
Zeitschrift: bulletin.ch / Electrosuisse

Herausgeber: Electrosuisse

Band: 99 (2008)

Heft: 5

Artikel: Praxiseinsatz von Java in eingebetteten Systemen

Autor: Brandt, Peter K.

DOI: https://doi.org/10.5169/seals-855829

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-855829
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Embedded Java

Praxiseinsatz von Java in eingebetteten
Systemen
Java auf Systemen mit eingeschränkten Ressourcen - Chancen
und Herausforderungen

Lange war die Entwicklung von Softwarelösungen für Embed-
ded-Systeme eine Domäne, in der hardwarenahes und
hochspezialisiertes Fachwissen erforderlich waren. Durch den Einsatz
von Java-Technologie ist es unterdessen auch in diesem Umfeld
für Softwareingenieure mit breiterem Hintergrund möglich,
leistungsfähige Anwendungen zu realisieren. Gleichzeitig bietet dieser

Ansatz eine grosse Fülle an modernen Möglichkeiten, die
erst durch die neue Technologie in der Praxis möglich werden.
Der vorliegende Beitrag geht auf diese Chancen, aber auch auf
die damit verbundenen Herausforderungen ein, gibt aktuelle
Beispiele aus dem Markt und liefert Praxiserfahrungen, die Ergon
Informatik in Entwicklungsprojekten mit Embedded Java
gemacht hat.

In der vergangenen Zeit hat der Trend,

Java-Technologie auch in Embedded Devices

einzusetzen, stark an Bedeutung
gewonnen. Einige Ankündigungen und Ver-

Peter K. Brandt

öffentlichungen von Sun Microsystems,
aber auch Hardware-Neuentwicklungen
von europäischen Firmen zeigen deutlich,
dass Java heute auch für den Einsatz auf

sehr kleinen Geräten bereit ist, die vom
Endanwender häufig nicht als eigentliche
Computer wahrgenommen werden (Bild 1).

Wie in diesem Artikel gezeigt wird, eröffnet
diese Tatsache eine grosse Anzahl neuer
Möglichkeiten für den Entwurf, die Umsetzung,

den Einsatz und die Evolution von
Embedded Systems.

Bisherige Technologie
Embedded Systems, also Computersysteme,

die auf einen vorgegebenen
Einsatzzweck massgeschneidert sind, findet
man heute an vielen Orten. Von der
intelligenten Waschmaschine über Klimasteuerungen,

Autos, Kaffeemaschinen und
Roboter bis hin zu Sensornetzwerken: Alle

enthalten kleine Computer, die in das

eigentliche Gerät eingebettet sind und seine

Funktionsweise steuern. Typischerweise
handelt es sich um ein System, das
entworfen ist, um möglichst autonom und aus¬

fallfrei seine Aufgaben zu erledigen. Oft sind
auch zeitkritische Aufgaben Teil des
Anforderungskatalogs.

Mit herkömmlichen Technologien wurde
die Entwicklung von Embedded Devices

bislang sehr maschinennah vorgenommen:
Unter Anwendung spezialisierter
Werkzeuge und spezifischer Entwicklungsumge¬

bungen wird in Sprachen wie C, C++ oder

gar Assembler eine für den Einsatzzweck
des Geräts massgeschneiderte Anwendung

erstellt. Dieses Vorgehen erfordert
vom Entwickler einerseits detaillierte Kenntnisse

über die Programmierung in

eingeschränkten Umgebungen, aber auch ganz
spezifische Fähigkeiten im Umgang mit
dem eingesetzten Betriebssystem, der
verwendeten Hardware (CPU, Speichermanagement,

etc.) und den zu benutzenden

Entwicklungstools. Im Gegenzug ist es
andererseits auf diese Weise möglich, das
resultierende System und seine Ressourcennutzung

bis ins letzte Detail zu optimieren.
Ob dies immer nötig und sinnvoll ist, hängt
sicher vom konkreten Einsatzbereich ab.

Die oben genannten Einschränkungen
und Voraussetzungen bei der Entwicklung
stellen eine grosse Einstiegshürde in

diesem Bereich dar und führen dazu, dass
sich die Entwickler von Embedded Systems
auf Basis traditioneller Technologien ein

ausgeprägtes Spezialwissen aneignen
müssen. Dies selbst im häufigen Fall, in

dem aufgrund unkritischer Projektanforderungen

hardwarenahe Detailkenntnisse gar
nicht erforderlich wären.

