Zeitschrift: bulletin.ch / Electrosuisse

Herausgeber: Electrosuisse

Band: 101 (2010)

Heft: 2

Artikel: Elektroautos als mobile Stromspeicher

Autor: Herzog, Bruno

DOI: https://doi.org/10.5169/seals-856048

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Elektroautos als mobile Stromspeicher

Einsatz von Elektroautos kann die Nutzung von regenerativen Energien optimieren

Noch vor wenigen Jahren glaubte kaum jemand an die Renaissance des Elektroautos. Doch inzwischen arbeiten Industriefirmen und Energieversorger Hand in Hand, diese Vision Wirklichkeit werden zu lassen. Dabei geht es neben der Fahrzeugtechnik vor allem auch um das Zusammenwirken von Auto, Stromnetz und erneuerbaren Energien wie Wind und Sonne.

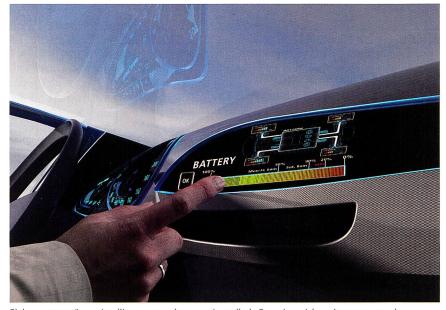
Bruno Herzog

Zum ersten Mal in der Geschichte der Mobilität wollen Ingenieure aus Fahrzeugen mehr machen als klassische Fortbewegungsmittel, nämlich mobile Energiespeicher. Das geht nicht mit Verbrennungsmotoren, aber es geht mit einer Batterie, die nicht nur Strom tanken, sondern auch wieder abgeben kann – also bidirektional funktioniert.

Die Vision hinter der Elektromobilität ist aus dem Spannungsfeld entstanden, dass immer mehr Menschen individuell mobil sein wollen und dass der Energiebedarf gerade in Schwellenländern wie Indien und China enorm ansteigt. Die Energieversorger setzen dabei vermehrt auf erneuerbare und CO₂-freie Energien wie Wind und Sonne. Deren Ertrag

schwankt jedoch je nach Wetter. Mit zunehmendem Anteil solcher Energieträger am Strommix eines Landes steigt daher auch der Bedarf nach schnell einsetzbaren Zwischenspeichern für den Strom.

Die Nutzung der Batterien von Elektroautos, die an jeder Steckdose Strom tanken oder liefern können, wäre eine lukrative Lösung. Denn wenn viel Strom zur Verfügung steht, etwa nachts oder bei starkem Wind, wäre der Strompreis niedrig – zum Beispiel bei 0.05 CHF/kWh – und dementsprechend viele Autos würden diesen günstigen Strom «tanken». Wenn hingegen Flaute herrscht oder mittags gerade viel Strom zum Kochen benötigt wird, läge der Preis beispielsweise bei 0.30 CHF/kWh, und viele Autobesit-


zer würden sich entschliessen, die Energie mit Gewinn ins Netz abzugeben. Mit einer intelligenten Steuerung könnten dies auch die am Netz hängenden Fahrzeuge selbst entscheiden – dann nämlich, wenn sie wissen, wie weit ihr Besitzer heute noch fahren muss und welche Batterieladung er daher benötigt. Die meiste Zeit des Tages stehen Autos sowieso still und könnten daher ständig mit dem Stromnetz verbunden sein. Wenn sich die Strompreise flexibel nach Angebot und Nachfrage richten, vermeidet dies auch das Problem, dass zu bestimmten Zeiten gleichzeitig sehr viele Autos Strom tanken wollen - dann würde der Preis in die Höhe schiessen.

Windenergie als Stromlieferant

Als Faustregel kann gesagt werden, dass einer Windturbine mit 3 MW Spitzenleistung etwa 300 Elektrofahrzeuge als Stromspeicher gegenüberstehen sollten. Mit solchen mobilen Speichern liessen sich gleich zwei Fliegen mit einer Klappe schlagen: Die Energieversorgungsunternehmen hätten - vorausgesetzt, die Akkus können die ständigen Lade- und Entladevorgänge verkraften - einen gewissen Puffer für überschüssige Energie aus regenerativen Quellen. Den Fahrzeugbesitzern stünde eine Geldeinnahmequelle zur Verfügung, die ihnen hilft, die relativ teuren Batterien zu finanzieren. Denn auch in absehbarer Zeit wird die Batterie eine der teuersten Komponenten eines Elektroautos sein.

