Prozess der Offentlichkeit
vor.

Auf den ersten Blick erscheint Scrum
sehr einfach. Der Scrum-Guide, der den
Prozess ausfiihrlich beschreibt, hat ge-
rade mal 24 Seiten. Scrum ist wie Schach,
die Regeln sind schnell gelernt. Doch um
ein Meister zu werden, braucht es viel
Praxis. Am besten wird man Lehrling bei
einem Meister und lernt direkt von ihm.
Daher bietet Scrum.org auch Trainings
an. Sie vermitteln praktische Erfahrun-
gen aus erster Hand von einem erfahre-
nen Scrum Master. Kombiniert mit eige-
nem Engagement und Selbststudium,
bilden diese Trainings die besten Voraus-
setzungen, um sich fiir die Herausforde-
rungen eines Scrum Masters zu riisten.
Denn es ist nicht trivial, Scrum in eine
Firma einzufiihren - viele Scrum Master
scheitern daran. Trotzdem: Auch eine
gescheiterte Scrum-Einfiihrung bringt in
der Regel bereits eine gewisse Produkti-
vitdtssteigerung. Viele Firmen geben sich
damit bereits zufrieden. Erfolgreiche
Scrum Master denken jedoch in anderen
Grossenordnungen: Sie erwarten eine
deutliche Steigerung der Produktivitét
bis zu einem Faktor zwei.

Der Sprint

Scrum ist iterativ. Eine Iteration, ge-
nannt Sprint, dauert maximal 30 Tage.
Fin Sprint darf nie verldngert werden.
Eine Verkiirzung ist erlaubt, wenn sich
erhohte technische Risiken zeigen oder
die Anforderungen noch sehr unklar
sind. Kurze Sprints von zwei oder drei

Bild 2 Je weniger klar
die Anforderungen und
je unsicherer die Tech-
nologie, desto komple-
xer wird ein Projekt.
Einfache und kompli-
zierte Projekte kénnen
noch durch ein defi-
niertes Vorgehen um-
gesetzt werden. Kom-
plexe Projekte jedoch
nicht mehr — sie bend-
tigen ein empirisches
Vorgehen.

Chaotic

ITG-Sonderausgabe / Numéro spécial ITG

Wochen sind nicht uniiblich, kiirzer als
eine Woche ist jedoch in der Regel nicht
sinnvoll. Nach einem Sprint, also nach
spatestens einem Monat, wird dem Kun-
den funktionierende Software vorgefiihrt.
Dieses sogenannte Software-Inkrement
ist voll funktionell, das heisst, es muss
dem Kunden einen Wert bieten. Dies be-
dingt meistens, dass die Entwickler durch
alle Architekturschichten hindurch pro-
grammieren, von der Benutzeroberfliche
bis hinunter zur Datenspeicherung. Diese
Arbeitsweise hat positive Effekte: Ein
schones User Interface allein ist zwar an-
sprechend, aber ohne funktionierende
Business-Logik ohne Wert. Ein zentrales
Anliegen von Scrum ist die kontinuierli-
che Wertschopfung. Jedes Inkrement am
Ende eines Sprints ist ein Potentially
Shippable Product Increment, muss also
Lieferqualitdt aufweisen.

Klare Verantwortlichkeiten

Der Product Owner ist verantwortlich
fir die Produktanforderungen. Diese
sind in einer Liste festgehalten, die nach
Prioritdt der Anforderungen absteigend
sortiert ist. In diesem sogenannten Pro-
duct Backlog werden die Ausdriicke
«muss», «soll» und «kann» bewusst nicht
verwendet. In typischen realen Projekten
werden 90% der Anforderungen mit
«muss» markiert. Doch welche dieser
Anforderungen ist nun wichtiger als eine
andere? Die klare Priorisierung von
Scrum vermeidet solche Konflikte. Der
Product Owner pflegt den Product Back-
log bestandig und stellt zu jedem Zeit-
punkt sicher, dass das richtige und nicht
einfach das urspriinglich spezifizierte
Produkt entwickelt wird. Uber den Pro-
duct Owner laufen alle Fragen zum Pro-
dukt, und er kann den Product Backlog
jederzeit aufgrund neuer Erkenntnisse
anpassen. Dabei kann er sich mit ande-
ren Fachleuten beraten, die Entscheidun-
gen liegen letztlich in seiner Hand. Es
gibt somit eine klar verantwortliche Per-
son. Der Erfolg der Entwicklung liegt
voll und ganz in den Hénden des Pro-
duct Owners. Mit anderen Worten: Der
Product Owner ist die Personifizierung
des Return on Investment (ROI).

