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Windenergie

Bemessung der Landkabel fiir die
Netzanbindung von Windfarmen

Ein die Windstatistik einbeziehendes Rechenmodell ermdglicht
Belastbarkeitssteigerungen von bis zu 35%

Die Leistungsabfiihrung grosser Offshore-Windparks zum Netz-
anbindungspunkt erfolgt an Land mit erdverlegten Kabeln, die
ihre Verlustwarme an das umgebende Erdreich abflihren mus-
sen. Standard-Berechnungsverfahren ermitteln stark geminderte
Kabelbelastbarkeiten unter der Annahme von Dauerlast und
einer partiellen Bodenaustrocknung. Im vorliegenden Beitrag
wird ein Rechenverfahren aufgezeigt, welches das statistische
Zeitverhalten der Leistungserzeugung grosser Windfarmen bei
der Auslegung dieser Erdkabel berticksichtigt. So fuhrt die sich
aus der Windstatistik [1, 2] ergebende, begrenzte Dauer der an-
stehenden Hochstlast von beispielsweise drei aufeinander fol-
genden Tagen zu erheblichen Steigerungen der Erdkabelbelast-
barkeit, ohne dass eine partielle Austrocknung des Kabelgrabens

beflrchtet werden muss.

Bei der Dimensionierung der Landka-
bel zur Abfithrung der Windparkleistung,
die durchaus oft tiber Lingen von eini-
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gen 10 km gefiihrt werden miissen, treten
neue Gesichtspunkte hinzu: gegeniiber
einer im Bereich des offenen Meeres und
des Wattenmeers niherungsweise einheit-
lichen Wirmeleitfahigkeit des Bodens
ist hier das Problem einer moglichen
partiellen Austrocknung des Kabelgra-
bens zu beachten, die zu erheblichen
Einschriinkungen der Kabelbelastbarkeit
fithren kann.

Ein Standard-Berechnungsverfahren
empfiehlt IEC [3] mit dem Zweischichten-
modell [4-6]. Im Folgenden wird ein Be-
rechnungsverfahren vorgestellt und auf
eine Anordnung nach Bild 1 angewendet,
das auf dieser Basis die besonderen Ge-
gebenheiten einer von der Windstatistik
abhingigen Kabelbelastung berticksich-
tigt.

Kabelbelastbarkeit bei Bertick-
sichtigung der Windstatistik

Der Ansatz einer dauernd anstehen-
den Hochstlast fiir die Kabelauslegung
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ist unrealistisch, da die zeitlichen Mit-
telwerte der Windparkleistung und damit
auch der Verluste im Kabel weit niedriger
als die entsprechenden Hochstwerte sind
[7]. Zur Ermittlung des Zeitmittelwertes
der Kabelverluste kann man zunichst der
Windgeschwindigkeit eine statistische
Hiufigkeit z.B. in Form einer Rayleigh-
Verteilung (als Spezialfall der Weibull-
Verteilung [8]) zuordnen:

A%
11(V)=§-L-e A (1)

v

mit v als mittlerer Windgeschwindigkeit
in Nabenhohe und mit einer mittleren
Windparkleistung Pyp (Erwartungswert)

Pron = Jh(v)«PW(v)'dv

@
0

Daraus konnen die Faktoren g¢p=
Pywp / Pyp und g1 = /1 definiert werden.
Fiir HGU-Kabel ist eine quadratische
Abhingigkeit vom Leiterstrom [ gege-
ben:

2
Lz_’;_“& und El—z(L] 3)
I By B\
In diesem Falle gilt ¢; = gp.

P’: Kabelverlustbelag

Bei Drehstromkabeln muss nicht nur
die Abhéngigkeit des mit der Windpark-
leistung schwankenden Wirkstromes,
sondern auch der Ladestrom des Kabels
beriicksichtigt werden, der auch bei Leer-
laufbetrieb (Pwp =~ 0) von beiden Seiten in
das Kabel eingespeist wird. Damit wird
der Laststrom des Kabels ortsabhingig.
Bei beidseitiger Kompensation des Ka-
bels wird die Auslegung sinnvollerweise
fiir das Kabelende mit dem hochsten La-
destrom ausgelegt. Wird das Verhiltnis
dieses Ladestromes I, zum Ho6chstwert
des vom Windpark gelieferten Wirk-
stromes zu ¢ = Iy / Iyp definiert, so wird
der Hochstwert des Laststromes [ = iwp
. (1 &+ 02)1/2_

Der zeitliche Mittelwert (Erwartungs-
wert) des Kabelverlustbelags lédsst sich
schliesslich gemiss Formel 4 bestimmen.

