Zeitschrift: bulletin.ch / Electrosuisse

Herausgeber: Electrosuisse

Band: 99 (2008)

Heft: 13

Artikel: Feuchte im Transformator vor Ort bestimmten

Autor: Koch, Maik / Krüger, Michael / Tenbohlen, Stefan

DOI: https://doi.org/10.5169/seals-855864

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Feuchte im Transformator vor Ort bestimmen

Anwendung von dielektrischer Diagnostik und Gleichgewichtsverfahren

Dieser Beitrag diskutiert vor Ort anwendbare Verfahren zur Feuchtebestimmung in Öl-Papier-isolierten Leistungstransformatoren: die dielektrische Diagnostik und die Gleichgewichtsverfahren. Dielektrische Diagnoseverfahren leiten den Wassergehalt der Feststoffisolierung aus Eigenschaften des Dielektrikums wie Polarisationsströmen und Verlustfaktor ab. Gleichgewichtsverfahren schliessen aus der Feuchte im Öl auf die Feuchte im Papier. Mittels wissenschaftlich gesicherter Interpretationsmethoden und unter Berücksichtigung der Alterung erzielen beide Verfahren zuverlässige Ergebnisse.

Leistungstransformatoren sind das teuerste Glied in der Energieübertragungskette vom Generator zum Verbraucher. Der Kostendruck des liberalisierten Energiemarkts lässt die Energieversorger auf kostensparende zustandsabhängige Verfahren

Maik Koch, Michael Krüger, Stefan Tenbohlen

statt auf traditionelle zeitabhängige Instandhaltung setzen. Die neuen Strategien versprechen gegenüber den traditionellen nur dann Vorteile, wenn der wirkliche Zustand des Betriebsmittels sicher ermittelt wurde.

Feuchtigkeit in Öl-Papier-Isolierungen ist ein wesentliches Zustandsmerkmal. Der Wassergehalt der Feststoffisolierung beträgt 0,4–1% für neue Transformatoren und steigt auf 3–4% am Ende der Lebensdauer von etwa 30–50 Jahren. Feuchtigkeit schädigt durch drei Wirkungen: Die Durchschlagsspannung von Öl und Zellulose wird verringert, die Alterung der Zellulose beschleunigt und die Emission von Gasblasen bei hohen Temperaturen verursacht.

Stand der Technik für die Feuchtebestimmung sind immer noch Gleichgewichtsdiagramme, wo der Wassergehalt der Feststoffisolierung aus dem Wassergehalt im Öl abgeleitet wird. Viele Faktoren schränken dieses Verfahren ein, vor allem die Alterung des Öls [1] und die Wassermessung durch Titration [2].

Dies motivierte zur Entwicklung dielektrischer Diagnoseverfahren, die Feuchtigkeit in Papier und Pressboard aus dielektrischen Eigenschaften ableiten [3]. Sie versprechen eine höhere Genauigkeit und sind für die On-Site-Anwendung konzipiert.

Dielektrische Diagnoseverfahren

Dielektrische Diagnoseverfahren leiten die Feuchtigkeit in Öl-Papier-isolierten Transformatoren aus Eigenschaften des Dielektrikums wie Rückkehrspannung, Polarisationsströmen und Verlustfaktor ab. Die früher häufig diskutierten Schwierigkeiten in der Interpretation der Messungen wurden überwunden, heute stellen dielektrische Diagnoseverfahren ein zuverlässiges Mittel zur Wasserbestimmung dar.

