Zeitschrift: bulletin.ch / Electrosuisse
Herausgeber: Electrosuisse

Band: 99 (2008)

Heft: 5

Artikel: Praxiseinsatz von Java in eingebetteten Systemen
Autor: Brandt, Peter K.

DOl: https://doi.org/10.5169/seals-855829

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-855829
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

fachbeitrdge

Embedded Java

Praxiseinsatz von Java in eingebetteten

Systemen

Java auf Systemen mit eingeschrankten Ressourcen - Chancen

und Herausforderungen

Lange war die Entwicklung von Softwarelésungen fiir Embed-
ded-Systeme eine Domane, in der hardwarenahes und hochspe-
zialisiertes Fachwissen erforderlich waren. Durch den Einsatz
von Java-Technologie ist es unterdessen auch in diesem Umfeld
fur Softwareingenieure mit breiterem Hintergrund mdglich, leis-
tungsfahige Anwendungen zu realisieren. Gleichzeitig bietet die-
ser Ansatz eine grosse Flille an modernen Mdéglichkeiten, die
erst durch die neue Technologie in der Praxis méglich werden.
Der vorliegende Beitrag geht auf diese Chancen, aber auch auf
die damit verbundenen Herausforderungen ein, gibt aktuelle Bei-
spiele aus dem Markt und liefert Praxiserfahrungen, die Ergon
Informatik in Entwicklungsprojekten mit Embedded Java ge-
macht hat.

In der vergangenen Zeit hat der Trend, fallfrei seine Aufgaben zu erledigen. Oft sind

Java-Technologie auch in Embedded Devi-
ces einzusetzen, stark an Bedeutung ge-
wonnen. Einige Anktndigungen und Ver-

Peter K. Brandt

offentlichungen von Sun Microsystems,
aber auch Hardware-Neuentwicklungen
von europdischen Firmen zeigen deutlich,
dass Java heute auch fUr den Einsatz auf
sehr Kkleinen Geréaten bereit ist, die vom
Endanwender haufig nicht als eigentliche
Computer wahrgenommen werden (Bild 1).
Wie in diesem Artikel gezeigt wird, er6ffnet
diese Tatsache eine grosse Anzahl neuer
Moglichkeiten fir den Entwurf, die Umset-
zung, den Einsatz und die Evolution von
Embedded Systems.

Bisherige Technologie

Embedded Systems, also Computer-
systeme, die auf einen vorgegebenen Ein-
satzzweck massgeschneidert sind, findet
man heute an vielen Orten. Von der intelli-
genten Waschmaschine Uber Klimasteue-
rungen, Autos, Kaffeemaschinen und Ro-
boter bis hin zu Sensornetzwerken: Alle
enthalten kleine Computer, die in das ei-
gentliche Gerét eingebettet sind und seine
Funktionsweise steuern. Typischerweise
handelt es sich um ein System, das ent-
worfen ist, um moglichst autonom und aus-

20

auch zeitkritische Aufgaben Teil des Anfor-
derungskatalogs.

Mit herkdmmlichen Technologien wurde
die Entwicklung von Embedded Devices
bislang sehr maschinennah vorgenommen:
Unter Anwendung spezialisierter Werk-
zeuge und spezifischer Entwicklungsumge-

bungen wird in Sprachen wie C, C++ oder
gar Assembler eine fur den Einsatzzweck
des Gerats massgeschneiderte Anwen-
dung erstellt. Dieses Vorgehen erfordert
vom Entwickler einerseits detaillierte Kennt-
nisse Uber die Programmierung in einge-
schrankten Umgebungen, aber auch ganz
spezifische Fahigkeiten im Umgang mit
dem eingesetzten Betriebssystem, der
verwendeten Hardware (CPU, Speicherma-
nagement, etc.) und den zu benutzenden
Entwicklungstools. Im Gegenzug ist es an-
dererseits auf diese Weise moglich, das re-
sultierende System und seine Ressourcen-
nutzung bis ins letzte Detail zu optimieren.
Ob dies immer nétig und sinnvoll ist, hangt
sicher vom konkreten Einsatzbereich ab.

