
Zeitschrift: bulletin.ch / Electrosuisse

Herausgeber: Electrosuisse

Band: 101 (2010)

Heft: (10)

Artikel: Scrum : lieber spät als nie!

Autor: Jocham, Ralph

DOI: https://doi.org/10.5169/seals-856141

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-856141
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

SOFTWARE ENTWICKLUNGSMETHODEN
LOGICIEL MÉTHODES DE DÉVELOPPEMENT

Serum - lieber spät als nie!
Wie empirische Softwareentwicklung zum Erfolg führt

Nicht definiert, sondern empirisch; «Leadership and
Collaboration» anstatt «Command and Control» - für
diese Denkweise steht Serum. Dieser empirische Ansatz,
der der Komplexität der meisten Softwareprojekte
gerechter wird als sequenzielle Entwicklungsprozesse,
hat die Chance, die Softwareentwicklung zu revolutionieren.

Ralph Jocham

Bis heute hat es die Softwareindustrie
nicht geschafft, die Entwicklung unter
Kontrolle zu bringen. Im Jahr 2008 sind

knapp 30% der Projekte fehlgeschlagen.
Was waren die Gründe? Die noch
weitverbreiteten definierten und sequenziel-
len Entwicklungsprozesse können die

Komplexität der Softwareentwicklung
nicht genügend abbilden. Solche
Prozesse wurden Ende der 1960er-Jahre als

Antwort auf das Ad-hoc-Programmieren
eingeführt. Wohlgemerkt waren zu
diesem Zeitpunkt schon positive Erfahrungen

mit disziplinierter iterativer und in-
krementeller Entwicklung bekannt.
Einige dieser Projekte wurden in den späten

1950er-Jahren durchgeführt. Doch
der Wasserfallprozess, Synonym für alle

sequenziellen Entwicklungsprozesse, hat
sich breit durchgesetzt. Warum? Dies

geht zum Grossteil auf Winston Royce
zurück. In seinem Artikel «Managing the

Development of Large Software
Systems» (Proceedings of IEEE, 1970)
beschreibt Royce den Wasserfall als

Beispiel. Sein Kommentar: «Ich glaube an
das Konzept, jedoch die Umsetzung, die
oben beschrieben wird, ist voller Risiken
und schwört Fehler herbei. Die
Testphase, welche zum Schluss der Entwicklung

vorkommt, ist das erste Ereignis, bei
welchen Zeitaspekte, Speicher, Ein-Aus-

gabe, Übertragung usw. im Unterschied

zur Analyse erlebt werden.» Er verwendete

den Wasserfall also als Negativbeispiel

und beschreibt auf den folgenden
Seiten einen Prozess mit Feedbackschleifen.

Doch leider hat so gut wie niemand
den Artikel zu Ende gelesen, und so ist

nur die Darstellung des Wasserfalls in
Erinnerung geblieben. Somit erlangte
Royce als «Erfinder» des Wasserfallprozesses

undankbarerweise Weltruhm. Da¬

vid Meyerbeer ging es nicht anders: Er
verfasste den Standard DOD MIL-STD
2167A, der 1988 vom US Departement
of Defense als Softwareentwicklungspro-
zess vorgeschrieben wurde. Dieser
Wasserfallprozess war die Vorlage für andere
Prozesse weltweit: JSP-188 (Grossbritannien),

GAM-T-17 (Frankreich) und V-

Model (Deutschland), der als Basis für
Österreich und die Schweiz (Hermes)
diente. Diese Entscheidung kam den
Steuerzahler sehr teuer zu stehen. 1994,
nach nur sechs Jahren, wurde der DOD
MIL-STD 2167A durch den DOD MIL-
498 abgelöst. Dieser neue Prozess unterstützt

bewusst iterative und inkremen-
telle Softwareentwicklung. Leider bekamen

die anderen Länder dies nicht mit
oder ignorierten die bedeutende Änderung.

Der Glaube an ein definiertes
Vorgehen mit sequenziellen Prozessen hat
sich dort länger gehalten oder hält sich
immer noch.