Die Organisation der Arbeiten inner-
halb eines Sprints, einer Iteration, liegt
hingegen nicht in der Kompetenz des
Product Owners. Diese werden im Sprint
Planning Meeting vom Team definiert.
Die wichtigsten Requirements, das
«Was», werden vom Product Owner zu-
sammen mit dem Sprint-Goal vorgestellt.
Das Sprint-Goal ist ein kurzer Text, der

electrosuisse » ng

SOFTWARE ENTWICKLUNGSMETHODEN

LOGICIEL METHODES DE DEVELOPPEMENT

Bild 3 Ablauf eines
Scrum-Prozesses.

das Ziel in Worten beschreibt. Alle Akti-
vitditen im kommenden Sprint dienen
dem Erreichen des Sprint Goals. Wih-
rend die Requirements vom Product Ow-
ner beschrieben werden, hat das Team
die Moglichkeit, kldrende Verstdndnis-
fragen zu stellen. Wenn alle Fragen be-
antwortet wurden, wird der Aufwand
geschétzt. Durch Erfahrungswerte aus
~vorausgegangenen Sprints kann das
Team abschétzen, wenn es seine Kapazi-
tét erreicht hat. Anschliessend erarbeitet
das Team, «wie» das «Was» erreicht wer-
den kann. Die resultierenden Tasks bil-
den den Sprint-Backlog. Dieser gehort
ausschliesslich dem Team.

Im anschliessenden Sprint trifft sich
das Team téglich zum Daily Scrum. In
diesem Meeting beantwortet jedes Mit-
glied drei Fragen: Was habe ich seit dem
letzten Daily Scrum gemacht? Was ma-
che ich bis zum folgenden Daily Scrum?
Habe ich ein Problem, das mich vom
Fortschritt abhélt? Das Daily Scrum
dient der Pflege der Feedbackkultur im
Team und ist ein wesentlicher Bestand-
teil der Qualitétssicherung und Steige-
rung der Teameffizienz. Der Sprintfort-
schritt wird auf einer Sprint Burndown
Chart téglich gemessen und einsehbar
gemacht.

Implementierung priifen

Am Ende des Sprints werden alle im-
plementierten Anforderungen dem Pro-
duct Owner und anderen Stakeholdern
vorgefiihrt. Als implementiert gilt eine
Anforderung, wenn sie zu 100% erfiillt
ist. Was 100% oder «potentially shippa-
ble» bedeutet, wird in der sogenannten
Definition of Done festgelegt. Sie ist ver-

VS=

AZs electrosuisse’»

bindlich. Gentigt eine Anforderung nicht
zu 100% der Definition of Done, so gilt
sie als nicht implementiert. Teilimple-
mentierungen werden nicht anerkannt.

Die implementierten Anforderungen
werden am Review vorgefiihrt. Jeder ist
zu diesem Meeting eingeladen und aufge-
fordert, Feedback abzugeben. Die Anfor-
derungen werden aufgrund der Riickmel-
dungen {iiberpriift, allenfalls adaptiert
und fliessen in einen angepassten Pro-
duct Backlog ein. In der abschliessenden
Retrospektive reflektiert das Team den
letzten Sprint: Was lief schlecht? Was
war gut? Daraus werden Verbesserungen
fiir den folgenden Sprint abgeleitet. So
wird die Teamarbeit laufend iiberpriift
und verbessert.

Auch die Sprint-Retrospektive dient
der Pflege der Feedback-Kultur im Team
als weiterer wesentlicher Bestandteil der

Typ Beschreibung
Simple (einfach)

Vorgehen

Qualitédtssicherung und Steigerung der
Teameffizienz. Am folgenden Tag startet
der nédchste Sprint mit dem Sprint Plan-
ning Meeting - der Kreis schliesst sich.

Drei Saulen, drei Rollen

Das empirische Prozessfiihrungsmo-
dell von Scrum basiert auf drei Sdulen:
Transparenz, Inspektion und Adaption.
Transparenz ist notwendig, damit der
momentane Zustand jederzeit oder zu
wohldefinierten Zeitpunkten tiberpriift
werden kann. Transparenz gilt fiir alle
Stufen in Scrum, von der Definition der
Anforderungen {iber das Release Goal
und die einzelnen Sprint Goals bis hin
zum téglichen Stand der Dinge, dem
Daily Scrum und dem Sprint Burndown.
Zum Schluss des Sprints wird das Pro-
duktinkrement transparent gemacht und
zur Inspektion freigegeben. Dies ermog-

Das Verhaltnis zwischen Ursache und Wirkung ist allen offensichtlich

Sense, Categorize, Respond (Wahrnehmen, Kategorisieren, Antworten)
Best Practices konnen verwendet werden

Complicated (kompliziert)