Die oben genannten Einschrankungen
und Voraussetzungen bei der Entwicklung
stellen eine grosse Einstiegshirde in die-
sem Bereich dar und flhren dazu, dass
sich die Entwickler von Embedded Systems
auf Basis traditioneller Technologien ein
ausgepragtes Spezialwissen aneignen
mussen. Dies selbst im haufigen Fall, in
dem aufgrund unkritischer Projektanforde-
rungen hardwarenahe Detailkenntnisse gar
nicht erforderlich wéren.

microsystems

Bild 1 SunSpot-Devices: Spontan drahtlos vernetzte und mobile Java-Kleinstcomputer auf hohem

Leistungsniveau.

Bulletin SEV/VSE 5/2008

Bild 2 Die Java-Familie - massgeschneiderte Varianten fiir jede Umgebung.

So resultieren schliesslich beim Einsatz
herkdmmlicher Methoden eingebettete
Systeme, die zwar stark auf einen spezi-
fischen Anwendungsfall hin optimiert sind,
gleichzeitig jedoch abgeschlossene Kom-
ponenten darstellen. Eine dynamische Er-
weiterung solcher Systeme um neue Funk-
tionalitat durch Systemintegratoren oder
gar IT-Spezialisten der Endanwender ist
daher kaum anzutreffen. Genau dies kdnnte
jedoch dem Anwender einen wesentlichen
Nutzen bringen — und die Marktchancen
eines Produkts deutlich erhdhen.

Java massgeschneidert -
von den Urspriingen bis heute

Java entstand Anfang der 1990er-Jahre
im Rahmen des Green-Projekts bei Sun
Microsystems, das «the next wave in com-
puting» erkennen und vorbereiten sollte [1].
Zur Zeit der ersten 6ffentlichen Vorstellung
stand der Fokus vor allem auf interaktiven
Internetinhalten. Doch innert kurzer Zeit war
klar, dass Java weit mehr Potenzial besass
als zur Animation von Webseiten.

Aus der einfachen, aber leistungsfahigen
Programmiersprache entstand eine umfas-
sende Technologiefamilie, die das volle
Spektrum von Desktopapplikationen zu
Serveranwendungen bis hin zu Software
auf Mobiltelefonen und Chipkarten abzude-
cken vermag (Bild 2). Da die verschiedenen
Gebiete stark unterschiedliche Anforderun-
gen haben, wurde eine Reihe von Stan-
dards geschaffen, die auf den jeweiligen
Einsatzbereich massgeschneidert und
gleichzeitig interoperabel mit den anderen
Gebieten sind: Java SE, die Standard Edi-
tion, fokussiert sich auf Desktopanwendun-
gen; Java EE, die Enterprise Edition, de-
finiert leistungsfahige Technologien zum
Einsatz im Serverumfeld; Java ME, die
Micro Edition, beschreibt Varianten der

Bulletin SEV/AES 5/2008

Java-Technologie flir ressourceneinge-
schrankte Umgebungen; und Java Card
schliesslich spezifiziert eine Java-kompati-
ble Umgebung fUr intelligente Chipkarten.

Java ME, die Java Micro Edition, wurde
lange als Technologie flir portable Applika-
tionen fur Mobiltelefone wahrgenommen.
Doch die Ausrichtung liegt grundsétzlich
bei allen Laufzeitumgebungen, fir die die
Standard Edition zu grosse Herausforde-
rungen stellen wirde. Angesprochen sind
also neben Mobiltelefonen auch PDAs, Set-
topboxen und beliebige Arten von einge-
betteten Systemen, sei es mit oder auch
ohne Benutzerschnittstelle.

Da sich die Zielplattformen gerade im
Bereich der Micro Edition stark voneinander
unterscheiden, wurde eine Unterteilung in
sogenannte Configurations vorgenommen.
Die Connected Device Configuration (CDC)
definiert eine Klasse von leistungsfahigeren
Endgeraten, beispielsweise PDAs oder
Highend-Smartphones. Die Connected Li-
mited Device Configuration (CLDC) hin-
gegen zielt ab auf noch eingeschréanktere
Endgeréte. Auf beide Configurations baut
eine Reihe von Profiles auf, die zusatzliche
Features definieren, beispielsweise das
Personal Profile (PP) auf CDC oder das
Mobile Information Device Profile (MIDP),
das in Mobiltelefonen tber CLDC zum Ein-

Embedded Java

satz kommt. Zudem gibt es eine grosse
Zahl von sogenannten JSRs, die APIs de-
finieren, die optional unterstitzt werden
koénnen.