Die mehrschichtige Öl-Papier-Isolierung von Leistungstransformatoren besitzt Polarisations- und Leitfähigkeitseffekte. Dielektrische Diagnosemethoden messen die Leitfähigkeit von Zellulose und Öl, überlagert von der Grenzflächenpolarisation an den Übergängen des Öls zur Feststoffisolierung. Die resultierende Stromdichte $J(\omega)$, verursacht durch eine sinusförmige Feldstärke $E(\omega)$ kann man wie folgt ausdrücken [4]:

$$\underline{\underline{J}}(\omega) = j\omega\epsilon_0 \left\{ \underbrace{\epsilon(\infty) + \chi'(\omega)}_{\text{kapazitiver Anteil}} - \underline{j} \left[\underbrace{\frac{\sigma_0}{\epsilon_0 \omega} + \chi''(\omega)}_{\text{Verfuste}} \right] \right\} \underline{\underline{E}}(\omega)$$

Der imaginäre Term der Stromdichte repräsentiert die kapazitive Komponente, verursacht durch den bei höheren Frequenzen wirksamen Teil der Permittivität ϵ und durch die im gemessenen Frequenzbereich variable Suszeptibilität χ^\prime . Der Realteil der Stromdichte wird durch Gleichstromleitfähigkeit σ_0 und Polarisationsverluste $\chi^{\prime\prime}$ hervorgerufen. Die Massenträgheit der Dipole und bewegten Ladungsträger bestimmen diese Polarisationsverluste.

Feuchtigkeit, Temperatur und leitfähige Alterungsprodukte beeinflussen alle diese Effekte. Da allein die Feuchtigkeit bestimmt werden soll, stellt die Unterscheidung der Effekte ein Schlüsselkriterium der dielektrischen Analyse dar.

Beschleunigte Messung

Die Kombination von Zeit- und Frequenzbereichsmessung (Bild 1) verkürzt die Messzeit wesentlich und stellt gleichzeitig eine grosse Datentiefe zur Verfügung. Dielektrische Eigenschaften können im Zeitbereich als Polarisations- und Depolarisationsströme PDC oder im Frequenzbereich als Frequenzbereichsspektroskopie FDS bestimmt werden. Misst man im Zeitbereich, so ist die Messzeit relativ kurz, gleichzeitig aber stehen die Ergebnisse nur für relativ lange Zeiten bzw. niedrige Frequenzen von typischerweise unter 1 Hz zur Verfügung. Im Gegensatz dazu sind Frequenzbereich-

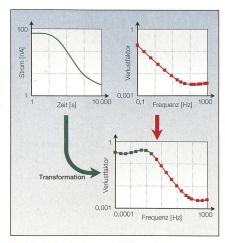


Bild 1 Kombination von Zeit- und Frequenzbereichsmessung.

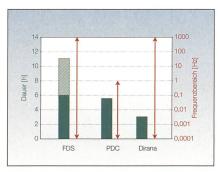


Bild 2 Erforderliche Messzeit und dabei ermittelter Frequenzbereich für PDC, FDS und deren Kombination (Dirana).

messungen bis zu hohen Frequenzen durchführbar, dauern aber bei niedrigen Frequenzen lange.

Es liegt also nahe, die Vorteile beider Verfahren in einem Gerät zu kombinieren: Ein entsprechendes Messgerät arbeitet von 5 kHz bis 0,1 Hz im Frequenzbereich und von 0,1 Hz bis 100 µHz (oder noch geringer) im Zeitbereich. Da die weitere Analyse im Frequenzbereich geschieht, werden die Zeitbereichsdaten automatisch in den Frequenzbereich transformiert. Bild 1 illustriert das patentierte Verfahren [5].

Das neue Verfahren reduziert die Messzeit auf 47% im Vergleich zur reinen Frequenzbereichsmessung. So dauert eine Datenerfassung von 1 kHz bis zu 0,1 mHz für ein typisches Frequenzbereichsmessgerät 6–11 h, während das kombinierte Gerät weniger als 3 h benötigt. Die Polarisations- und Depolarisations-Strommessung benötigt 5,5 h, stellt allerdings nur Daten von 1 bis 10000 s bzw. 1 Hz bis 0,1 mHz zur Verfügung (Bild 2).

