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Thermische Grenzkapazitat

Kabelbelastbarkeit

von Kabelsystemen berechnen

Grenzen der etablierten Berechnung, Neuerungen in der

IEC 60287 und weiterfilhrende Methoden

Nach mehreren Jahren ohne nennenswerte Neuerungen hat das
Thema Kabelbelastbarkeitsrechnung in den Normungsgremien
wieder an Bedeutung gewonnen. Mit zunehmender Auslastung
der vorhandenen Leitungskapazitaten und einhergehender Verka-
belung der Ubertragungsnetze riickt nun auch bei den Betreibern
die Bestimmung der thermischen Grenzkapazitaten ins Zentrum
des Interesses. Der Artikel enthilt eine Ubersicht tiber den Stand
der Technik der Belastbarkeitsrechnung. Ein detaillierter Bericht
steht unter www.technik-forum.ch zum Download bereit [1].

Unterirdische Kabelverbindungen sind
neuralgische Abschnitte in  elektrischen
Ubertragungssystemen. Der Trend zu immer
l&ngeren Kabeln in der Hoch- und Héchst-
spannungsebene wirft grundlegende Fra-
gen auf, wie die Kabel in die vorhandenen
Netzstrukturen eingebunden werden und
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wie sie sich auf die Zuverlassigkeit auswir-
ken [2]. Zwei wesentliche Faktoren mussen
beriicksichtigt werden: Erstens stellen lange
Kabeltrassen ausgedehnte Kapazitaten dar
mit den daraus resultierenden Konse-
quenzen hinsichtlich Blindleistungskompen-
sation und Netzstabilitat [3]. Zweitens flh-
ren Schaden von Kabeln im Betrieb auf-
grund der aufwendigen Reparaturprozedu-
ren zu relativ langen Ausfallzeiten.

Der wochenlange Blackout vom 28. Fe-
bruar 1998 im Stadtzentrum von Auckland
wurde durch das thermische Versagen von
mehreren Kabelverbindungen ausgeldst —
und kostete die Stadt nach offiziellen Schét-
zungen mehr als 200 Mio. Neuseelandische
Dollar (ca. 100 Mio. Euro per 1998) [4]. Die
thermische Dimensionierung und Uberwa-
chung von Kabeltrassen bedarf also einer
besonderen Beachtung.

Ein erdverlegtes Kabel ist wahrend seiner
Lebensdauer verschiedenen Gefahren aus-
gesetzt: Erstens kann die Kabelumgebung
austrocknen, wenn das Ruickflllmaterial von
schlechter Qualitat ist. Dadurch verschlech-
tert sich die Warmeleitfahigkeit und das
Kabel erhitzt sich stérker, ohne dass dies
der Betreiber erkennt, wenn er nicht die
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Kabeltemperatur Gberwacht. Aber auch zu-
sétzliche Bauten in der Umgebung sind ein
Risiko fur das Kabel, zum Beispiel bei lokal
hoherer Uberdeckung oder zusétzlichen
Warmequellen. Dies kénnen andere Kabel,
Gas- oder Fernwarmeleitungen sein.

All diese Faktoren flhren zu einer be-
schleunigten Alterung der Kabelisolation
und beanspruchen zusatzlich das Kabelzu-
behor mechanisch. Beides sind langsame,
aber stetige und meist unumkehrbare Pro-
zesse, die letztendlich in lokalen Durch-
schlagen enden. Um zumindest jene Aus-
falle aufgrund von thermischer Uberlastung
Zu vermeiden, ist eine exakte Kenntnis der
thermischen Umgebungsbedingungen von
Vorteil.

Dartiber hinaus stellt die thermische Ka-
belbelastbarkeitsrechnung ein  wichtiges

Hilfsmittel fur die Umsetzung der seit 1999
in der Schweiz geltenden Verordnung Uber
den Schutz nicht ionisierender Strahlung
(NISV) dar. Diese legt Grenzwerte fur die
elektromagnetische Strahlung fest, die beim
thermischen Grenzstrom gelten (auch Be-
messungs- oder Nennstrom genannt).