Durch die Tatsache, dass in allen Tiers
eines verteilten Systems die Java-Tech-
nologie zum Einsatz kommen kann — von
grossen zentralen Servern bis hin zu Tau-
senden kleiner und méglicherweise mobiler
Endgerate am Rand des Netzwerks — ent-
steht grosser Nutzen fur Systemarchitektur
und -entwicklung: Gemeinsam verwend-
bare Systemkomponenten kénnen mit-
einander geteilt werden, und friher typische
Schnittstellenprobleme werden verringert.
Gleichzeitig gibt es weniger vermeidbare
Fehler und Missverstandnisse, wenn an
allen Stellen dieselbe Technologie (wenn
auch in verschiedenen Auspragungen) an-
gewendet wird.

Webtechnologien auch
fiir Embedded Systems

Was im Desktop- und Serverumfeld seit
Langem ublich ist, kann durch die Java-
Technologien auf einfache Weise nun auch
in eingebetteten Systemen géngige Praxis
werden: der Einsatz von Komponenten-
architekturen und Webtechnologien. Die
Java-Plattform definiert als wesentlichen
technologischen Bestandteil eine virtuelle
Maschine, die sogenannte Java Virtual Ma-
chine (JVM). Diese JVM ist ein virtueller
Rechner fur die Ausfihrung von Program-
men, der bereits als grundlegende Eigen-
schaft objektorientierte Programmierung
und dynamisches Laden von Programm-
komponenten unterstutzt.

Diese Konzepte kénnen nun verwendet
werden, um leistungsfahige, zur Laufzeit
erweiterbare Frameworks und Komponen-
tenarchitekturen zu definieren. Diese halten
zurzeit Einzug auf kleinen und kleinsten
Systemen, also im Umfeld der Java Micro
Edition, die auch fir Embedded Systems
eingesetzt wird.

Ein prominentes Beispiel ist die OSGi-
Service-Plattform [2], die es erlaubt, zur
Laufzeit dynamisch und kontrolliert Service-
anwendungen, sogenannte «Bundles», ein-
zuspielen, zu aktualisieren und zu entfer-

Bild 3 Imsys-Java-Microcontroller auf SNAP-Referenzplattform. Der Chip wurde unterdessen weiter

verkleinert.

21

articles spécialisés

fachbeitrdage

Embedded Java

Bild 4 Aufbau der
SunSpot-Devices.

nen, auch aus der Ferne. Grosses Augen-
merk wurde dabei einem robusten Versio-
nierungsmechanismus geschenkt, um die
aus anderen Systemen bekannte und be-
rchtigte «DLL-hell» zu vermeiden.

Vorteile von Java

Java als Laufzeitumgebung von Embed-
ded Systems liefert gleichzeitig eine solide
Basis fur verteilte Systeme, da die gangigen
Internettechnologien quasi von Haus aus
unterstltzt werden. Ein prominentes Bei-
spiel daflr ist der Servlet-Container, der

Bestandteil eines géngigen Java-Embed-

ded-Produkts ist. Auf dieser Basis konnen
Standard-Webapplikationen nun auf ein-
fache Weise Teil eines Embedded System
werden. Gleichzeitig ist es mdglich, die
Menge der deployten Webapplikationen mit
gangigen Mechanismen zu erweitern, bei
Bedarf selbst zur Laufzeit eines Embedded
System im Feld.

wireless
ad-hoc
network

Java enabled
Sun SPOT devices
with
acceleration sensors

Dies wiederum 6ffnet Tdr und Tor fur
eine breite Palette von vernetzten und kol-
laborativen Services, die von vielen Embed-
ded Devices gemeinsam erbracht werden
und die dem Benutzer einen Gesamtnutzen
bringen, der Uber die Summe der Einzel-
fahigkeiten hinausgeht. So kdnnen bei-
spielsweise auf einfache Weise verteilte Re-
gelungsanwendungen erstellt werden,
deren Verhalten von einer Vielzahl von Netz-
werkknoten mit beeinflusst wird.