Bild 1 SunSpot-Devices: Spontan drahtlos vernetzte und mobile Java-Kleinstcomputer auf hohem
Leistungsniveau.

20 Bulletin SEVA/SE 5/2008

Embedded Java

Optionale Packages

Optionale Packages

Java

Enterprise
Edition

Java
Standard
Edition

Optionale Packages

Personal Profile

IDHBDD i

Basis Profile

Foundation Profile

Java Card

Java EE Java SE Java Micro Edition (Java ME) Java Card

Bild 2 Die Java-Familie - massgeschneiderte Varianten für jede Umgebung.

So resultieren schliesslich beim Einsatz

herkömmlicher Methoden eingebettete
Systeme, die zwar stark auf einen
spezifischen Anwendungsfall hin optimiert sind,
gleichzeitig jedoch abgeschlossene
Komponenten darstellen. Eine dynamische
Erweiterung solcher Systeme um neue
Funktionalität durch Systemintegratoren oder

gar IT-Spezialisten der Endanwender ist

daher kaum anzutreffen. Genau dies könnte

jedoch dem Anwender einen wesentlichen
Nutzen bringen - und die Marktchancen
eines Produkts deutlich erhöhen.

Java massgeschneidert -
von den Ursprüngen bis heute

Java entstand Anfang der 1990er-Jahre
im Rahmen des Green-Projekts bei Sun

Microsystems, das «the next wave in

computing» erkennen und vorbereiten sollte [1].

Zur Zeit der ersten öffentlichen Vorstellung
stand der Fokus vor allem auf interaktiven
Internetinhalten. Doch innert kurzer Zeit war
klar, dass Java weit mehr Potenzial besass
als zur Animation von Webseiten.

Aus der einfachen, aber leistungsfähigen
Programmiersprache entstand eine umfassende

Technologiefamilie, die das volle

Spektrum von Desktopapplikationen zu

Serveranwendungen bis hin zu Software
auf Mobiltelefonen und Chipkarten abzudecken

vermag (Bild 2). Da die verschiedenen
Gebiete stark unterschiedliche Anforderungen

haben, wurde eine Reihe von
Standards geschaffen, die auf den jeweiligen
Einsatzbereich massgeschneidert und

gleichzeitig interoperabel mit den anderen
Gebieten sind: Java SE, die Standard
Edition, fokussiert sich auf Desktopanwendungen;

Java EE, die Enterprise Edition,
definiert leistungsfähige Technologien zum
Einsatz im Serverumfeld; Java ME, die

Micro Edition, beschreibt Varianten der

Java-Technologie für ressourceneingeschränkte

Umgebungen; und Java Card

schliesslich spezifiziert eine Java-kompatible

Umgebung für intelligente Chipkarten.
Java ME, die Java Micro Edition, wurde

lange als Technologie für portable Applikationen

für Mobiltelefone wahrgenommen.
Doch die Ausrichtung liegt grundsätzlich
bei allen Laufzeitumgebungen, für die die

Standard Edition zu grosse Herausforderungen

stellen würde. Angesprochen sind
also neben Mobiltelefonen auch PDAs,
Settopboxen und beliebige Arten von
eingebetteten Systemen, sei es mit oder auch
ohne Benutzerschnittstelle.

Da sich die Zielplattformen gerade im

Bereich der Micro Edition stark voneinander
unterscheiden, wurde eine Unterteilung in

sogenannte Configurations vorgenommen.
Die Connected Device Configuration (CDC)
definiert eine Klasse von leistungsfähigeren
Endgeräten, beispielsweise PDAs oder
Highend-Smartphones. Die Connected
Limited Device Configuration (CLDC)
hingegen zielt ab auf noch eingeschränktere
Endgeräte. Auf beide Configurations baut
eine Reihe von Profiles auf, die zusätzliche
Features definieren, beispielsweise das
Personal Profile (PP) auf CDC oder das
Mobile Information Device Profile (MIDP),
das in Mobiltelefonen über CLDC zum Ein¬

satz kommt. Zudem gibt es eine grosse
Zahl von sogenannten JSRs, die APIs
definieren, die optional unterstützt werden
können.