Das Verhaltnis zwischen Ursache und Wirkung erfordert eine Analyse oder

eine andere Form von Nachforschung und/oder die Anwendung von

Expertenwissen
Vorgehen

Sense, Analyse, Respond (Wahrnehmen, Analysieren, Antworten)
Good Practices kénnen verwendet werden

Complex (komplex)

Das Verhaltnis zwischen Ursache und Wirkung kann nur im Nachhinein

wahrgenommen werden, aber nicht im Voraus

Vorgehen

Probe, Sense, Respond (Erforschen, Wahrnehmen, Antworten)
Emergent Practices werden wahrgenommen

Chaotic (chaotisch)
Vorgehen

Es gibt kein Ursache-und-Wirkungs-Verhaltnis am Systemlevel

Act, Sense, Respond (Handeln, Wahrnehmen, Antworten)
Novel Practices werden entdeckt

Tabelle 1 Beschreibung der Charakteristik von Projekten nach dem Cynefin-Framework.

Bulletin 10s/2010

ITG-Sonderausgabe / Numéro spécial ITG

Bilder: Ziihlke

Wikipedia

27

SOFTWARE ENTWICKLUNGSMETHODEN

LOGICIEL METHODES DE DEVELOPPEMENT

Charakteristik

Viel Turbulenz

Kein klares Ursache-und-Wirkungs-
Prinzip

Unerkennbares

Viele Entscheidungen und keine
Zeit

Typ
Chaotisch

Mehr unvorhersehbar als
vorhersehbar
Aufstrebende Antworten
Viele konkurrierende Ideen

Komplex

Mehr vorhersehbar als unvorher-
sehbar

Faktenbasiertes Management
Experten l6sen Ungereimtheiten

Kompliziert

Einfach Wiederholende Muster und gleich
bleibende Events

Klares Ursache-und-Wirkungs-
Prinzip

Klar bekanntes Wissen
Faktenbasiertes Management

Leader-Aufgabe

Sofortiges Handeln, um Ordnung wiederherzustellen
Priorisierung und Auswahl von ausfiihrbarer Arbeit
Fokus auf das, was funktioniert, anstatt Perfektion
Act, Sense, Respond

Erstellen von klar begrenzter Umgebung fiir
Handlung

Verstarkter Level an Zusammenarbeit und
Kommunikation

Dienender Fiihrungsstil

Generieren von Ideen

Probe, Sense, Respond

Verwenden von Experten, um Einsicht zu erhalten
Verwenden von Metriken, um Kontrolle zu erhalten
Command and Control

Sense, Analyze, Respond

Verwenden von Best Practices

Extensive Kommunikation nicht notwendig
Erstellung von Mustern und Optimierung dieser
Command and Control

Sense, Categorize, Respond

Tabelle 2 Beschreibung der Charakteristik von Projekten nach dem Cynefin-Framework.

licht, fortlaufend die nétigen Adaptionen
vorzunehmen.

In Scrum gibt es nur drei Rollen: Pro-
duct Owner, Scrum Master und Team.
Der Product Owner ist, wie der Name
schon sagt, fiir das Produkt zusténdig. Es
gehort ihm allein. Der Scrum Master ist
verantwortlich fiir den Prozess und stellt
sicher, dass Scrum im Team richtig gelebt
wird. Er sorgt fiir das Team und 16st auf-
kommende Probleme, welche das Team
behindern, effizient zu arbeiten. Dies
hért sich nach einer einfachen Aufgabe
an, doch die Tiicken stecken im Detail,
gerade wenn Scrum neu in einer noch
nicht agilen Firma eingefiihrt wird. Es ist
in dieser Situation sinnvoll, wenn ein ex-
terner Coach die Rolle des Scrum Mas-
ters tibernimmt. Er vermittelt dem Unter-
nehmen, wie Scrum funktioniert und
gelebt wird. Hat er dieses Wissen weiter-
gegeben, zieht er sich zuriick und trai-
niert seinen Nachfolger.

Das Team ist verantwortlich fiir die
Entwicklung der Potentially-Shippable-
Product-Inkremente, welche die Defini-
tion of Done erfiillen. Das Team muss
daher funktionsiibergreifend sein, das
heisst, es besitzt alle nétigen Kenntnisse,
um ein Produktinkrement zu entwickeln.
Im Team gibt es keine unterschiedliche
Rollen wie Entwickler, Architekt oder
Tester. Alle Teammitglieder sind in ihrer
Stellung gleichwertig und bringen ihr un-
terschiedliches Know-how mit. Das Team
organisiert sich selbst und setzt sein

nizieren zu konnen, arbeiten ideal alle
Teammitglieder im selben Raum.