Die Dauer der Messung an einem realen Transformator hängt vom Zustand der jeweiligen Isolierung ab. Für eine spätere Feuchteanalyse muss der Zustand der Feststoffisolation sichtbar werden, wie bei Bild 3 erklärt. Trockene oder kalte Isolierungen erfordern eine Messung bis zu niedrigen Frequenzen von z.B. 0,1 Hz, was zu den Messzeiten von Bild 2, rechts, führt.

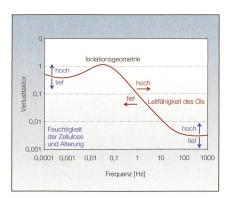


Bild 3 Interpretation des frequenzabhängigen Verlustfaktors einer Öl-Papier-Isolierung.

Betriebswarme oder sehr feuchte Isolierungen können schon bei einem Bereich von 1 kHz bis 0,1 Hz analysiert werden, was in nur wenige Minuten Messzeit resultiert. Für den häufig ausreichenden Bereich von 1 kHz bis 1 mHz benötigt das neue Gerät 25 min. Damit sinken die Kosten für die Ausserbetriebnahme des Transformators.

Auswertung einer dielektrischen Messung

Stellt man den Verlustfaktor über einen breiten Frequenzbereich dar, so bildet sich ein typischer s-förmiger Verlauf (Bild 3). Mit steigender Feuchtigkeit, Temperatur oder leitfähigen Alterungsprodukten verschiebt sich die Kurve nach rechts. Feuchtigkeit und leitfähige Alterungsprodukte spiegelt besonders der nieder- und hochfrequente Bereich wider. Für den mittleren Bereich mit dem steilen Anstieg ist die Ölleitfähigkeit verantwortlich. Der Buckel reflektiert die Grenzflächenpolarisation, also die geometrischen Eigenschaften (Verhältnis Öl zu Zellulose). Zur Analyse des Wassergehalts bei unbekannter Isolationsgeometrie benötigt man 3-5 Frequenzpunkte links vom Buckel.

Die Feuchtebestimmung beruht auf dem Vergleich der am Transformator gemessenen dielektrischen Eigenschaften zu modellierten dielektrischen Eigenschaften. Ein Fitting-Algorithmus variiert die Modelleigenschaften, bis die höchstmögliche Übereinstimmung erzeugt ist, und gibt dann Feuchtgehalt und Ölleitfähigkeit aus. Als Benutzereingabe wird nur die Isolationstemperatur benötigt, alle anderen Parameter werden automatisch berechnet.

Leitfähige Alterungsprodukte

Einige der Alterungsprodukte aus Zellulose und Öl stellen Ladungsträger zur Verfügung. Zum Beispiel dissoziieren in Öl gelöste und in Zellulose abgelagerte Säuren gemeinsam mit Wasser, erhöhen die Gleichstromleitfähigkeit und täuschen so einen noch höheren Wassergehalt vor. Dementsprechend würde ein Analysealgorithmus, der diesen Effekt nicht kompensiert, einen zu hohen Wassergehalt diagnostizieren und damit eventuell eine nicht nötige Trocknung verursachen. Neuartige Softwarelösungen berücksichtigen Alterungsprodukte automatisch durch ein Ausgleichsverfahren, was an weiteren Isolierungen überprüft und so verfeinert wird.

Feuchtemessung durch Gleichgewichtsdiagramme

Nur in seltenen Fällen (Reparatur, Verschrottung) können Papierproben entnom-

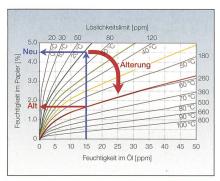


Bild 4 Konventionelles Gleichgewichtsdiagramm mit dem Einfluss der Ölalterung.