Verluste im Drahtschirm

Die Verluste in den Metallmanteln von
Kabeln kénnen einen erheblichen Einfluss
auf die Gesamtbelastbarkeit des Kabelsys-
tems haben. Eine Uberarbeitung der bishe-
rigen, konservativen Methode nach IEC
60287 erschien daher Uberfallig, insbeson-
dere da die gangigen Kabelkonstruktionen
mit Drahtschirmen (Bild 1) nicht ausreichend
berUcksichtigt wurden.

Im Jahr 1999 verdffentlichten Dejean,
Zaccone et al. [5] Untersuchungen an EPR-
Kabeln mit einfachem Drahtschirm. Aus den
Experimenten bildeten sie ein analytisches
Modell fir die Berechnung der Schirmver-
luste auf Basis des exakten Schirmaufbaus,
also von Drahtdurchmesser und -anzahl,
Schlaglange, der Dimension der Gegen-
wendel und der Phasenabsténde. Die we-
sentliche Erkenntnis dieser Veroffentlichung
ist, dass der in IEC 60287 beschriebene Al-
gorithmus zu viel zu pessimistischen An-
nahmen bezlglich der Schirmverluste und
damit zur Uberdimensionierung des Kabel-
leiters flhrt.
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Bild 1 Kabelkonstruktionen mit Drahtschirm und Folie (a) und solidem Glattmantel (b).
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Kabelbelastbarkeit

Diese Erkenntnisse wurden von einer Ar-
beitsgruppe des Cigré aufgegriffen und im
Juni 2005 in einem technischen Bericht ver-
offentlicht [6]. Darin wurden die Schirmver-
luste flir Kompositschirme, im Beispiel ein
Aluminium-Schichtmantel, mit der Finite-
Elemente-Methode (FEM) quantifiziert. Die
Arbeitsgruppe kam ebenfalls zum Schluss,
dass die effektiven Drahtschirmverluste
etwa eine Zehnerpotenz kleiner sind als
nach der analytischen IEC-Methode (Ta-
belle ). Die Ergebnisse fanden 2006 Ein-
gang in eine zusétzliche Fussnote in der
neuen Ausgabe der IEC 60287 [7]. Darin
wird explizit erwahnt, dass die Verluste im
Drahtschirm fir bestimmte Kabelkonstrukti-
onen, die lediglich den Drahtschirm und ein
Ausgleichsband oder eine laminierte Folie
enthalten, vernachlassigt werden kénnen.
Ausgenommen davon sind jedoch weiterhin
Kombischirme mit dicken Metallmanteln,
zum Beispiel Bleimanteln, insbesondere
wenn die Drahtdurchmesser aufgrund einer
hohen Kurzschlussstromanforderung eine
signifikante Grésse erreichen.

Kabelkreuzungen

Eine weitere Neuerung trat mit der Erwei-
terung der IEC 60287 um Teil 3-3 [8] in
Kraft. Darin wird eine Methode zur Berech-
nung der Kabelbelastbarkeit von zwei sich
in beliebigem Winkel kreuzenden Kabelsys-
temen beschrieben. Im Gegensatz zur Be-
rechnung einer punktuellen Warmequelle
nach IEC 60287-1-1, bei der die Tempera-
turdifferenz lediglich um die Temperatur der
Warmequelle reduziert wird, kann nach der
neuen Methode der exakte longitudinale
Temperaturverlauf berechnet werden.

Wenn sich zwei in unterschiedlicher Tiefe
verlegte Kabelsysteme kreuzen, wird flr
jedes ein Reduktionsfaktor (engl. Derating
Factor) in Bezug auf die Belastbarkeit

XDRCU-ALT

Kabeltyp XDRCU-ALT

~ 1x800 mm? 220 kV 1x800 mm? 220 kV.
Verlegeart Direkt, flach Direkt, flach
Erdung Einseitig Einseitig
Schirmverluste 2,1 W/m 0,459 W/m
Verlustfaktor A" 0,059 W/m 10,009 W/m
Maximale Dauerstrom- 1074 1315 (+22%)

belastbarkeit bei 90°C

Tabelle | Gegeniberstellung der Verluste.