Universitat Duisburg-Essen

Nexans

Bild 1 Untersuchte Anordnung (links) und Aufbau des 150-kV-Kabels
1: Leiter; 2: Leiterglattung; 3: Isolierung; 4: Abschirmung; 5: leitfahiges Krepppapier; 6: Kupferdrahtschirm;

7: Al-Schichtenmantel; 8: Korrosionsschutz
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Bild 2 Einfluss der
mittleren Windge-
schwindi?keit auf die
Zeitmittelwerte der
Windparkleistung Pyp

Kabelstrom / und Ver-
lustbelag P eines Kabel-
systems fiir eine kurze
Kabellange mit fy ~ 0

Universitat Duisburg-Essen

P = Il:(v)-P'l(v)-dv @)
0

In Bild 2 sind fiir drei mittlere Windge-
schwindigkeiten die mittlere Windpark-
leistung, der auf den Hochstwert bezo-
gene mittlere Ubertragungsstrom eines
verhéltnismissig kurzen Kabels (/) << 1))
sowie der relative Zeitmittelwert des
Kabelverlustbelages zusammengestellt.
Demnach ergibt sich fiir eine mittlere
Windgeschwindigkeit von 10 m/s ein be-
zogener Strommittelwert von 52,5% und
ein bezogener mittlerer Verlustbelag des
Kabels von 27,6%.

Die mittlere Erwdrmung des Kabels
ergibt sich aus diesem erheblich verrin-
gerten Verlustbelag P). Sie wird damit
weitaus geringer liegen als unter der Vor-
aussetzung einer Dauerlast.

Mit zunehmendem Ladestrom steigt
der Strommittelwert an. Tabelle I zeigt
dies fiir eine mittlere Windgeschwindig-
keit von v =10 m/s. Eine spiirbare Ab-

.
0,525

10 0,53

20 0,56 31,1
30 0,6 36,0
50 0,725 52,6

Tabelle | Einfluss des Ladestromes auf den zeit-
lichen Mittelwert des Laststromes und der Verluste

Filr =10 ms, o = Pyp / Pyp = 0,525
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weichung des Strommittelwerts vom
Leistungsmittelwert ist allerdings erst fiir
Ladestrome zu erwarten, die etwa 25%
oder mehr des hochsten vom Windpark
gelieferten Wirkstroms betragen.

Transiente Kabelerwirmung

Nach Auswertung mehrjahriger Wind-
daten aus der Nord- und Ostsee [7] ist
die grosste Anzahl aufeinander folgender
Tage mit ununterbrochener Volllast des
Windparks (d.h. mit Windgeschwin-
digkeiten auf Nabenhthe von mehr als
13 m/s) — bis auf seltene statistische Aus-
reisser — nicht grosser als drei. Daher in-
teressiert besonders das Erwdrmungsver-
halten innerhalb dieser Zeitspanne.

Bild 3 zeigt die nach einem Strom-
sprung innerhalb eines Zeitraumes von
14 Tagen auftretende, auf den stationiren
Endwert bezogene Erwirmung des 150-
kV-Kabelsystems, und zwar einerseits die
Leitererwdrmung A®c und andererseits
die Erwidrmung A®,q, eines Aufpunkts
in 100 mm Abstand von der Kabel-
oberfldche. Demnach hat sich nach einer
dreitdgigen Volllastperiode der Leiter der
Kabeladern erst auf rund 60% und der
Aufpunkt im Boden erst auf etwa 40%
der jeweiligen Endtemperatur erwirmt.
Demnach bestehen fiir den betrachteten
Zeitraum erhebliche Zeitreserven bis zum
Erreichen der stationdren Endtempera-
turen.