men und so der Wassergehalt direkt ermittelt werden. Deshalb versucht man, aus dem Wassergehalt in ppm einer Ölprobe den Wassergehalt in % im Papier oder Pressboard zu ermitteln. Werden dazu Gleichgewichtsdiagramme angewandt (z.B. in [6]), ist aber mit einer Reihe von Unsicherheiten und systematischen Fehlern zu rechnen: Die Probenentnahme verursacht eine nicht einschätzbare Streuung der Ergebnisse. Darüber hinaus ist gerade die Feuchtemessung in trockenem Isolieröl eine messtechnische Herausforderung. Unter 15 ppm ist selbst die Reproduzierbarkeit innerhalb eines Labors schlecht [2]. Zudem gelten die Diagramme nur unter Gleichgewichtsbedingungen, die sich bei Umgebungstemperaturen erst nach langen Zeiträumen einstellen.

Ein weiterer Punkt ist, dass sich die Kurven bei einem geringen Feuchtgehalt sehr stark ändern, was eine genaue Ablesung erschwert. Und die Diagramme unterschiedlicher Literaturguellen führen zu unterschiedlichen Ergebnissen, was wohl auch daran liegt, dass die Diagramme nur für das spezifische Öl und Papier gültig sind, an dem sie erstellt wurden. Besonders die Ölalterung verschiebt die Kurven in Richtung des Öls. Im Gleichgewichtsdiagramm in Bild 4 verschiebt die Alterung des Isolieröls das Gleichgewicht in Richtung x-Achse. Weist nun eine Ölprobe eine Gewichtsfeuchte von 15 ppm bei 25 °C auf, so ermittelt man im Neuzustand eine Papierfeuchte von 4,5%. Bei gealtertem Öl führt dieselbe Ölfeuchte zu einer Papierfeuchte von nur 1,7%. Typischerweise wird also der Wassergehalt weit überschätzt.

Auf Basis der Wassersättigung im Öl

In einer neuen Form von Gleichgewichtsdiagrammen wird die Wassersättigung in Öl in % statt der Gewichtsfeuchte in ppm verwendet. Dadurch entstehen Vorteile: Die Ölalterung hat keinen Einfluss mehr auf das Gleichgewicht. Zwar ändert sich die Sätti-

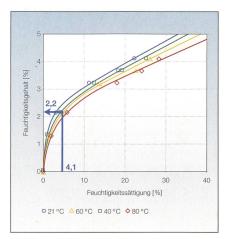


Bild 5 Berechnung des Wassergehalts in gealtertem Papier aus der Wassersättigung des umgebenden Öls.

gungsfeuchte des Öls mit der Alterung, diese Änderung ist aber in der Feuchtigkeit relativ zur Sättigungsfeuchte bereits eingeschlossen.

Zudem werden die Ölprobenentnahme und der Transport zum Labor als wesentliche unwägbare Fehlerquellen ausgeschlossen, und mit der relativen Feuchtigkeit auf der x-Achse verringert sich die Temperaturabhängigkeit des Gleichgewichts. Ausserdem können kapazitive Sensoren, die die Messwerte kontinuierlich zur Verfügung stellen, einfach in Onlinemonitoringsysteme eingebunden werden.

Entsprechend dem thermodynamischen Gleichgewicht genügt es, die relative Ölfeuchte zu messen, die bei Gleichgewicht identisch der relativen Papierfeuchte ist. Nun muss nur noch über ein Gleichgewichtsdiagramm die Gewichtsfeuchte im Papier errechnet werden. Wie beispielhaft in Bild 5 illustriert, führt eine Wassersättigung im Öl von 4,1% bei einer Temperatur

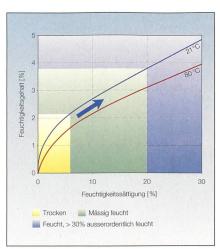


Bild 6 Isotherm zur Umrechnung der Wassersättigung eines Stoffes in dessen Gewichtsfeuchte mit Kategorien entsprechend der IEC 60422.

Bild 7 Transformator in der Werkstatt.

von 45°C zu einem Wassergehalt im Papier von 2,2%.