Durch die Tatsache, dass in allen Tiers
eines verteilten Systems die Java-Technologie

zum Einsatz kommen kann - von

grossen zentralen Servern bis hin zu
Tausenden kleiner und möglicherweise mobiler

Endgeräte am Rand des Netzwerks -
entsteht grosser Nutzen für Systemarchitektur
und -entwicklung: Gemeinsam verwendbare

Systemkomponenten können
miteinander geteilt werden, und früher typische
Schnittstellenprobleme werden verringert.
Gleichzeitig gibt es weniger vermeidbare
Fehler und Missverständnisse, wenn an
allen Stellen dieselbe Technologie (wenn
auch in verschiedenen Ausprägungen)
angewendet wird.

Webtechnologien auch
für Embedded Systems

Was im Desktop- und Serverumfeld seit

Langem üblich ist, kann durch die Java-

Technologien auf einfache Weise nun auch
in eingebetteten Systemen gängige Praxis
werden: der Einsatz von Komponenten-
architekturen und Webtechnologien. Die

Java-Plattform definiert als wesentlichen
technologischen Bestandteil eine virtuelle
Maschine, die sogenannte Java Virtual
Machine (JVM). Diese JVM ist ein virtueller
Rechner für die Ausführung von Programmen,

der bereits als grundlegende Eigenschaft

objektorientierte Programmierung
und dynamisches Laden von
Programmkomponenten unterstützt.

Diese Konzepte können nun verwendet
werden, um leistungsfähige, zur Laufzeit
erweiterbare Frameworks und
Komponentenarchitekturen zu definieren. Diese halten
zurzeit Einzug auf kleinen und kleinsten

Systemen, also im Umfeld der Java Micro
Edition, die auch für Embedded Systems
eingesetzt wird.

Ein prominentes Beispiel ist die OSGi-
Service-Plattform [2], die es erlaubt, zur
Laufzeit dynamisch und kontrolliert
Serviceanwendungen, sogenannte «Bundles»,
einzuspielen, zu aktualisieren und zu entfer-

H Ji 0ÛC3I

K.mnm.MiM ^ ° l!pjjjinpjwni "ôfr iJÎîîjîiîî»îmîîjijîîîî«j?[iiiifii

in
s coco .»* .% " » 1

H Xi, rosa. *305n\Xs fefe 1

Hsô&ttioa •ipa^sAsuii
h§, J Aaj piVKJCaosa'.'#.

M..,.....,.,.»..,,,,,,.,..,..,....;- Vfl-uc ^ X. T N6û5a ' s.
ija 11111111 j 111y (il 111i m 11 s h - oraQ*

Bild 3 Imsys-Java-Microcontroller auf SNAP-Referenzplattform. Der Chip wurde unterdessen weiter
verkleinert.

Bulletin SEV/AES 5/2008 21

Embedded Java

accelerometer analog inputs temperature sensor

light sensor 8 LEDs switches I/O pins

USB Client IEEE 802.15.4 radio

Power

Lithium-ion battery

"E
(U
O

-O

Bild 4 Aufbau der
SunSpot-Devices.

nen, auch aus der Ferne. Grosses Augenmerk

wurde dabei einem robusten Versio-

nierungsmechanismus geschenkt, um die

aus anderen Systemen bekannte und
berüchtigte «DLL-hell» zu vermeiden.

Vorteile von Java
Java als Laufzeitumgebung von Embedded

Systems liefert gleichzeitig eine solide
Basis für verteilte Systeme, da die gängigen
Internettechnologien quasi von Haus aus
unterstützt werden. Ein prominentes
Beispiel dafür ist der Servlet-Container, der
Bestandteil eines gängigen Java-Embed-
ded-Produkts ist. Auf dieser Basis können

Standard-Webapplikationen nun auf
einfache Weise Teil eines Embedded System
werden. Gleichzeitig ist es möglich, die

Menge der deployten Webapplikationen mit

gängigen Mechanismen zu erweitern, bei

Bedarf selbst zur Laufzeit eines Embedded
System im Feld.