Auch flr das haufig benotigte Monito-
ring- und Konfigurationsinterface im Web-
Browser ist auf diesem Weg die Grundlage
vorhanden. In Kombination mit anderen
heute géngigen Technologien wie Ajax
(siehe unten) werden Benutzerschnittstellen
moglich, die trotz geringer Leistung der in-
volvierten Embedded Devices eine enorme
Performance und Bedienerfreundlichkeit
aufweisen.

Neben den oben genannten Aspekten
der Unterstltzung von leistungsfahigen

Screen

Bild 5 Zusammenspiel der Devices im Ergonoid-System.

22

Frameworkarchitekturen, dynamischen
Plug-in-Mechanismen und hochgradig ver-
netzten Services ist sicher der Produktivi-
tatsgewinn nicht zu vernachlassigen, der
dadurch entsteht, dass auf allen System-
ebenen die gleiche Technologie zum Ein-
satz kommt. Dies resultiert nicht nur in einer
besseren Wiederverwendbarkeit von Pro-
grammcode, sondern auch in geringerem
Aufwand durch einheitliche und bereits be-
kannte Entwicklungstools. Zuletzt ist sicher
auch die Verfugbarkeit einer grossen Zahl
von gut ausgebildeten und motivierten
Java-Entwicklern ein Aspekt, der flr den
Einsatz von Java-Technologie spricht, statt
hardwarenaher Realisierung in einem Em-
bedded-Projekt.

Risikofaktoren

Bei allen Vorteilen, die die beschriebene
Technologie in der Realisierung von einge-
petteten Systemen verspricht, durfen die
Risiken nicht ausser Acht gelassen werden.
Aufgrund der dynamischen Natur der Java-
Laufzeitumgebung ist die Mdoglichkeit,
exakte Vorhersagen Uber das Laufzeitver-
halten der erstellten Software zu machen,
in der Regel eingeschrankt. Insbesondere
falls Echtzeitanforderungen wichtiger Be-
standteil der System-Requirements sind,
kénnen diese in der Praxis eine Restriktion
darstellen, die anderen Technologien einen
klaren Vorteil gibt.

Auch Anforderungen wie extrem hohe
Performance bei gleichzeitig starkem Kos-
tendruck kénnen fUr den Einsatz von tradi-
tionellen Realisierungsvarianten sprechen.
Daher sollten vor Einsétzen der Java-Tech-
nologie unter solchen Voraussetzungen se-
riose Machbarkeitsabklarungen stehen, um
sicherzustellen, dass die vorgesehene
Technologie der Problemstellung gewach-
sen ist.

Typische kommerziell erhaltliche
Embedded Java Devices

Unterdessen sind auf dem Markt ver-
schiedene Java-Komponenten fir Embed-
ded Devices verfligbar. Im Folgenden sollen
zwei Beispiele vorgestellt werden, mit
denen wir in den letzten Jahren Erfahrun-
gen sammeln konnten, der Java-Mikropro-
zessor IM1101 der schwedischen Imsys
Technologies [3] sowie die SunSpot Em-
bedded Devices von Sun Microsystems
[4].

Der IM1101/SNAP flihrt Java-Applikatio-
nen (Java ME, CLDC) native aus und bein-
haltet neben einer grossen Zahl von exter-
nen Interfaces ein einfaches Betriebssys-
tem, einen TCP/IP-Stack sowie einen in
Java implementierten Servlet-Container/
Webserver. Letzterer ermdglicht es auf ein-

Bulletin SEV/VSE 5/2008

HTML+XML [HTTP.

Bild 6 Direktzugriff auf Devices im Feld vom Client PC aus.

fache Weise, selbst sehr kleine Embedded
Devices mit einem Webinterface basierend
auf Standardtechnologien auszurUsten.

Neben der Moglichkeit, das Device mit
Standard-Java-Tools zu programmieren,
lasst sich der Mikrocode fUr spezialisierte
Anwendungen und um maximale Perfor-
mance zu erreichen, auch um eigene Funk-
tionen erweitern. Zum raschen Einstieg wird
vom Hersteller ein Entwicklungsboard, die
SNAP-Referenzplattform, angeboten, das
einfachen Zugriff auf die Peripherie ermog-
licht und stand alone eingesetzt werden
kann. Bei Ergon ist der Mikrocontroller fur
die Erstellung einer verteilten Regelungs-
anwendung fUr einen Kunden aus dem in-
dustriellen Umfeld im Einsatz (Bild 3).