Wie bereits angetönt, setzen Energieversorger vermehrt auf regenerative Energien wie Wind und Sonne. So stammen beispielsweise bereits 20 % des dänischen Stroms aus Windenergie. Bis zum Jahr 2025 sollen es sogar 50 % sein. Doch die Freude über den hohen Anteil regenerativer Energien ist durchaus getrübt. Denn wenn der Wind zu stark bläst, liefern die Rotoren bereits jetzt mehr Strom, als das Netz vertragen kann. Bislang mussten die dänischen Energieversorger den Strom dann an die Nachbarländer weiterleiten – und dafür zu allem Überfluss auch noch bezahlen.

So überrascht es kaum, dass Dänemark zu den Vorreitern bei der Entwick-

Elektroautos müssen intelligenter werden, um sinnvoll als Energiespeicher eingesetzt werden zu können.

TECHNOLOGIE MOBILITÉ ÉLECTRIQUE

lung von Speichertechnologien gehört, die das Zuviel an Windstrom schlucken - vor allem die Batterien von Elektroautos sind dabei im Visier der Forscher. Bereits in zehn Jahren soll in Dänemark jedes zehnte Auto mit Strom aus Windkraft dahinbrausen. Zu einer Zeit, da auf europäischen Strassen noch kaum Elektroautos unterwegs sind, erscheint diese Vision fast vermessen. Doch Dänemark treibt die Elektromobilität derzeit in einer ganzen Reihe von Projekten massiv voran. Siemens ist als Entwicklungspartner dabei - sowohl was die Anbindung des Autos ans Stromnetz betrifft als auch in Sachen Fahrzeugtechnik.

Mit Elektrostrom zum Klimagipfel

So stellte Siemens zur Weltklimakonferenz der Vereinten Nationen im Dezember 2009 in Kopenhagen zusammen mit der Automanufaktur Ruf drei Dakara mit Elektroantrieb vor - diese Autos basieren auf dem Chassis des Porsche Cavenne und sind mit einem integrierten Ladekonzept ausgestattet: Sie haben bereits die Elektronik an Bord, die erforderlich ist, um Autos an Steckdosen mit 230-400 V aufzuladen. Der entsprechende Stecker ist bereits standardisiert. Wie lange die Beladung dauert, hängt bei diesem Konzept vor allem von der Leistung der Steckdose ab. Zunächst wird mit einer Ladeleistung von etwa 10 kW gerechnet, mittelfristig mit bis zu 43 kW. Damit liegt die Ladezeit zwischen 2 h und 20 min. Betankt wird über den Stromanschluss in der Tankklappe.

Zum Dakara-Konzept gehört ferner eine Stromzapfsäule von Siemens, die mit der Fahrzeugelektronik kommuniziert. Das ist nicht nur in Dänemark eine der wichtigsten Herausforderungen der Elektromobilität, denn künftig sollen Elektrofahrzeuge an jedem Ort – der Garage, dem Supermarkt- oder Firmenparkplatz – betankt werden können. Wie beim Handy wird der Verbrauch an-

Elektro-Porsche wird geladen.

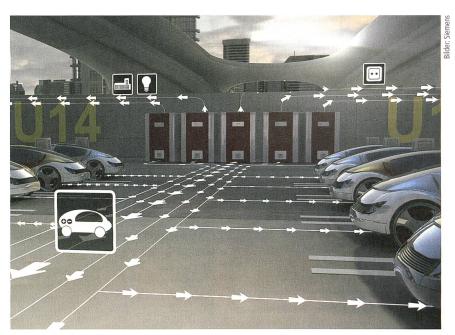
Einbau des zentralen, «klassischen» Elektromotors. Zukünftige Technologie sieht kleine Antriebseinheiten direkt an den Rädern vor.

schliessend mit dem Dienstleister abgerechnet, was nur möglich ist, wenn das Auto sicher erkannt wird und Daten zwischen Bordelektronik und Zapfsäule ausgetauscht werden. In einem Kooperationsprojekt mit dem Energieversorger RWE wird Siemens zudem demnächst an verschiedenen Standorten in Deutschland 40 Ladestationen installieren.