definiert. Dieser Reduktionsfaktor ist abhén-
gig von den Verlegetiefen Ly und L,, dem
Kreuzungswinkel B, der Beeinflussungszone
und der Strombelastbarkeit im unbeein-
flussten Zustand (Bild 2). Dabei wird unter-
schieden zwischen einer einfachen Kreu-
zung durch ein 3-adriges Kabel oder bei-
spielsweise ein Fernwarmerohr und einer
multiplen Kreuzung, beispielsweise durch
drei 1-adrige Kabel. Ausgehend von der
Kabelbelastbarkeit im unbeeinflussten Zu-
stand wird dann in einem iterativen Verfah-
ren die Temperaturerhdhung des Leiters in-
nerhalb der Beeinflussungszone berechnet
(Bild 3). Dazu wird erst der Reduktionsfaktor
des einen Systems ermittelt und dann mit
diesem reduzierten zuldssigen Strom die
Belastbarkeit des zweiten Kabelsystems
bestimmt. Dieser Vorgang wird so lange
wiederholt, bis sich ein stabiler Zustand zwi-
schen den beiden Systemen ergibt.

Ein Beispiel aus der Praxis: Bei einem
Kraftwerk waren die Leiterquerschnitte der
drei Kraftwerksausleitungen zu bestimmen.
Aufgrund der 6rtlichen Gegebenheiten
musste eine der drei Verbindungen die bei-
den anderen in einem Winkel von 45° bis
90° kreuzen. Aufgrund der grosseren Verle-
getiefe wurde entschieden, beim kreuzen-

Bild 2 Anordnung und axialer Verlauf bei Kabelkreuzungen gemass IEC 60287-3-3.
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den System von Dreieck- auf Flachverle-
gung Uberzugehen. Fir die beiden oberen
Systeme wurde jedoch die Dreiecksverle-
gung beibehalten. Dabei konnte nachge-
wiesen werden, dass beim kreuzenden
System auf eine Querschnittserhdhung ver-
zichtet werden konnte. In Einzelfallen kann
es aber nétig sein, an solchen Stellen zu-
satzliche Luftungsrohre zu installieren. Ent-
sprechende Berechnungsgrundlagen sind
in [9] beschrieben.

Die Praxis ist weiter
als die Norm

Einige in der Praxis bereits genutzte Re-
chenmethoden flir gangige Installationsvari-
anten haben noch keinen Eingang in die IEC
60287 gefunden: Sei dies die Erhdhung der
Stromtragféhigkeit durch forcierte Kihlung
oder Ventilation, Grédben und Rohrblécke
mit aussergewohnlichen Seitenverhaltnis-
sen oder die Verlegung in Kabeltunneln.
Auch Kabelumgebungen aus Materialien
verschiedener Resistivitdt werden in der
Norm noch nicht abgedeckt. Einige dieser
Themen werden zwar von den entspre-
chenden Arbeitsgruppen bearbeitet, Resul-
tate sind jedoch aufgrund der teilweise
komplizierten Sachverhalte nicht in Kiirze zu
erwarten.

Wer dennoch genauere Berechnungen
will, ist auf forschungsnahe Gremien (wie
Cigré) oder Dokumentationen von Praxis-
beispielen angewiesen. Eine Methode, die

0-5-4-3-2-1012345

Bild 3 Typische axiale Leitertemperaturvertei-
lung zweier sich kreuzender Kabel (heisseste
Phase) gemass IEC 60287-3-3.
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Bild 4 Kabelgraben mit aussergewdhnlichen Dimensionen (Seitenverhaltnis Breite/Hohe =7).

immer wieder genutzt wird, ist die Finite-
Elemente-Methode (FEM). Sie wurde fir die
Kabelbelastbarkeitsberechnung bereits um-
gesetzt und in einem technischen Bericht
der IEC veroffentlicht [10]. Mit ihrer Hilfe
kann praktisch jede zweidimensionale Ver-
legung nachgebildet werden.