Definiert funktioniert nicht
Dass die Softwareentwickler in den

1960er-Jahren auf definierte und sequenzielle

Entwicklungsprozesse setzten, lässt

sich erklären: Zum einen ging man
damals noch fest von dem Gedanken aus,
dass Computerprogramme wie Brücken
gebaut werden können: Einige wenige
analysieren das Problem, planen und
entwerfen das Projekt. Bauarbeiter erhalten
die Pläne und setzen diese um. «Plan the

work, work the plan» - dieses Denken

war damals dominant. Ebenfalls wurde
viel Hoffnung in die Fähigkeit von
Computern und deren Programme gesetzt,
speziell im Bereich der künstlichen
Intelligenz. Diese Erwartungshaltung ist auch
in Stanley Kubricks Film «2001: A Space

Odyssey» aus dem Jahr 1968 klar zu er¬

kennen: Der neurotische Computer H-A-
L 9000 an Bord von Discovery One ist
weltbekannt. Solche sich selbst
programmierende Computer wurden damals als

Standard in 20 Jahren vorausgesagt.
Wo stehen wir heute, nach der doppelten

Zeitspanne, also über 40 Jahre später?

Der grosse Durchbruch lässt noch
immer auf sich warten. Die erfolgreichsten

Innovationen in der Softwareentwicklung

sind die Konzepte der
Objektorientierung und virtueller Maschinen.
Die wichtigste Erkenntnis ist jedoch
nicht bei der Technologie, sondern im
Management zu finden: Es ist die
Einsicht, dass ein definiertes Vorgehen im
Allgemeinen nicht funktioniert.

Zu hohe Komplexität
Warum funktioniert «definiert» nicht?

Das Cynefin-Framework, 1999 vom IBM-
Forscher Dave Snowden entwickelt,
veranschaulicht die Problematik. Cynefin ist
ein walisisches Wort und bedeutet so viel
wie Lebensraum. In diesem Raum sind
vier Abschnitte definiert, nach denen

Projekte kategorisiert werden können.
Simple (einfach), Complicated (kompliziert),

Complex (komplex), Chaotic
(chaotisch).

Einfache und komplizierte Projekte
können noch durch ein definiertes
Vorgehen umgesetzt werden. Komplexe
Projekte, bei denen weder die Anforderungen

noch die Technologie einfach und

1

Complex

P-S-R

Emergent
Practice

Complicated

S-A-R
Good

Practice

Chaotic

A-S-R
Novel

Practice

Simple

S-C-R
Best

Practice

Bild 1 Das Cynefin-Framework definiert vier

Räume, nach denen Projekte kategorisiert

werden können: Simple (einfach), Complicated

(kompliziert), Complex (komplex), Chaotic

(chaotisch).

VSE
AES electrosuisse^>

Bulletin 10s/2010 ITG-Sonderausgabe/Numéro spécial ITG

SOFTWARE ENTWICKLUNGSMETHODEN
LOGICIEL MÉTHODES DE DÉVELOPPEMENT

ganz verstanden sind, jedoch nicht mehr.

Jedes nicht triviale Softwareprojekt fällt
in diese Kategorie. Sie benötigen ein

empirisches Vorgehen. Mit definierten se-

quenziellen Prozessen wird hier also das

falsche Management-Tool eingesetzt.
Grosse Probleme sind von Anfang an

programmiert.
Im Durchschnitt ändern sich während

der Entwicklung 35 % der Anforderungen,

60% der implementierten Anforderungen

werden selten oder nie vom
Endkunden verwendet. Dies zeigt, dass ein
Requirements Engineering (Definition
der Anforderungen) zu Beginn des

Prozesses nur sehr bedingt funktioniert.
Anforderungen müssen bis zum letzten
Moment entdeckbar und änderbar sein.

Zudem sind die heutigen mehrschichtigen

Architekturen mit heterogenen
Technologien alles andere als einfach.
Kurz: Wir leben auch in der Softwareentwicklung

in einer komplexen Welt.

Serum: Einfache Regeln,
komplexe Umsetzung
Inspiriert vom Konzept Lean aus dem

Total Quality System von Toyota sowie

vom Artikel «The New New Product
Development Game» von Takeuchi und
Hirotaka in der Harvard Business
Review begann Ken Schwaber gegen Ende
der 1980er-Jahre, den Scrum-Prozess zu
entwickeln. Sein Ziel war, einen iterativen

und inkrementellen Entwicklungs-
prozess zu definieren, der die oben
genannten Einsichten berücksichtigt. Dies

war kein leichtes Unterfangen, doch
1995 stellten Ken Schwaber und Jeff

Sutherland an der OOPSLA in Austin
den Scrum-Prozess der Öffentlichkeit
vor.