Doppelmotorkonzept

Bereits im Frühjahr 2009 hatten Ruf und Siemens einen zum Elektroauto umgebauten Porsche auf dem Genfer Automobilsalon präsentiert - den Greenster I. Das Fahrzeug mit einer Leistung von 270 kW beeindruckt mit einer hohen Beschleunigung und einem beachtlichen Drehmoment gleich vom Start weg. Greenster I war ein Konzeptauto. Das Nachfolgemodell ist bereits in Entwicklung. Der Greenster II soll das erste Elektrofahrzeug auf Porsche-Basis sein, das in Kleinserie gefertigt wird. Herzstück ist ein Doppelmotor für die Hinterachse. Während der Greenster I noch mit einem recht grossen Monoantrieb ausgestattet war, wird beim Greenster II jedes Hinterrad von einem eigenen kleinen Antrieb bewegt, der nah am Rad sitzt. Für gewöhnlich wird die Kraft eines Motors über ein Differenzialgetriebe einzeln auf die Räder verteilt - was bei schneller Kurvenfahrt nicht ideal ist.

Mit dem Doppelmotorkonzept aber lassen sich dank elektronischer Ansteuerung selbst bei flotter Kurvenfahrt die unterschiedlich belasteten Räder links und rechts optimal antreiben. Erst dadurch kann ein Auto selbst in Grenzsituationen perfekt dahinbrausen. Beim Zentralmotorkonzept muss die Kraft über das schwere und sperrige Differenzialgetriebe übertragen werden. Damit trägt ein solches Fahrzeug viel Extragewicht mit sich herum. Beim Elektromotor ist das anders: Hier genügt ein kleines Steuergerät, das Befehle über dünne Kabel an die einzelnen Elektromotoren sendet.


Siemens verfolgt das Thema Elektromobilität umfassend; sowohl die Fahrzeugtechnik wie bei Greenster und Dakara als auch die Anbindung ans Netz mitsamt Ladevorgang und Kommunikation. «Inside Car» und «Outside Car» nennt man diese beiden Bereiche. Mit dabei sind neben den Siemens-Forschern auch Fachleute aus den Siemens-Sektoren Energy und Industry. Denn es geht bei der künftigen Elektromobilität nicht nur um die Autos. Auch das Stromnetz muss entsprechend vorbereitet werden. Ein Beispiel sind grosse öffentliche Plätze wie die Parkanlagen in Innenstädten oder vor Fussballstadien. Dort werden Systeme erforderlich sein, die die einzelnen kleinen Stromlasten der Autos bündeln. Pro 50 Fahrzeuge wird man einen Verteiltrafo samt Schaltanlage benötigen. Mehrere Dutzend Verteiltrafos müssen dann über eine Mittelspannungsschaltanlage zusammengeschaltet werden. Bei mehreren Tausend parkenden Autos sind dafür grössere Anlagen nötig, die man in Untergeschossen oder separaten Häusern aufstellen wird.

Autos als mobile Stromspeicher

Die Energiefachleute von «Inside Car» und «Outside Car» engagieren sich derzeit auch im dänischen Projekt Edison (Electric Vehicles in a Distributed and Integrated Market Using Sustainable Energy and Open Networks). Edison will als erstes und umfangreichstes Projekt dieser Art weltweit einen Fahrzeugpool an die Steckdose bringen und mit schwankender Windenergie koppeln. In den kommenden zwei Jahren wird die Technik auf Fahrzeug- und Netzseite entwickelt und vorbereitet.