Aussergewdhnliche Dimensionen

Trotz aller Nachteile fiir den elektrischen
Betrieb kann es aus thermischen Griinden
notwendig sein, bei der Trassenauslegung
sehr grosse Phasenabsténde zu realisieren.
Insbesondere bei Grenzleistungen kann
dies zu grossen Trassenbreiten flhren
(Bild 4). Kommt dann noch das Design
eines thermisch stabilen Rickfllimaterials
fir solch grosse Volumina hinzu, erreicht
man schnell die Grenzen der géngigen Be-
rechnungsmethoden fiir den externen ther-
mischen Widerstand. Nach IEC 60287 sind
die Seitenverhéltnisse flir solche Rickftillge-
biete auf y/x<3 begrenzt, wobei mit x die
kiirzere und mit y die langere Seite bezeich-
net wird. Der Grund fir diese Limitierung
liegt im Formelsystem von Neher und
McGrath [11]. lhre Untersuchungen basie-
ren auf den in den USA wie in der Schweiz
ublichen Rohrbldcken. Hier nehmen sie an,
dass alle vier Seiten des Rohrblocks eine
Isotherme definieren, mit einem Kreis mit
dem Radius x, der die Innenseiten des
Rohrblocks beriihrt, und einen grésseren,
der die vier Ecken umfasst. Daraus leitet
sich ein Ersatzradius 1, ab, der zwischen
diesen beiden Kreisen liegt und urspriing-
lich sogar nur fir Verhaltnisse y/x<2 galt.

Betrachtet man die Seitenverhéltnisse
des Beispiels in Bild 4 (y/x=7), so ist offen-
sichtlich, dass hier die vier Seiten keine Iso-
therme mehr bilden und folglich die bekann-
ten Formeln nicht mehr angewendet werden
darfen (Bild 5). Abhilfe schafft ein IEEE-Arti-
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kel aus dem Jahr 1988 [12], in dem flr be-
stimmte Konfigurationen mit y/x>3 die mo-
difizierten Geometriefaktoren auf Basis der
Finite-Elemente-Methode (FEM) berechnet
wurden. 2007 erschien eine weitere Unter-
suchung zu diesem Thema, die am Beispiel
eines rechteckigen Rohrblocks die Giiltig-
keit sowohl der Neher-McGrath- als auch
der IEC-Formeln Uberpriifte, ebenfalls an-
hand der Finite-Elemente-Methode [13].
Diese wies bei genauer Nachbildung der
Kabelumgebung und Ruickflllung eine um
30% hohere Kabelbelastbarkeit nach.

Inhomogene Kabelumgebung

In der Realitét findet man praktisch nie
Umgebungsbedingungen vor wie jene, auf
denen die Normen IEC 60287 und IEC
60863 [14] basieren. IEC 60287 verlangt
komplett homogene Ruckfillungen mit
einheitlicher thermischer Resistivitat oder al-
ternativ geometrisch klar definierte Ruickftill-
bereiche in homogener Umgebung. Obwohl
die entsprechenden Formeln der Berech-
nung der Kabelbelastbarkeit fiir im Boden

Kabelbelastbarkeit

verlegte Kabel nach IEC 60287 Reserven
beinhaltet, kann es also von Vorteil sein, die
unmittelbare Kabelumgebung thermisch
genauer zu beschreiben, beispielsweise
nach der Finite-Elemente-Methode. So las-
sen sich im FEM-basierten Softwaremodul
Cymcap" beliebige Umgebungsgeometrien
aus rechteckférmigen Bereichen definieren
(Bild 6). In der Praxis kann man so Deck-
schichten an der Oberflache simulieren, bei-
spielsweise Asphalt oder Anordnungen aus
mehreren Rohrblécken mit Ruckflllmaterial
dazwischen.

Das gilt allerdings nicht fur teilweise oder
ganz ausgetrocknete Bereiche. Hierflr be-
halten die entsprechenden Formeln in IEC
60287 weiterhin ihre GUltigkeit.

Forcierte Kuhlung

Zur gezielten Erhohung der Ubertra-
gungsleistung von Kabelsystemen bei
gleichzeitiger Einhaltung der materialspe-
zifischen Temperaturlimiten, insbesondere
der maximalen Leitertemperatur je nach
Isolationsmaterial, werden bereits seit ge-
raumer Zeit zusétzliche Kuhlsysteme ein-
gesetzt. Auf diese Weise konnen die
Grenzleistungen von unterirdischen Kabel-
systemen, Olkabel- genauso wie VPE-Ka-
belsysteme, signifikant verbessert werden,
insbesondere in dicht besiedelten Gebieten,
wo nur stark begrenzte Trassenbreiten zur
Verfugung stehen.