Die Zukunft

Scrum steht fiir eine vollig neue Denk-
weise. Eine Denkweise, die akzeptiert,
dass Softwareentwicklung nicht definiert,
sondern empirisch ist. Eine Denkweise,
die nicht auf Command and Control, son-
dern auf Leadership and Collaboration
aufbaut. Entscheidungen, die ein Projekt-
team ohne Einfluss des Managements
fallt, bieten erhebliches Potenzial, indem
sie Eigenverantwortlichkeit, Effizienz
und Qualitdtsbewusstsein im Team for-
dern. Einigen Managern fillt es schwer,
dies zu akzeptieren. Doch die Erfolge von
einigen Unternehmen sprechen fiir sich.
Ist es nicht beeindruckend, wie eben noch
unbekannte Firmen in wenigen Jahren
unser Weltbild verdndern und dominie-
ren konnten? Solche Kraftakte sind nur
in einem Kollektiv mit gefordertem und
beméchtigtem Teamgeist zu erreichen.
Das Management muss sich als Servant
Leader, nach dem Motto «Fiihren heisst
dienen», neu erfinden.

Ob es den Begriff Scrum in zehn Jah-
ren noch geben wird, ist irrelevant. Ent-
scheidend ist, dass die Ideen und das
dahinterstehende Potenzial in der Pro-
jektkultur weitergetragen werden. Scrum
hat dazu den Grundstein gelegt und soll
auch so betrachtet werden. Scrum bietet
die Chance, einen Industriezweig zu re-
volutionieren, der seit den Anfingen mit

Ken Schwaber, Scrum.org

kein «silver bullet», das automatisch je-
des Projekt erfolgreich zum Ziel bringt.
Scrum ist ein Werkzeug, das bei richtiger
Anwendung Meisterstiicke ermdglicht.

Literatur

m Ken Schwaber, Mike Beedle: Agile Software
Development with Scrum, Prentice Hall, 2001.

= Craig Larman, Addison Wesley: Agile and Iterative
Development: A Manager's Guide, Boston, 2003.

= Hirotaka Takeuchi, lkujiro Nonaka: The New New
Product Development Game, Harvard Business
Review, 1986.

m Ken Schwaber: Agile Project Management with

Scrum, Microsoft Press, 2004.

Links

m Scrum-Guide: Frei verfligbar auf dem Internet
unter Scrum.org (www.scrum.org/storage/
scrumguides/Scrum%20Guide %20-%20DE.pdf)
http://en.wikipedia.org/wiki/Cynefin

m Scrum-Kurse: http://courses.scrum.org/

[]

Angaben zum Autor
Ralph Jocham, Change Agent
und Agile Coach bei Ziihlke Engi-
neering. In dieser Position hilft er
Kunden bei der Einfiihrung von
Agile und Scrum. Ralph Jocham
hat Uber 13 Jahre internationale
(DE, UK, USA, CH) Erfahrung mit
A4 der Anwendung von «Best Practi-
ces» in verschiedenen Domdnen und Positionen. Seine
Starken liegen im Bereich agiles Coaching und Produkti-
vitdtserhhung. Er ist Agile und «Test Infected» seit
2000. Ralph ist Europas erster Professional Scrum Mas-
ter (PSM) und Professional Scrum Developer (PSD) Trai-
ner fiir Scrum.org. Er ist ebenfalls ein CSM, CSP.

Ziihlke Schweiz, 8952 Schlieren,
ralph.jocham@zuehlke.com

m Scrum - mieux vaut

tard que jamais!

Ou comment le développement
empirique de logiciels méne au succes
Jusqu'a aujourd’hui, I'industrie des logiciels
n'est pas parvenue a maitriser pleinement
les développements. La plupart du temps,
les processus définis et séquentiels encore
trés répandus — les processus en cascade
- ne sont pas en mesure de reproduire de
maniere satisfaisante la complexité du
développement logiciel.

Cet article identifie les raisons pour
lesquelles le processus en cascade reste
prédominant et présente une alternative
pour que les projets aboutissent a un
meilleur résultat avec une meilleure
efficacité: le développement itératif et
incrémentiel de logiciels — aussi appelé la
méthode Scrum. Il s'agit d'une approche
méthodologique qui accepte que le
développement de logiciels ne suive pas
une méthode définie, mais se base sur une
démarche empirique. Cet article décrit les
regles, la répartition des responsabilités et

Know-how mit dem Ziel ein, hdchste Ef- Termin-, Kosten- und Qualitédtsproble- le déroulement d'un processus Scrum. No
fizienz zu erreichen. Um effektiv kommu- men zu kdmpfen hat. Scrum ist jedoch
e VS=
electro: =
Bulletin 10s/2010 ITG-Sonderausgabe / Numéro spécial ITG > S

	Scrum : lieber spät als nie!