2011 beginnt dann auf der dänischen Ostseeinsel Bornholm der Praxistest. Die Fahrzeuge werden am öffentlichen Stromnetz betankt und Windstrom aufnehmen. Wenn wiederum im Stromnetz die Nachfrage steigt, etwa zur Frühstückszeit oder abends, werden die Autos Strom ins Netz zurückspeisen. Die Hoffnung der Dänen ist, dass sich mit einem Tausende Autos grossen Fuhrpark in naher Zukunft die Schwankungen des Windstroms ausgleichen lassen. Statt separate Stromspeicher zum Abpuffern der Stromschwankungen zu bauen, lieferten dann die Autos mitsamt ihren Akkus ganz nebenbei Speicherkapazität. Bei Edison steht damit unter anderem auch der bidirektionale Stromfluss im Mittelpunkt: der Fluss vom Netz ins Auto und zurück. Eine Rechnung zeigt, wie viel Potenzial dieses Konzept in sich birgt: 200 000 Fahrzeuge, die mit 40 kW Leistung am Netz hängen, könnten kurzfristig eine Leistung von 8 GW zur Verfügung stellen - das ist mehr als ganz Deutschland derzeit an Regelleistung benötigt, um Verbrauchsspitzen abzufedern.

Natürlich testet Siemens ihre Technik nicht nur in Dänemark. Auch in Deutschland sind die Forscher aktiv. So wird etwa im Kooperationsprojekt «Harz.EE-Mobility» untersucht, wie sich dezentrale Wind-, Solar- und Biogasanlagen besser auf das Stromnetz abstimmen lassen. Die drei beteiligten Landkreise im Harz testen unter anderem auch, wie man Elektroautos einbinden kann. Siemens liefert hier etwa eine Stromladesäule, das Energiemanagementsystem, die Einbindung der Elektroautos ins Smart Grid und die Kommunikationslösungen. In den Labors von Siemens in München analysieren die Forscher auch die Elektronik-

Konzept einer Lade-/Entladestation im Parkhaus.

komponenten – insbesondere im Hinblick auf die Bidirektionalität, die Aufnahme und Abgabe von Strom. Mit diesen Versuchsständen wollen die Wissenschaftler verschiedene Belastungssituationen simulieren.

Antriebe nahe am Rad

Für Prof. Gernot Spiegelberg, Leiter des Teams für Elektromobilität bei Siemens Corporate Technology, ist schon jetzt klar, wie die Entwicklung danach weitergeht. «In den kommenden Jahren werden Elektrofahrzeuge entwickelt werden, bei denen in jedem der vier Räder eine eigene kleine Antriebseinheit sitzt.» Beim Bremsen werden dann die vier Motoren Energie zurückgewinnen können. Damit entfallen der grosse zentrale Motor sowie die Kardan- und die Achswellen. Der freie Bauraum würde sich erheblich vergrössern.

Mehr noch: Anders als Achswellen können elektronische Aggregate weitgehend unabhängig von den Elektromotoren frei im Auto untergebracht werden. Designern bieten sich damit ganz neue Gestaltungsmöglichkeiten - etwa seitlich montierte Räder, in denen zugleich der Antrieb sitzt. Grossraumautos ohne Mittelkonsole mit einem aktiv herausklappbaren Sitz könnten beim Ein- und Aussteigen helfen. Der Innenraum liesse sich völlig neu gestalten und noch sicherer machen - etwa durch den Verzicht auf die starre Lenksäule. Statt mit Pedalen könnte dann mit Hebeln oder Joysticks gesteuert werden. Ganz neue Funktionalitäten werden denkbar. Noch ist nicht einmal ansatzweise absehbar, zu welchen Revolutionen die Elektromobilität noch führen wird.

Angaben zum Autor Bruno Herzog, Leiter Account Management, Siemens Schweiz Energy Systems. Siemens Energy Systems, 8047 Zürich, www.siemens.ch/energy und www.siemens.de/energy,

bruno.herzog@siemens.com

Les voitures électriques en tant qu'accumulateurs mobiles
L'utilisation de voitures électriques peut optimiser l'exploitation des énergies
renouvelables

Il y a quelques années encore, presque personne ne croyait à la renaissance de la voiture électrique. Mais depuis, entreprises industrielles et fournisseurs d'énergie travaillent main dans la main afin de faire de cette vision une réalité. En plus de la technique des véhicules, il s'agit aussi surtout de développer l'interaction de l'automobile, du réseau électrique et des énergies renouvelables telles que le vent et le soleil.

CARTOON

A Man

E-Mobility

Bist du sicher, das Kabel ist

"Es-tu sûr, que le câble est assez long?"

MARTIN GUNL

cartoonexpressel