Dies wiederum öffnet Tür und Tor für
eine breite Palette von vernetzten und kol-
laborativen Services, die von vielen Embedded

Devices gemeinsam erbracht werden
und die dem Benutzer einen Gesamtnutzen

bringen, der über die Summe der
Einzelfähigkeiten hinausgeht. So können
beispielsweise auf einfache Weise verteilte

Regelungsanwendungen erstellt werden,
deren Verhalten von einer Vielzahl von
Netzwerkknoten mit beeinflusst wird.

Auch für das häufig benötigte Monitoring-

und Konfigurationsinterface im
WebBrowser ist auf diesem Weg die Grundlage
vorhanden. In Kombination mit anderen
heute gängigen Technologien wie Ajax
(siehe unten) werden Benutzerschnittstellen
möglich, die trotz geringer Leistung der
involvierten Embedded Devices eine enorme
Performance und Bedienerfreundlichkeit
aufweisen.

Neben den oben genannten Aspekten
der Unterstützung von leistungsfähigen

Frameworkarchitekturen, dynamischen
Plug-in-Mechanismen und hochgradig
vernetzten Services ist sicher der
Produktivitätsgewinn nicht zu vernachlässigen, der
dadurch entsteht, dass auf allen Systemebenen

die gleiche Technologie zum
Einsatz kommt. Dies resultiert nicht nur in einer
besseren Wiederverwendbarkeit von
Programmcode, sondern auch in geringerem
Aufwand durch einheitliche und bereits
bekannte Entwicklungstools. Zuletzt ist sicher
auch die Verfügbarkeit einer grossen Zahl

von gut ausgebildeten und motivierten
Java-Entwicklern ein Aspekt, der für den
Einsatz von Java-Technologie spricht, statt
hardwarenaher Realisierung in einem Em-

bedded-Projekt.

Risikofaktoren
Bei allen Vorteilen, die die beschriebene

Technologie in der Realisierung von
eingebetteten Systemen verspricht, dürfen die
Risiken nicht ausser Acht gelassen werden.

Aufgrund der dynamischen Natur der Java-

Laufzeitumgebung ist die Möglichkeit,
exakte Vorhersagen über das Laufzeitverhalten

der erstellten Software zu machen,
in der Regel eingeschränkt. Insbesondere
falls Echtzeitanforderungen wichtiger
Bestandteil der System-Requirements sind,
können diese in der Praxis eine Restriktion

darstellen, die anderen Technologien einen
klaren Vorteil gibt.

Auch Anforderungen wie extrem hohe
Performance bei gleichzeitig starkem
Kostendruck können für den Einsatz von
traditionellen Realisierungsvarianten sprechen.
Daher sollten vor Einsätzen der Java-Technologie

unter solchen Voraussetzungen
seriöse Machbarkeitsabklärungen stehen, um
sicherzustellen, dass die vorgesehene
Technologie der Problemstellung gewachsen

ist.

Typische kommerziell erhältliche
Embedded Java Devices

Unterdessen sind auf dem Markt
verschiedene Java-Komponenten für Embedded

Devices verfügbar. Im Folgenden sollen
zwei Beispiele vorgestellt werden, mit
denen wir in den letzten Jahren Erfahrungen

sammeln konnten, der Java-Mikroprozessor

IM1101 der schwedischen Imsys
Technologies [3] sowie die SunSpot
Embedded Devices von Sun Microsystems
[4].

Der IM1101/SNAP führt Java-Applikationen

(Java ME, CLDC) native aus und
beinhaltet neben einer grossen Zahl von externen

Interfaces ein einfaches Betriebssystem,

einen TCP/IP-Stack sowie einen in

Java implementierten Servlet-Container/
Webserver. Letzterer ermöglicht es auf ein-

22 Bulletin SEVA/SE 5/2008

Embedded Java

System
User

HTML+XML / HTTP

Embedded
Device 1

CPU/JVM/OS

Embedded
Device 2

CPU/JVM/OS

Embedded
Device 3

CPU/JVM/OS

Local Components— SC
I/O I/O

J-OçaKJ^^
»

I/O I/O

tara

I/O I/O

Bild 6 Direktzugriff auf Devices im Feld vom Client PC aus.

fache Weise, selbst sehr kleine Embedded
Devices mit einem Webinterfäce basierend
auf Standardtechnologien auszurüsten.