Die SunSpot-Devices von Sun Micro-
systems beinhalten ebenfalls eine Reihe
von Sensoren und Ein-/Ausgabekanélen
wie Temperatursensor, Helligkeitssensor,
Beschleunigungssensor sowie analogen

HTML+XML [HTTP

und digitalen Ein- und Ausgéangen. Die
Komponenten sind modular aufgebaut aus
einem Processor-Board, das die eigentliche
CPU, ein USB-Interface sowie ein IEEE-
802.15.4-kompatibles Funkmodul enthalt
(Zigbee), sowie optionalen Erweiterungs-
boards, von denen das oben genannte
Sensorboard ein Beispiel ist. Uber ein stan-
dardisiertes Interface lassen sich andere,
selbst entwickelte Peripherieboards an-
schliessen. Der grundsétzliche Aufoau des
Device ist in Bild 4 dargestellt.

Auf der Basis dieser Devices wurde von
uns anlasslich der Jazoon-Konferenz 2007
eine Anwendung entwickelt, die verschie-
dene Fahigkeiten der Hardware nutzt. Mit-
tels der Beschleunigungssensoren wird die
Lage der Komponenten im Raum ermittelt
und via Funkschnittstelle an eine (ebenfalls
auf SunSpot laufende) Basisstation Uber-
tragen. Diese steuert mit der empfangenen
Information die grafische Darstellung von

Local Components

Bild 7 Zugriff auf Devices via Proxy-Server/Protokolladapter. Mischformen mit der Variante Direkt-

zugriff sind moglich.

Bulletin SEV/AES 5/2008

Embedded Java

Ergonoid, einem Klon eines Spielhallen-
klassikers (Bild 5). Zudem wird Uber die
Funkschnittstelle und die integrierten LED-
Zeilen Feedback an die Benutzer zurlck-
gegeben. Bei diesem Einsatz wurde auf-
grund der hervorragenden Benutzerinter-
aktion deutlich, zu welcher Leistung heutige
Java-basierte Embedded Devices in der
Lage sind.

Projekteinsatz bei Ergon

Neben diesem eher prototypischen Ein-
satz wird bei uns, wie oben erwahnt, seit
Langerem Embedded-Java-Technologie im
Projektumfeld eingesetzt. Dort wird mit ver-
schiedenen Techniken die Interaktion einer
grossen Zahl von Embedded Devices nutz-
bringend angewendet. Java hat sich hier
bewahrt. Durch den Einsatz gleicher Tech-
nologien auf Server, Embedded Device und
anderen Systemkomponenten wird eine
deutliche Steigerung der Flexibilitat erreicht.
So ist es beispielsweise moglich, ein be-
stimmtes Protokoll, mit dem auf die Devices
zur Konfiguration und Uberwachung zu-
gegriffen werden soll, direkt auf den Em-
bedded Devices zu realisieren und von
einem Client darauf zuzugreifen (Bild 6).

Andererseits ist es auch mdglich, die
Java-Implementierung in ahnlicher Form
auf einem zentralisierten Server einzuset-
zen, der dann Uber ein devicespezifisches
Protokoll auf die Endgeréte zugreift. Selbst-
verstandlich sind gemischte Szenarien
denkbar, bei denen der zentralisierte Server
lediglich fur simplere Komponenten die
Proxy/Protokollkonverter-Funktion wahr-
nimmt und leistungsfahigere Embedded
Devices das Protokoll selbst implementie-
ren (Bild 7).

Die Variante ohne den zusatzlichen Ser-
ver bringt durch den Wegfall der zentralen
Komponente eine erhdhte Ausfallsicherheit
des Gesamtsystems mit sich. Andererseits
hat der Einsatz dieser Zwischenkom-
ponente den Vorteil, dass an die beteiligten
Devices weniger Anforderungen gestellt
werden mussen und die Flexibilitat fir An-
derungen am Rand des Systems wéchst.
Die im Bild gezeigte Anwendung Web-GUI
zur Konfiguration durch einen Menschen ist
hier nur ein Beispiel, stellvertretend fUr be-
liebige komplexere Protokolle. Ahnliche
Konzepte kénnen auch bei der Implemen-
tierung von Protokollen zur Machine-to-
Machine-Interaktion eingesetzt werden.