Grundsatzlich wird zwischen drei Kihl-
arten unterschieden: Die interne Kihlung ist
nur bei Olkabeln méglich. Hier wird das
Kihlmittel (Kabel- bzw. Isolierdl) durch einen
Hohlkanal des Leiters gepumpt. Bei der
direkten externen Kihlung wird das Kuhl-
mittel durch die Rohre gepumpt, in die die
Kabel eingelegt sind. Die dritte Variante ist
die indirekte externe Kihlung, wobei das
Kuhimittel durch separate parallel zu den
Kabeln verlegte Kihlrohre gepumpt wird.

Flr die externe Kuhlung eignet sich be-
sonders Wasser, da es gegentiber Kabeldl,

B0 e =B e =6 at A L

Bild 5 Zugehorige Temperaturverteilung zum obigen Beispiel (erstellt mit Cymcap).
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Kabelbelastbarkeit

1 " i =y

Thermisch
stabiles
Ruckflillmaterial

1,8 -1,3 -0,8

=03 0 703 0,8 1,3 1.8

Bild 6 Nachbildung einer realen Verlegeanordnung (erstellt mit Cymcap).

Luft oder Stickstoff eine hohe Warmekapa-
zitat hat und okologisch unbedenklich ist.
Der Bedarf des Kihimittels und die Tempe-
raturverhaltnisse lassen sich leicht abschat-
zen, wenn man annimmt, dass die gesamte
im Kabel erzeugte Verlustleistung unmittel-
bar an ein Kihimedium abgegeben wird
[15]. Detailliertere analytische Methoden zur
Berechnung der Kabelbelastbarkeit bei for-
cierter Kiihlung findet man fir den einge-
schwungenen Zustand in [16] und fur tran-
siente bzw. zyklische Belastung in [17]. Da-
nach lasst sich fir die Warmequellen im
Kabel (also Leiter und ggfs. Schirm) und die
Kuhlelemente das exakte Temperaturprofil
entlang eines Kuhlabschnitts berechnen.
Hierzu werden die thermischen Widerstande
zwischen allen beteiligten Elementen be-
rechnet.

Bei externer indirekter Kiihlung und meh-
reren parallel gefuhrten Kuhlrohren kann
diese Berechnung aufwendig werden, da
die entsprechenden Berechnungsmatrizen
gross sind. Die Grundidee ist aber einfach:
Ausgehend von der Umgebungstemperatur,
wird einerseits die Erwarmung durch die
Leiter, andererseits die Kihlung durch die
Kuhlelemente bertlcksichtigt, jeweils be-
zogen auf einen Kabelabschnitt. Als Lan-
genintervall empfiehlt sich nach [16], auch
zur Uberpriifung der Druckverhltnisse im
KUhlrohr bei langen Trassen, ein Wert von
500 m.

Mit den externen Kihimethoden, die fiir
alle Kabeltypen anwendbar sind, lasst sich
die Kabelbelastbarkeit um 50 bis 100%
erhéhen (Tabelle Il). Gegenlberzustellen ist

1200

- 5000m

dem jedoch der Mehraufwand fur die Kuhl-
anlage und alle dazugehérigen Systeme.
Auch der Bau einer Bypass-L6sung an Muf-
fenorten im Falle der direkten Oberflachen-
kuhlung ist hierbei zu berlicksichtigen.

Kabelkanale

Das thermisch gesehen komplexeste
und auch aus Sicht des Planers am schwie-
rigsten zu umfassende Thema sind Verlege-
arten in luftgekihlten Kanélen und Tunneln
mit eingebauter Ventilation, da hier die Um-
gebungsbedingungen der Kabel entlang
ihrer Lange nicht konstant sind. Im Prinzip
mussen also dreidimensionale Effekte be-
rlcksichtigt werden.

Vom einfachsten Fall, ebenerdig verleg-
ten Kabelkandlen mit thermisch stabiler
Rickfillung, Uber den etwas komplizierte-
ren Fall mit luftgeflillten, ebenerdig verlegten
Kabelkandlen und Kabelkandlen mit voll-
standiger Uberdeckelung bis hin zu sehr
tiefen, speziellen Kabeltunneln trifft man
heute diverse Verlegearten an. Die Kabelbe-
lastbarkeitsberechnung ist flir diese Félle
jedoch teilweise recht komplex und hat bis-
her noch keinen Eingang in die gangigen
Normen gefunden.