Neben der Möglichkeit, das Device mit
Standard-Java-Tools zu programmieren,
lässt sich der Mikrocode für spezialisierte

Anwendungen und um maximale
Performance zu erreichen, auch um eigene
Funktionen erweitern. Zum raschen Einstieg wird

vom Hersteller ein Entwicklungsboard, die

SNAP-Referenzplattform, angeboten, das
einfachen Zugriff auf die Peripherie ermöglicht

und stand alone eingesetzt werden
kann. Bei Ergon ist der Mikrocontroller für
die Erstellung einer verteilten
Regelungsanwendung für einen Kunden aus dem
industriellen Umfeld im Einsatz (Bild 3).

Die SunSpot-Devices von Sun
Microsystems beinhalten ebenfalls eine Reihe

von Sensoren und Ein-/Ausgabekanälen
wie Temperatursensor, Helligkeitssensor,
Beschleunigungssensor sowie analogen

und digitalen Ein- und Ausgängen. Die

Komponenten sind modular aufgebaut aus
einem Processor-Board, das die eigentliche
CPU, ein USB-Interface sowie ein IEEE-

802.15.4-kompatibles Funkmodul enthält
(Zigbee), sowie optionalen Erweiterungsboards,

von denen das oben genannte
Sensorboard ein Beispiel ist. Über ein
standardisiertes Interface lassen sich andere,
selbst entwickelte Peripherieboards an-
schliessen. Der grundsätzliche Aufbau des
Device ist in Bild 4 dargestellt.

Auf der Basis dieser Devices wurde von
uns anlässlich der Jazoon-Konferenz 2007
eine Anwendung entwickelt, die verschiedene

Fähigkeiten der Hardware nutzt. Mittels

der Beschleunigungssensoren wird die

Lage der Komponenten im Raum ermittelt
und via Funkschnittstelle an eine (ebenfalls
auf SunSpot laufende) Basisstation
übertragen. Diese steuert mit der empfangenen
Information die grafische Darstellung von

Centralized
Server

Embedded j

Device 1

Bild 7 Zugriff auf Devices via Proxy-Server/Protokolladapter. Mischformen mit der Variante Direktzugriff

sind möglich.

Ergonoid, einem Klon eines Spielhallenklassikers

(Bild 5). Zudem wird über die
Funkschnittstelle und die integrierten LED-
Zeilen Feedback an die Benutzer
zurückgegeben. Bei diesem Einsatz wurde
aufgrund der hervorragenden Benutzerinteraktion

deutlich, zu welcher Leistung heutige
Java-basierte Embedded Devices in der
Lage sind.

Projekteinsatz bei Ergon
Neben diesem eher prototypischen

Einsatz wird bei uns, wie oben erwähnt, seit

Längerem Embedded-Java-Technologie im

Projektumfeld eingesetzt. Dort wird mit
verschiedenen Techniken die Interaktion einer

grossen Zahl von Embedded Devices
nutzbringend angewendet. Java hat sich hier

bewährt. Durch den Einsatz gleicher
Technologien auf Server, Embedded Device und
anderen Systemkomponenten wird eine
deutliche Steigerung der Flexibilität erreicht.
So ist es beispielsweise möglich, ein
bestimmtes Protokoll, mit dem auf die Devices

zur Konfiguration und Überwachung
zugegriffen werden soll, direkt auf den
Embedded Devices zu realisieren und von
einem Client darauf zuzugreifen (Bild 6).

Andererseits ist es auch möglich, die

Java-Implementierung in ähnlicher Form

auf einem zentralisierten Server einzusetzen,

der dann über ein devicespezifisches
Protokoll auf die Endgeräte zugreift.
Selbstverständlich sind gemischte Szenarien

denkbar, bei denen der zentralisierte Server

lediglich für simplere Komponenten die

Proxy/Protokollkonverter-Funktion
wahrnimmt und leistungsfähigere Embedded
Devices das Protokoll selbst implementieren

(Bild 7).