Auf den ersten Blick erscheint Serum
sehr einfach. Der Serum-Guide, der den

Prozess ausführlich beschreibt, hat
gerade mal 24 Seiten. Serum ist wie Schach,
die Regeln sind schnell gelernt. Doch um
ein Meister zu werden, braucht es viel
Praxis. Am besten wird man Lehrling bei
einem Meister und lernt direkt von ihm.
Daher bietet Scrum.org auch Trainings
an. Sie vermitteln praktische Erfahrungen

aus erster Hand von einem erfahrenen

Serum Master. Kombiniert mit
eigenem Engagement und Selbststudium,
bilden diese Trainings die besten
Voraussetzungen, um sich für die Herausforderungen

eines Serum Masters zu rüsten.
Denn es ist nicht trivial, Serum in eine
Firma einzuführen - viele Serum Master
scheitern daran. Trotzdem: Auch eine

gescheiterte Serum-Einführung bringt in
der Regel bereits eine gewisse
Produktivitätssteigerung. Viele Firmen geben sich

damit bereits zufrieden. Erfolgreiche
Serum Master denken jedoch in anderen

Grössenordnungen: Sie erwarten eine
deutliche Steigerung der Produktivität
bis zu einem Faktor zwei.

Der Sprint
Serum ist iterativ. Eine Iteration,

genannt Sprint, dauert maximal 30 Tage.
Ein Sprint darf nie verlängert werden.
Eine Verkürzung ist erlaubt, wenn sich
erhöhte technische Risiken zeigen oder
die Anforderungen noch sehr unklar
sind. Kurze Sprints von zwei oder drei

Bild 2 Je weniger klar

die Anforderungen und

je unsicherer die

Technologie, desto komplexer

wird ein Projekt.

Einfache und komplizierte

Projekte können

noch durch ein

definiertes Vorgehen um-

gesetztwerden.
Komplexe Projekte jedoch

nicht mehr-sie benötigen

ein empirisches

Vorgehen.

Wochen sind nicht unüblich, kürzer als

eine Woche ist jedoch in der Regel nicht
sinnvoll. Nach einem Sprint, also nach

spätestens einem Monat, wird dem Kunden

funktionierende Software vorgeführt.
Dieses sogenannte Software-Inkrement
ist voll funktionell, das heisst, es muss
dem Kunden einen Wert bieten. Dies
bedingt meistens, dass die Entwickler durch
alle Architekturschichten hindurch
programmieren, von der Benutzeroberfläche
bis hinunter zur Datenspeicherung. Diese

Arbeitsweise hat positive Effekte: Ein
schönes User Interface allein ist zwar
ansprechend, aber ohne funktionierende
Business-Logik ohne Wert. Ein zentrales

Anliegen von Serum ist die kontinuierliche

Wertschöpfung. Jedes Inkrement am
Ende eines Sprints ist ein Potentially
Shippable Product Increment, muss also

Lieferqualität aufweisen.

Klare Verantwortlichkeiten
Der Product Owner ist verantwortlich

für die Produktanforderungen. Diese
sind in einer Liste festgehalten, die nach
Priorität der Anforderungen absteigend
sortiert ist. In diesem sogenannten
Product Backlog werden die Ausdrücke

«muss», «soll» und «kann» bewusst nicht
verwendet. In typischen realen Projekten
werden 90% der Anforderungen mit
«muss» markiert. Doch welche dieser

Anforderungen ist nun wichtiger als eine
andere? Die klare Priorisierung von
Serum vermeidet solche Konflikte. Der
Product Owner pflegt den Product Backlog

beständig und stellt zu jedem
Zeitpunkt sicher, dass das richtige und nicht
einfach das ursprünglich spezifizierte
Produkt entwickelt wird. Über den
Product Owner laufen alle Fragen zum
Produkt, und er kann den Product Backlog
jederzeit aufgrund neuer Erkenntnisse

anpassen. Dabei kann er sich mit anderen

Fachleuten beraten, die Entscheidungen

liegen letztlich in seiner Hand. Es

gibt somit eine klar verantwortliche
Person. Der Erfolg der Entwicklung liegt
voll und ganz in den Händen des
Product Owners. Mit anderen Worten: Der
Product Owner ist die Personifizierung
des Return on Investment (ROI).