Fur ebenerdige rickgefilite Kandle gibt
die Norm |IEC 60287-2-1 lediglich die Emp-
fehlung, mit 2,5 km/W zu rechnen, um auf
der sicheren Seite zu liegen. Kanalwand
und mégliche Uberdeckelung werden nicht
berticksichtigt. Alternativ kénnte man mit
den weiter oben beschriebenen Methoden
zu inhomogenen Kabelumgebungen aus

g Materialien verschiedener Resitivitat rech-
o

nen.

Die einzige in der IEG-Norm beschrie-
bene Methode betrifft ebenerdige, Iuftge-
flllte Kanéle, wie man sie haufig in niedrigen
Spannungsebenen und im Bahnbereich fin-
det. Danach wird mit der im Kanal erzeug-
ten gesamten Verlustleistung flr einen be-
stimmten Strom und mithilfe des thermisch
wirksamen Umfangs des Kanals (also
Boden und Wande, ohne Deckel) eine Tem-
peraturerhéhung definiert. Mit ihr berechnet
man den externen thermischen Widerstand
gemass der Berechnung von Kabeln in freier
Luft nach IEC 60287-2-1 und damit den
Strom. Diese Methode kann aber lediglich
als grobe Abschétzung dienen, da bereits
alle Formen der Warmeabgabe an die Um-
gebung pauschal berticksichtigt sind.

Etwas genauer ist die Methode zur Be-
rechnung von Iuftgefliliten Kabelkanélen
nach [18]. Ihr liegt ein Modell zugrunde, das
vier Formen der Warmeabflihrung beriick-
sichtigt:

- Warmeleitung in radialer Richtung inner-
halb des Kabels,

— Konvektion von der Kabeloberfléache
Uber die Luft an die Kanalwand,

— Strahlung von der Kabeloberflache an
das umgebende Luftvolumen,

- Waérmeleitung durch die Kanalwande an
die Umgebung.

Zieht man das thermische Ersatzschalt-
bild heran, so bilden Konvektion und Strah-
lung Parallelwiderstande und die Warme-
leitung einen Serienwiderstand. Diese
Methode ist jedoch auf rechteckige Quer-
schnitte und Uberdeckelungen bis 30 cm
(empirischer Wert) begrenzt, weshalb sie
nicht geeignet ist fur grosse und tiefer lie-
gende Kabeltunnel.

Grosse Kabeltunnel
mit Ventilation

In den vergangenen 10 Jahren wurden in
einigen européischen Grossstadten soge-
nannte Bulk-Power-Transmissionsysteme
realisiert, die grosse Leistungen in der
Hochstspannungsebene bis in die Lastzen-
tren von Ballungsgebieten Ubertragen
[19, 20]. Oft bieten sich hier als einzige tech-
nische Lésung lange unterirdische Kabeltra-
ssen in speziellen, teilweise sehr tief liegen-

900 A

20°C(hin)  30°C (hin) 1725 A 200%
e 32,5°C (ftick)
20°C (hin) 24/28°C (hin) 1607 A 1025 A 150%
30°C (riick)

Tabelle Il  Effektivitat der verschiedenen Kiihimethoden.
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Bild 7 Tunnel mit FEM-Raster (3-D-Ansicht).

den Kabeltunneln an. Bekannte Beispiele
hierfiir sind die 400-kV-Systeme in Berlin,
London und Madrid. Ahnliche Systeme fin-
det man in Tokio, Singapur, Chicago und
Auckland.

Bei einigen dieser Systeme mussten zur
Steigerung der Ubertragungsgrenzleistung
aufwendige Ventilationssysteme installiert
werden. Die entsprechenden Algorithmen
fir die Bestimmung des Leiterquerschnitts
sind komplex, und der bauliche Aufwand
durch separate Ventilationsgebaude ober-
halb von Vertikalschéchten inklusive intelli-
genter Ventilationssteuerung ist gross, zu-
satzlich zu den bereits hohen Baukosten fiir
den Tunnel.