Die Variante ohne den zusätzlichen Server

bringt durch den Wegfall der zentralen

Komponente eine erhöhte Ausfallsicherheit
des Gesamtsystems mit sich. Andererseits
hat der Einsatz dieser Zwischenkomponente

den Vorteil, dass an die beteiligten
Devices weniger Anforderungen gestellt
werden müssen und die Flexibilität für
Änderungen am Rand des Systems wächst.
Die im Bild gezeigte Anwendung Web-GUI

zur Konfiguration durch einen Menschen ist

hier nur ein Beispiel, stellvertretend für
beliebige komplexere Protokolle. Ähnliche

Konzepte können auch bei der Implementierung

von Protokollen zur Machine-to-
Machine-Interaktion eingesetzt werden.

Bei der Realisierung von browserbasierten

Benutzerschnittstellen auf den im Feld

verteilten und oft schwer zugänglichen
Devices bewährt sich im vorliegenden Umfeld
der Ajax-Ansatz. Da häufig die Rechenleistung

des Client PC diejenige der Embedded
Devices um ein Vielfaches übersteigt,
macht es Sinn, viele Aufgaben der Web-

Bulletin SEV/AES 5/2008 23

Embedded Java

Client (PC) Embedded Device

HTML+Scrip^ HTTP

XML/HTTP pBj
I/O

-r
l/o

Bild 8 Aufgabenteilung zwischen starkem Desktop-Client und kleinem Server auf Embedded Device.

applikation auf den Client auszulagern. Auf
diese Weise wird der Presentation Layer

praktisch vollständig auf dem Client

ausgeführt, während die zentralen Teile der

Business-Logik auf dem Embedded Device
verbleiben (Bild 8). Daher wird beim ersten

Zugriff des PC-Clients lediglich eine simple
HTML-Seite und eine Menge an Script-
Code zum Browser übertragen, der
anschliessend via XML-Requests mit den

Embedded Devices kommuniziert und für
die effiziente lokale GUI-Interaktion sorgt.
Auf diese Weise hat die Servlet-Kom-

ponente auf dem Embedded Device lediglich

die eigentlichen Nutzdaten in einem

kompakten Format bereitzustellen und auf
diese Weise zur Benutzerinteraktion
beizutragen. Das Benutzererlebnis wird so
stark verbessert.

Erfahrungen
Bei der Arbeit mit Java-basierten

Embedded Systems in verschiedenen Projekten

haben wir eine Reihe von Erfahrungen
gesammelt. Das erste grosse Aha-Erlebnis
tritt bei den beteiligten Entwicklern
typischerweise nach kurzer Zeit mit der Arbeit
mit Embedded Systems auf: Sie fühlen sich
im neuen Umfeld sofort zu Hause und können

mit ihren gewohnten Tools, den
bekannten Konzepten und Methoden unmittelbar

produktiv arbeiten. Beispielsweise ist

es aus eigener Erfahrung auf Basis der
oben erwähnten SunSpot-Devices möglich,
ohne Vorkenntnisse im Embedded-Bereich
innert weniger Stunden eine sinnvolle

Applikation zu erstellen, die Temperatur-, Hel-

ligkeits- und Beschleunigungssensor sowie
die eingebaute Funkschnittstelle nutzt und

dabei sogar zur Erhöhung der Sendereichweite

ein Proxying über andere Mobile/
Embedded-Knoten realisiert.

Dieser leichte Einstieg ist sicherlich der
Tatsache zu verdanken, dass sich die im

Embedded-Umfeld häufig anzutreffende
Variante Java ME sauber in die restliche

Java-Welt einfügt. Dennoch - oder gerade
deswegen - ist es essenziell, dass nicht

vergessen geht, dass es sich bei der
Zielplattform um ein kleines Embedded Device

handelt, das in der Regel wenig Leistung
und Ressourcen anbietet. Selbst wenn
beispielsweise eine Embedded-Plattform auf

Java-ME-Grundlage einen Servlet Container

anbietet, ist dieser von der Leistung her

nicht mit einem Enterprise Servlet Container

vergleichbar, auch wenn aus Implementierungssicht

der Unterschied kaum in

Erscheinung tritt. In dieser Hinsicht ist

vorgängige Erfahrung im Umgang mit anderen

Java-ME-Umgebungen (z.B. Applikationsentwicklung

für Mobiltelefonanwendungen)
sicher von Vorteil, wenn auch nicht zwingend

erforderlich.