Die Organisation der Arbeiten innerhalb

eines Sprints, einer Iteration, liegt
hingegen nicht in der Kompetenz des

Product Owners. Diese werden im Sprint
Planning Meeting vom Team definiert.
Die wichtigsten Requirements, das

«Was», werden vom Product Owner
zusammen mit dem Sprint-Goal vorgestellt.
Das Sprint-Goal ist ein kurzer Text, der

electrosuissej^> ^||

-
7 wHHH

Chaotic

Complicated
Complex

Simple
Complicated

Close to
Certainty

Technology Far from
Certainty

Bulletin 10s/2010 ITG-Sonderausgabe/Numéro spécial ITG

SOFTWARE ENTWICKLUNGSMETHODEN
LOGICIEL MÉTHODES DE DÉVELOPPEMENT

das Ziel in Worten beschreibt. Alle
Aktivitäten im kommenden Sprint dienen
dem Erreichen des Sprint Goals. Während

die Requirements vom Product Owner

beschrieben werden, hat das Team
die Möglichkeit, klärende Verständnisfragen

zu stellen. Wenn alle Fragen
beantwortet wurden, wird der Aufwand
geschätzt. Durch Erfahrungswerte aus

vorausgegangenen Sprints kann das

Team abschätzen, wenn es seine Kapazität

erreicht hat. Anschliessend erarbeitet
das Team, «wie» das «Was» erreicht werden

kann. Die resultierenden Tasks
bilden den Sprint-Backlog. Dieser gehört
ausschliesslich dem Team.

Im anschliessenden Sprint trifft sich
das Team täglich zum Daily Serum. In
diesem Meeting beantwortet jedes
Mitglied drei Fragen: Was habe ich seit dem
letzten Daily Serum gemacht? Was mache

ich bis zum folgenden Daily Serum?
Habe ich ein Problem, das mich vom
Fortschritt abhält? Das Daily Serum
dient der Pflege der Feedbackkultur im
Team und ist ein wesentlicher Bestandteil

der Qualitätssicherung und Steigerung

der Teameffizienz. Der Sprintfortschritt

wird auf einer Sprint Burndown
Chart täglich gemessen und einsehbar

gemacht.

Implementierung prüfen
Am Ende des Sprints werden alle

implementierten Anforderungen dem
Product Owner und anderen Stakeholdern
vorgeführt. Als implementiert gilt eine

Anforderung, wenn sie zu 100% erfüllt
ist. Was 100% oder «potentially shippa-
ble» bedeutet, wird in der sogenannten
Definition of Done festgelegt. Sie ist ver¬

bindlich. Genügt eine Anforderung nicht
zu 100% der Definition of Done, so gilt
sie als nicht implementiert.
Teilimplementierungen werden nicht anerkannt.
Die implementierten Anforderungen
werden am Review vorgeführt. Jeder ist

zu diesem Meeting eingeladen und
aufgefordert, Feedback abzugeben. Die
Anforderungen werden aufgrund der Rückmeldungen

überprüft, allenfalls adaptiert
und fliessen in einen angepassten
Product Backlog ein. In der abschliessenden

Retrospektive reflektiert das Team den

letzten Sprint: Was lief schlecht? Was

war gut? Daraus werden Verbesserungen
für den folgenden Sprint abgeleitet. So

wird die Teamarbeit laufend überprüft
und verbessert.

Auch die Sprint-Retrospektive dient
der Pflege der Feedback-Kultur im Team
als weiterer wesentlicher Bestandteil der

Qualitätssicherung und Steigerung der
Teameffizienz. Am folgenden Tag startet
der nächste Sprint mit dem Sprint Planning

Meeting - der Kreis schliesst sich.

Drei Säulen, drei Rollen
Das empirische Prozessführungsmo-

dell von Serum basiert auf drei Säulen:

Transparenz, Inspektion und Adaption.
Transparenz ist notwendig, damit der
momentane Zustand jederzeit oder zu
wohldefinierten Zeitpunkten überprüft
werden kann. Transparenz gilt für alle
Stufen in Serum, von der Definition der

Anforderungen über das Release Goal
und die einzelnen Sprint Goals bis hin
zum täglichen Stand der Dinge, dem

Daily Serum und dem Sprint Burndown.
Zum Schluss des Sprints wird das Pro-
duktinkrement transparent gemacht und
zur Inspektion freigegeben. Dies ermög-

Typ Beschreibung

Simple (einfach) Das Verhältnis zwischen Ursache und Wirkung ist allen offensichtlich
Vorgehen
Sense, Categorize, Respond (Wahrnehmen, Kategorisieren, Antworten)
Best Practices können verwendet werden

Complicated (kompliziert) Das Verhältnis zwischen Ursache und Wirkung erfordert eine Analyse oder
eine andere Form von Nachforschung und/oder die Anwendung von
Expertenwissen
Vorgehen
Sense, Analyse, Respond (Wahrnehmen, Analysieren, Antworten)
Good Practices können verwendet werden