Erste Untersuchungen zur Strombelast-
barkeit von Kabeltunneln liegen einige Jahr-
zehnte zurlick. Electra Nr. 143 [21] und 144
[22] aus dem Jahr 1992 beschreiben jedoch
zum ersten Mal umfassend die bis dahin
gesammelten Erkenntnisse in einem einheit-
lichen numerischen Formelsystem. Ber(ick-
sichtigt werden hier auch die forcierte
Luftklihlung mit Ventilatoren, grosse Ver-
legetiefen und  zyklische bzw. tran-
siente Belastung der Kabel. Das zugrunde
liegende Modell ist beziiglich der War-
meabgabemechanismen viel detaillierter als
das oben erwéhnte nach [18]. Danach wird
zusétzlich die Konvektion der Kabeloberfla-
che an die umgebende Tunnelluft bertick-
sichtigt, die Konvektion von der umgeben-
den Tunnelluft an die Tunnelwand sowie die
Warmeleitung in Léngsrichtung aufgrund
des nattirlichen Zugwinds oder der Ventila-
tion (Bild 7).

Eine Grundvoraussetzung flr dieses Mo-
dellist jedoch, dass alle Kabel identisch und
gleich belastet sind, also dieselbe Leiter-
temperatur aufweisen. Ausserdem be-
schrénkt sich das Modell auf rein axiale und
radiale Effekte. Pro Abschnitt wird dann die
Temperaturverteilung berechnet anhand der
bekannten Lufteintrittstemperatur und der
Windgeschwindigkeit v. Die Grundlage
dazu bildet das Gleichgewicht aus der sich
linear aufbauenden Wirmeabgabe der
Kabel und der Warmeabfuhr tiber das be-
wegte Luftvolumen an den Tunnelquer-
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schnitt, wobei die Kabelverluste auf Basis
eines angenommenen Stroms berechnet
werden. Am Ende eines jeden Kihlab-
schnitts darf die Kabelleitertemperatur das
Maximum (z.B. 90 °C fUr VPE) nicht Uber-
schreiten. Uber die Anderung des ange-
nommenen Stroms oder der Windge-
schwindigkeit l&sst sich dieses Gleichge-
wicht anpassen und somit die Strombelast-
barkeit ermitteln.

Schlussbemerkung

Nach mehreren Jahren geringer Aktivitat
hat das Thema Kabelbelastbarkeitsrech-
nuhg also wieder an Bedeutung gewonnen.
Die erlauterten Methoden sollen helfen, die
thermisch-physikalischen Vorgénge, denen
ein Kabelsystem im Betrieb ausgesetzt ist,
besser zu verstehen. Fiir den Betreiber von
Kabelanlagen koénnen sie dazu dienen, be-
stehende Anlagen auf ihre Ubertragungs-
fahigkeit zu Uberprifen, um gegebenenfalls
korrigierend  einzugreifen. Andererseits
geben die Methoden dem Planer Hinweise,
wie er Neuanlagen bereits im Planungs-
stadium optimieren kann und gegebenen-
falls Zusatzmassnahmen zur Leistungs-
steigerung auslegen und deren Aufwand
abschatzen kann.

Angesichts veranderter Umweltbed(irf-
nisse, wie sie in vielen Industrienationen zu
beobachten sind, wird man in Zukunft auch
in Ubertragungsnetzen einen immer héhe-
ren Anteil an Kabeln beobachten koénnen.
Um diese zuklnftigen Netzstrukturen mit
der gleichen Versorgungsqualitit betreiben
zu kdnnen, wie man es bisher gewohnt war,
mussen diese Kabelanlagen sorgféltig ge-
plant werden.

Eine ausflihrliche Version dieses Artikels
inklusive detaillierter Berechnungen steht
unter www.technik-forum.ch zum Down-
load bereit [1].
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Calcul de la capacité thermique limite des systémes de céables

Limites du calcul établi, nouveautés a la CEl 60287 et méthodes plus avancées.
Apres plusieurs années sans nouveautés notables, le sujet du calcul des sollicitations
maximales des cables a de nouveau gagné en importance parmi les organismes de
normalisation. A mesure que les capacités de lignes sont de plus en plus sollicitées
tandis que les réseaux sont progressivement cablés, la détermination des capacités
thermiques limites revét un intérét central également pour les exploitants. Larticle
donne un apergu de I'état actuel de la technique de calcul des sollicitations maximales.
Un rapport détaillé peut étre téléchargé sur www.technik-forum.ch.
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