Bei der Realisierung von browserbasier-
ten Benutzerschnittstellen auf den im Feld
verteilten und oft schwer zugénglichen De-
vices bewahrt sich im vorliegenden Umfeld
der Ajax-Ansatz. Da haufig die Rechenleis-
tung des Client PC diejenige der Embedded
Devices um ein Vielfaches Ubersteigt,
macht es Sinn, viele Aufgaben der Web-

23

és

lis

écia

z

articles s

fachbeitrdge

Embedded Java

oo HTMLScipt HTTP

5
apuBERRD

XMLJ HTTP
M

Bild 8 Aufgabenteilung zwischen starkem Desktop-Client und kleinem Server auf Embedded Device.

applikation auf den Client auszulagern. Auf
diese Weise wird der Presentation Layer
praktisch vollstandig auf dem Client aus-
geflhrt, wahrend die zentralen Teile der
Business-Logik auf dem Embedded Device
verbleiben (Bild 8). Daher wird beim ersten
Zugriff des PC-Clients lediglich eine simple
HTML-Seite und eine Menge an Script-
Code zum Browser Ubertragen, der an-
schliessend via XML-Requests mit den
Embedded Devices kommuniziert und fiir
die effiziente lokale GUI-Interaktion sorgt.
Auf diese Weise hat die Servlet-Kom-
ponente auf dem Embedded Device ledig-
lich die eigentlichen Nutzdaten in einem
kompakten Format bereitzustellen und auf
diese Weise zur Benutzerinteraktion bei-
zutragen. Das Benutzererlebnis wird so
stark verbessert.

Erfahrungen

Bei der Arbeit mit Java-basierten Em-
bedded Systems in verschiedenen Projek-
ten haben wir eine Reihe von Erfahrungen
gesammelt. Das erste grosse Aha-Erlebnis
tritt bei den beteiligten Entwicklern typi-
scherweise nach kurzer Zeit mit der Arbeit
mit Embedded Systems auf: Sie fuhlen sich
im neuen Umfeld sofort zu Hause und kon-
nen mit ihren gewohnten Tools, den be-
kannten Konzepten und Methoden unmit-
telbar produktiv arbeiten. Beispielsweise ist
es aus eigener Erfahrung auf Basis der
oben erwahnten SunSpot-Devices moglich,
ohne Vorkenntnisse im Embedded-Bereich
innert weniger Stunden eine sinnvolle Ap-
plikation zu erstellen, die Temperatur-, Hel-
ligkeits- und Beschleunigungssensor sowie
die eingebaute Funkschnittstelle nutzt und
dabei sogar zur Erhdhung der Sendereich-
weite ein Proxying Uber andere Mobile/
Embedded-Knoten realisiert.

Dieser leichte Einstieg ist sicherlich der
Tatsache zu verdanken, dass sich die im
Embedded-Umfeld haufig anzutreffende
Variante Java ME sauber in die restliche
Java-Welt einfigt. Dennoch — oder gerade
deswegen — ist es essenziell, dass nicht

24

vergessen geht, dass es sich bei der Ziel-
plattform um ein kleines Embedded Device
handelt, das in der Regel wenig Leistung
und Ressourcen anbietet. Selbst wenn bei-
spielsweise eine Embedded-Plattform auf
Java-ME-Grundlage einen Servlet Contai-
ner anbietet, ist dieser von der Leistung her
nicht mit einem Enterprise Serviet Container
vergleichbar, auch wenn aus Implementie-
rungssicht der Unterschied kaum in Er-
scheinung tritt. In dieser Hinsicht ist vor-
géngige Erfahrung im Umgang mit anderen
Java-ME-Umgebungen (z.B. Applikations-
entwicklung fur Mobiltelefonanwendungen)
sicher von Vorteil, wenn auch nicht zwin-
gend erforderlich.