Gleichzeitig ist die Bandbreite in der

Leistungsfähigkeit der Endgeräte gross und
schwankt zwischen stark eingeschränkt
und äusserst leistungsfähig. Daher ist es
essenziell, dass vor einer Projektentscheidung

für eine konkrete Plattform
grundsätzliche Abklärungen betreffend benötigter
und angebotener Performances stattfinden.
Auch was die Integration der
Systembestandteile auf den unterschiedlichen
Komponenten (Server, Desktop, Mobile/
Embedded) angeht, wird die einheitliche

Technologie als sehr integrationsfördernd
empfunden. Code-Komponenten können
einfach auf anderen Knoten wieder verwendet

werden, selbst wenn sich diese in der
Leistung um Grössenordnungen unter-

§ scheiden, und Schnittstellen zwischen den

Ï Systemteilen sind sehr natürlich.
32
m

Fazit
Zusammenfassend kann festgestellt

werden, dass die von uns gemachten
Erfahrungen grundsätzlich für den Einsatz

von Java in Embedded Systems sprechen.
Die Technologie hat einen Reifegrad
erlangt, der die Verwendung in produktiven
Systemen erlaubt. Ein wichtiger Schritt
beim Systemdesign ist jedoch die Validierung,

ob alle Voraussetzungen im konkreten

Anwendungsfall gegeben sind. Der potenzielle

Nutzen - gerade aus Sicht der
Softwareentwicklung -, ein Embedded System
auf Grundlage von Java-Technologie zu
erstellen, ist hoch und kann ganz klar
wettbewerbsentscheidend sein.

Referenzen
[1] http://java.sun.eom/features/1998/05/birth

day.html
[2] http://www.osgi.org/
[3] http://www.imsys.se/
[4] http://www.sunspotworld.com/

Angaben zum Autor
Peter K. Brandt ist Senior Software Engineer

und Business Developer bei der Zürcher Firma
Ergon Informatik AG. Nach dem Studium der
Informatik an der ETH Zürich und der TU München war
er als wissenschaftlicher Mitarbeiter am Institut für
Computersysteme der ETH Zürich tätig. Im
Anschluss daran befasste er sich während mehreren
Jahren als Research Engineer bei Swisscom
Innovations mit anwendungsbezogenen Forschungsthemen

im Umfeld von Mobilität und Kommunikation.

Seit 2001 ist Peter K. Brandt Mitarbeiter bei
Ergon und dort für das Gebiet vernetzter mobiler
Anwendungen auf Java-Basis verantwortlich.
Ergon Informatik AG, 8008 Zürich,
peter. brandt@ergon. ch

Die Ergon Informatik AG (www.ergon.ch) wurde
1984 gegründet und beschäftigt heute rund 100
Mitarbeiterinnen und Mitarbeiter. Das Unternehmen

bezeichnet sich als führender unabhängiger
Anbieter von Software-Engineering und ist
spezialisiert auf Design, Entwicklung und Implementierung

von hochstehenden massgeschneiderten
Softwarelösungen auf der Basis offener Systeme.
Als Spezialist im Bereich Java und als Pionier in
der Entwicklung von Mobileapplikationen geniesst
Ergon laut eigenen Angaben weltweites Ansehen.

Résumé

Utilisation pratique de Java dans les systèmes embarqués
Java sur les systèmes à ressources limitées - chances et défis. Le développement

de solutions logicielles pour systèmes embarqués - Embedded Systems - a longtemps
été un domaine exigeant des connaissances hautement spécialisées et touchant au
domaine du matériel. Grâce à la technologie Java, les ingénieurs en logiciel disposant
d'une expérience étendue peuvent maintenant réaliser des applications performantes.
En même temps, cette approche offre une foule de possibilités modernes qui ne sont

possibles en pratique que grâce à la nouvelle technologie. L'article étudie ces chances,
de même que les risques correspondants, et présente des exemples du marché actuel
et des expériences pratiques que la société Ergon Informatik a faites dans des projets
de développement avec Embedded Java.

24 Bulletin SEVA/SE 5/2008

	Praxiseinsatz von Java in eingebetteten Systemen