Bewertung der Ergebnisse

Der ermittelte Feuchtgehalt in der Feststoffisolierung kann mithilfe der IEC 60422 bewertet werden, die Transformatoren entsprechend der Wassersättigung im Öl klassifiziert. Da die Wassersättigung in Öl und Zellulose über lange Zeiträume gleich ist, kann damit die Feststoffisolierung bewertet werden. Zur Umrechnung von Wassersättigung auf Gewichtsfeuchte dient ein Sorptionsisotherm, wie es Bild 6 darstellt.

Eine Wassersättigung von mehr als 6% bezeichnet die Norm als mässig feucht, was einem Wassergehalt von etwa 2,2% entspricht. In diesem Bereich werden Wassermoleküle immer aktiver und tragen zu den zerstörerischen Effekten des Wassers bei, was auch an dem geänderten Anstieg der Isotherme sichtbar wird. Unter Gesichtspunkten des Asset-Managements (z.B. Wichtigkeit und zukünftige Verwendung des Transformators) sollte eine Trocknung des Aktivteils in Betracht gezogen werden.

Praktische Anwendung

An einem stark gealterten Transformator (Bild 7) soll die Anwendung der Messverfahren erläutert und der Einfluss von Alterungsprodukten demonstriert werden. Der Transformator aus dem Jahr 1950 (30 MVA, 104/23,4 kV) war für die Verschrottung bestimmt, also konnten auch Papierproben zur Kontrolle der Genauigkeit der Wasser-

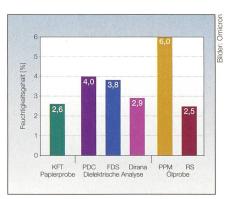


Bild 8 Durch die verschiedenen Methoden ermittelter Wassergehalt in der Feststoffisolierung.

bestimmung entnommen werden. Die Neutralisationszahl von 0,49 mg KOH/g Öl wies bereits auf eine stark fortgeschrittene Ölalterung hin.

Bild 8 vergleicht die Ergebnisse der verschiedenen Messverfahren. Als Referenz dient die direkt in Papierproben gemessene Feuchtigkeit von 2,6% (KFT). Dielektrische Verfahren ermitteln 4,0; 3,8 und 2,9% (PDC; FDS und Dirana). Die unterschiedlichen Ergebnisse werden durch die fehlende Kompensation leitfähiger Alterungsprodukte bei zwei Verfahren verursacht. Eine Analysesoftware mit dieser Kompensation (Dirana) führt zu 2,9% und ist damit mit den entnommenen Papierproben vergleichbar.

Die traditionelle Ölprobenmethode ermittelte wegen der fortgeschrittenen Ölalterung einen deutlich zu hohen Wassergehalt (PPM; 6,0%). Demgegenüber korrespondiert das neuartige Gleichgewichtsdiagramm auf Basis der Wassersättigung (RS;

2,6%) gut mit den entnommenen Papierproben.

Der insgesamt nicht sehr hohe Wassergehalt in der Feststoffisolierung von etwa 2,5%, ein Polymerisationsgrad der Zellulose von 590–720 und ein gleichzeitig sehr schlechter Ölzustand weisen darauf hin, dass dieser Transformator eher ein Problem mit der Ölalterung als mit der Alterung der Feststoffisolierung hatte.

Schlussfolgernd kann gesagt werden, dass sowohl die dielektrischen Verfahren als auch die Ölprobenmethode zuverlässig den Wassergehalt ermitteln, wenn störende Einflussgrössen wie Alterungsprodukte kompensiert werden.