Complex (komplex) Das Verhältnis zwischen Ursache und Wirkung kann nur im Nachhinein

wahrgenommen werden, aber nicht im Voraus

Vorgehen
Probe, Sense, Respond (Erforschen, Wahrnehmen, Antworten)
Emergent Practices werden wahrgenommen

Chaotic (chaotisch) Es gibt kein Ursache-und-Wirkungs-Verhältnis am Systemlevel
Vorgehen
Act, Sense, Respond (Handeln, Wahrnehmen, Antworten)
Novel Practices werden entdeckt

Tabelle 1 Beschreibung der Charakteristik von Projekten nach dem Cynefin-Framework.

electrosuisse^>
Bulletin 10s/2010 ITG-Sonderausgabe/Numéro spécial ITG

SOFTWARE ENTWICKLUNGSMETHODEN
LOGICIEL MÉTHODES DE DÉVELOPPEMENT

Typ

Chaotisch

Komplex

Kompliziert

Einfach

Charakteristik

Viel Turbulenz
Kein klares Ursache-und-Wirkungs-
Prinzip
Unerkennbares
Viele Entscheidungen und keine

Zeit

Mehr unvorhersehbar als

vorhersehbar
Aufstrebende Antworten
Viele konkurrierende Ideen

Mehr vorhersehbar als unvorhersehbar

Faktenbasiertes Management
Experten lösen Ungereimtheiten

Leader-Aufgabe

Sofortiges Handeln, um Ordnung wiederherzustellen

Priorisierung und Auswahl von ausführbarer Arbeit
Fokus auf das, was funktioniert, anstatt Perfektion

Act, Sense, Respond

Erstellen von klar begrenzter Umgebung für
Handlung
Verstärkter Level an Zusammenarbeit und

Kommunikation
Dienender Führungsstil
Generieren von Ideen

Probe, Sense, Respond

Verwenden von Experten, um Einsicht zu erhalten
Verwenden von Metriken, um Kontrolle zu erhalten
Command and Control
Sense, Analyze, Respond

Wiederholende Muster und gleich Verwenden von Best Practices
bleibende Events

Klares Ursache-und-Wirkungs-
Prinzip
Klar bekanntes Wissen
Faktenbasiertes Management

Extensive Kommunikation nicht notwendig
Erstellung von Mustern und Optimierung dieser
Command and Control
Sense, Categorize, Respond

Tabelle 2 Beschreibung der Charakteristik von Projekten nach dem Cynefin-Framework.

licht, fortlaufend die nötigen Adaptionen
vorzunehmen.

In Serum gibt es nur drei Rollen:
Product Owner, Scrum Master und Team.

Der Product Owner ist, wie der Name
schon sagt, für das Produkt zuständig. Es

gehört ihm allein. Der Serum Master ist
verantwortlich für den Prozess und stellt
sicher, dass Serum im Team richtig gelebt
wird. Er sorgt für das Team und löst
aufkommende Probleme, welche das Team

behindern, effizient zu arbeiten. Dies
hört sich nach einer einfachen Aufgabe

an, doch die Tücken stecken im Detail,
gerade wenn Serum neu in einer noch
nicht agilen Firma eingeführt wird. Es ist
in dieser Situation sinnvoll, wenn ein
externer Coach die Rolle des Serum Masters

übernimmt. Er vermittelt dem
Unternehmen, wie Serum funktioniert und
gelebt wird. Hat er dieses Wissen
weitergegeben, zieht er sich zurück und
trainiert seinen Nachfolger.

Das Team ist verantwortlich für die

Entwicklung der Potentially-Shippable-
Product-Inkremente, welche die Definition

of Done erfüllen. Das Team muss
daher funktionsübergreifend sein, das

heisst, es besitzt alle nötigen Kenntnisse,
um ein Produktinkrement zu entwickeln.
Im Team gibt es keine unterschiedliche
Rollen wie Entwickler, Architekt oder
Tester. Alle Teammitglieder sind in ihrer
Stellung gleichwertig und bringen ihr
unterschiedliches Know-how mit. Das Team

organisiert sich selbst und setzt sein
Know-how mit dem Ziel ein, höchste
Effizienz zu erreichen. Um effektiv kommu¬

nizieren zu können, arbeiten ideal alle

Teammitglieder im selben Raum.