Gleichzeitig ist die Bandbreite in der
Leistungsfahigkeit der Endgeréate gross und
schwankt zwischen stark eingeschrankt
und &usserst leistungsféhig. Daher ist es
essenziell, dass vor einer Projektentschei-
dung flr eine konkrete Plattform grund-
séatzliche Abklarungen betreffend bendtigter
und angebotener Performances stattfinden.
Auch was die Integration der System-
bestandteile auf den unterschiedlichen
Komponenten (Server, Desktop, Mobile/
Embedded) angeht, wird die einheitliche
Technologie als sehr integrationsfordernd
empfunden. Code-Komponenten kénnen
einfach auf anderen Knoten wieder verwen-
det werden, selbst wenn sich diese in der
Leistung um Grdssenordnungen unter-

Résumé

Bilder: él:gon

scheiden, und Schnittstellen zwischen den
Systemteilen sind sehr naturlich.

Fazit

Zusammenfassend kann festgestellt
werden, dass die von uns gemachten Er-
fahrungen grundsatzlich fir den Einsatz
von Java in Embedded Systems sprechen.
Die Technologie hat einen Reifegrad er-
langt, der die Verwendung in produktiven
Systemen erlaubt. Ein wichtiger Schritt
beim Systemdesign ist jedoch die Validie-
rung, ob alle Voraussetzungen im konkreten
Anwendungsfall gegeben sind. Der poten-
zielle Nutzen — gerade aus Sicht der Soft-
wareentwicklung —, ein Embedded System
auf Grundlage von Java-Technologie zu er-
stellen, ist hoch und kann ganz klar wett-
bewerbsentscheidend sein.

Referenzen

[1] http://java.sun.com/features/1998/05/birth
day.html

[2] http://www.osgi.org/

[3] http://www.imsys.se/

[4] http://www.sunspotworld.com/

Angaben zum Autor

Peter K. Brandt ist Senior Software Engineer
und Business Developer bei der Ziircher Firma
Ergon Informatik AG. Nach dem Studium der Infor-
matik an der ETH Zirich und der TU Miinchen war
er als wissenschaftlicher Mitarbeiter am Institut fir
Computersysteme der ETH Zirich tatig. Im An-
schluss daran befasste er sich wahrend mehreren
Jahren als Research Engineer bei Swisscom Inno-
vations mit anwendungsbezogenen Forschungs-
themen im Umfeld von Mobilitdt und Kommunika-
tion. Seit 2001 ist Peter K. Brandt Mitarbeiter bei
Ergon und dort fiir das Gebiet vernetzter mobiler
Anwendungen auf Java-Basis verantwortlich.
Ergon Informatik AG, 8008 Ziirich,
peter.brandt@ergon.ch

Die Ergon Informatik AG (www.ergon.ch) wurde
1984 gegriindet und beschéftigt heute rund 100
Mitarbeiterinnen und Mitarbeiter. Das Unterneh-
men bezeichnet sich als flihrender unabhangiger
Anbieter von Software-Engineering und ist spe-
zialisiert auf Design, Entwicklung und Implemen-
tierung von hochstehenden massgeschneiderten
Softwarelosungen auf der Basis offener Systeme.
Als Spezialist im Bereich Java und als Pionier in
der Entwicklung von Mobileapplikationen geniesst
Ergon laut eigenen Angaben weltweites Ansehen.

Utilisation pratique de Java dans les systéemes embarqués

Java sur les systémes a ressources limitées — chances et défis. Le développement
de solutions logicielles pour systémes embarqués — Embedded Systems — a longtemps
été un domaine exigeant des connaissances hautement spécialisées et touchant au
domaine du matériel. Grace a la technologie Java, les ingénieurs en logiciel disposant
d’une expérience étendue peuvent maintenant réaliser des applications performantes.
En méme temps, cette approche offre une foule de possibilités modernes qui ne sont
possibles en pratique que grace a la nouvelle technologie. L'article étudie ces chances,
de méme que les risques correspondants, et présente des exemples du marché actuel
et des expériences pratiques que la société Ergon Informatik a faites dans des projets

de développement avec Embedded Java.

Bulletin SEV/VSE 5/2008

	Praxiseinsatz von Java in eingebetteten Systemen