Referenzen

- [1] M. Koch, S. Tenbohlen, T. Stirl: Advanced Online Moisture Measurements in Power Transformers. CMD 2006 International Conference on Condition Monitoring and Diagnosis, Changwon, Korea, 2006.
- [2] M. Koch, S. Tenbohlen, I. Hoehlein and J. Blennow: Reliability and Improvements of Water Titration by the Karl Fischer Technique. Proceedings of the XVth International Symposium on High Voltage Engineering, ISH, Ljubljana, Slovenia. 2007.
- [3] S. M. Gubanski et al.: Dielectric Response Methods for Diagnostics of Power Transformers.

- Cigré Task Force 15.01, Technical Brochure 254, Paris, 2004.
- [4] W. S. Zaengl: Dielectric Spectroscopy in Time and Frequency Domain for HV Power Equipment, Part I: Theoretical Considerations. IEEE Electrical Insulation Magazine, Vol. 19, No. 5 pp. 5–18, September/October 2003.
- [5] H. Borsi, E. Gockenbach, M. Krueger: Method and Device for Measuring a Dielectric Response of an Electrical Insulation System. European Patent EP1729139.
- [6] Y. Du, M. Zahn et al.: A Review of Moisture Equilibrium in Transformer Paper-Oil Systems. IEEE Electrical Insulation Magazine, Vol. 15, No. 1, pp. 11–20, January–February 1999.

Angaben zu den Autoren

Dr.-Ing. Maik Koch promovierte an der Universität Stuttgart über Alterung und Feuchtigkeitsbestimmung von Transformatoren. Er arbeitet als Produktmanager bei der Firma Omicron in Österreich

Omicron GmbH, A-6833 Klaus, maik.koch@omicron.at

Dipl.-Ing. Dr. techn. *Michael Krüger* ist Leiter des Bereichs Engineering Services Primary Testing bei der Omicron Electronics GmbH in Klaus, Österreich. Er ist Mitglied in VDE, Cigré und IEEE und arbeitet in Gremien der Cigré, IEC und ÖVE mit.

Omicron GmbH, A-6833 Klaus, michael.krueger@omicron.at

Prof. Dr.-Ing. Stefan Tenbohlen ist seit 2004 Direktor des Instituts für Energieübertragung und Hochspannungstechnik an der Universität Stuttgart. Seit 2008 ist er Mitglied des Vorstands der Energietechnischen Gesellschaft im VDE. Universität Stuttgart, D-70569 Stuttgart, stefan.tenbohlen@ieh.uni-stuttgart.de

Résumé

Détermination sur place de l'humidité dans le transformateur

Application du diagnostic diélectrique et des procédés d'équilibre. L'article présente des procédés utilisables sur place pour la détermination sur place de l'humidité dans les transformateurs de puissance isolés au papier huilé: le diagnostic diélectrique et les procédés d'équilibre. Les procédés de diagnostic diélectrique déterminent la teneur en eau de l'isolant solide à partir des propriétés du diélectrique telles que les courants de polarisation et le facteur de pertes. Les procédés d'équilibre concluent à l'humidité du papier à partir de l'humidité dans l'huile. Grâce à des méthodes scientifiques d'interprétation et compte tenu du vieillissement, les deux procédés permettent d'obtenir des résultats fiables.

Nur noch OPTIMATIK

Energiedaten erfassen, aufbereiten, bereitstellen, liefern...

Als Netzbetreiber benötigen Sie ab 1. Januar 2009 für die Messdatenbereitstellung zuverlässige Systeme.

Wir bieten die umfassende Lösung – von der mobilen Zählerdatenerfassung, dem Zählerfernauslese-System über das Energiedatenmanagement bis zur Internet-Visualisierung.

MOBILE ZÄHLERDATENERFASSUNG ZÄHLERFERNAUSLESUNG ENERGIEDATENMANAGEMENT

Optimatik AG

Gewerbezentrum Strahlholz CH-9056 Gais T+41 71 791 91 00

F +41 71 791 91 10

Bureau Romandie:

Chemin du Closalet 4

CH-1023 Crissier

T +41 21 637 21 00

F+41 21 637 21 01

info@optimatik.ch

www.optimatik.ch