Die Zukunft
Serum steht für eine völlig neue

Denkweise. Eine Denkweise, die akzeptiert,
dass Softwareentwicklung nicht definiert,
sondern empirisch ist. Eine Denkweise,
die nicht auf Command and Control,
sondern auf Leadership and Collaboration
aufbaut. Entscheidungen, die ein Projektteam

ohne Einfluss des Managements
fällt, bieten erhebliches Potenzial, indem
sie Eigenverantwortlichkeit, Effizienz
und Qualitätsbewusstsein im Team
fördern. Einigen Managern fällt es schwer,
dies zu akzeptieren. Doch die Erfolge von
einigen Unternehmen sprechen für sich.

Ist es nicht beeindruckend, wie eben noch
unbekannte Firmen in wenigen Jahren

unser Weltbild verändern und dominieren

konnten? Solche Kraftakte sind nur
in einem Kollektiv mit gefordertem und

bemächtigtem Teamgeist zu erreichen.
Das Management muss sich als Servant

Leader, nach dem Motto «Führen heisst

dienen», neu erfinden.
Ob es den Begriff Serum in zehn Jahren

noch geben wird, ist irrelevant.
Entscheidend ist, dass die Ideen und das

dahinterstehende Potenzial in der
Projektkultur weitergetragen werden. Serum
hat dazu den Grundstein gelegt und soll
auch so betrachtet werden. Serum bietet
die Chance, einen Industriezweig zu
revolutionieren, der seit den Anfängen mit
Termin-, Kosten- und Qualitätsproblemen

zu kämpfen hat. Serum ist jedoch

kein «silver bullet», das automatisch
jedes Projekt erfolgreich zum Ziel bringt.
Serum ist ein Werkzeug, das bei richtiger
Anwendung Meisterstücke ermöglicht.

Literatur
a Ken Schwaber, Mike Beedle: Agile Software

Development with Scrum, Prentice Hall, 2001.

Craig Larman, Addison Wesley: Agile and Iterative

Developments Manager's Guide, Boston, 2003.
Hirotaka Takeuchi, Ikujiro Nonaka: The New New
Product Development Game, Harvard Business

Review, 1986.
Ken Schwaber: Agile Project Management with
Scrum, Microsoft Press, 2004.

Links
a Scrum-Guide: Frei verfügbar auf dem Internet

unter Scrum.org (www.scrum.org/storage/
scrumguides/Scrum%20Guide%20-%20DE.pdf)
http://en.wikipedia.org/wiki/Cynefin
Serum-Kurse: http://courses.scrum.org/

Angaben zum Autor
Ralph Jocham, Change Agent
und Agile Coach bei Zühlke

Engineering. In dieser Position hilft er

Kunden bei der Einführung von

Agile und Serum. Ralph Jocham

hat über 13 Jahre internationale

(DE, UK, USA, CH) Erfahrung mit
der Anwendung von «Best Practices»

in verschiedenen Domänen und Positionen. Seine

Stärken liegen im Bereich agiles Coaching und

Produktivitätserhöhung. Er ist Agile und «Test Infected» seit

2000. Ralph ist Europas erster Professional Serum Master

(PSM) und Professional Serum Developer (PSD) Trainer

für Scrum.org. Er ist ebenfalls ein CSM, CSP.

Zühlke Schweiz, 8952 Schlieren,
ralph.jocham@zuehlke.com

Résumé
Scrum - mieux vaut

tard que jamais
Ou comment le développement
empirique de logiciels mène au succès

Jusqu'à aujourd'hui, l'industrie des logiciels
n'est pas parvenue à maîtriser pleinement
les développements. La plupart du temps,
les processus définis et séquentiels encore

très répandus - les processus en cascade

- ne sont pas en mesure de reproduire de

manière satisfaisante la complexité du

développement logiciel.
Cet article identifie les raisons pour
lesquelles le processus en cascade reste

prédominant et présente une alternative

pour que les projets aboutissent à un

meilleur résultat avec une meilleure

efficacité : le développement itératif et

incrémentiel de logiciels - aussi appelé la

méthode Scrum. Il s'agit d'une approche

méthodologique qui accepte que le

développement de logiciels ne suive pas

une méthode définie, mais se base sur une
démarche empirique. Cet article décrit les

règles, la répartition des responsabilités et
le déroulement d'un processus Scrum. No

Bulletin 10s/2010 ITG-Sonderausgabe/Numéro spécial ITG
electrosuisse^> VS=

AES

	Scrum : lieber spät als nie!