Berechnung der Strombelastbarkeit
ohne Bodenaustrocknung

Fiir die Tiefwasser- und Wattenmeer-
kabel, aber auch fiir Landkabel in einem
thermisch stabilisierten Kabelgraben
braucht eine partielle Austrocknung der
Kabelumgebung nicht beriicksichtigt

zu werden. Ausgegangen wird hier von
der Dauerbelastbarkeit I, des Kabels,
die sich aus der hochstzulissigen Leiter-
erw'zirmung A®C,nmx mit A®c.mux - A®D
= A@)c,zul = TT@_,- > R: J 12D ergibt. A@D ist
dabei die stromunabhingige Leiterer-
wiarmung durch dielektrische Verluste,
R’. der Leiterwiderstandsbelag bei hichst-
zuldssiger Leitererwirmung AG, ., die
sich aus der Umgebungstemperatur Oy
gemiss AO; max = Ocmax — Ou bestimmt.
T, ist der auf die Leiterverluste bezo-
gene gesamte Wirmewiderstand des
Kabelinneren und der Kabelumgebung
[6,7,8, 10].

Gesucht ist der tiber die Zeit von n
Tagen zulissige Uberlaststrom, der sich
mit dem Uberlastfaktor ii aus der Dauer-
belastbarkeit mit

I = (1+ii) - Ip 5)
100 e
Ae=Ar=1,0 W/(K-m) ﬁ—g:L
T 80 e
= // T
R 60— AG—
. § / / AB)yes
CDB'CD 40 /
<l / /
8ls 20 /
<l
0; f :
0 48 96 144 192 240 Stunden

002 "4 6 8 10 14 Tage
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Bild3 Transiente, auf den Endwert bezogene Er-
warmungen der Leiter (A©@() der Kabeladern nach
Bild 1 sowie eines Aufpunktes (A®1o) in 100 mm
Abstand von der Kabeloberfléche nach einem Last-
sprung
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ergibt, wenn der Stromsprung — ausge-
hend vom zeitlichen Mittelwert des Stro-
mes [ = q- I= q - (1+ii) - Ip — zum Zeit-
punkt =0 erfolgt. Wird die Tempera-
turabhingigkeit des Widerstandsbelages
R vernachldssigt (Abschitzung auf der
sicheren Seite), so gilt fiir den zeitlichen
Mittelwert der Leitererwdrmung AG:
AB, —AOp =Ty R - I =Thes - R: - ¢°
C(140)? - 5.

Die durch den Stromsprung von I auf [
hervorgerufene Erwdrmung hat den End-
wert A@r = Thes - R (P = PP) = A@
- (14ii)? -(1-¢?).

Nach dem Betrachtungszeitraum von
n. Tagen ist der Bruchteil f;- A® dieser
Erwirmung erreicht, der sich der mittle-
ren Leitererwdrmung AG, so tiberlagert,
dass gerade die hochstzuldssige Leiterer-
wirmung AG, — AGp+f; - AOr = ABO, ; -
[¢% - (1+ii)> + f; - (1 — g7 - (1+ii)?] erreicht
wird.

Daraus folgt die mogliche zeitweilige
Uberlastbarkeit des Kabels um den Fak-
tor vy (Formel 6).

1

a=ltii=——— (6)
v +412 (1= 1)

Formel 6 bietet die Moglichkeit einer
einfachen Bestimmung der Strombe-
lastbarkeit eines Kabels, ausgehend von
seiner Dauerbelastbarkeit. Hierzu muss
zunichst die thermische Sprungantwort
(beztiglich Leiter oder Aufpunkt) und da-
raus — bei Vorgabe der grossten Anzahl
n von aufeinander folgenden Volllastta-
gen — der Erwdrmungsfaktor f; bestimmt
werden. Ausserdem muss anhand der sta-
tistischen Verteilung der Windgeschwin-
digkeit das Verhiltnis ¢ von Zeitmittel-
wert und Hochstwert der Windparkleis-
tung berechnet bzw. vorgegeben werden.
Eine Erweiterung dieses Verfahrens auf
die Beriicksichtigung partieller Boden-
austrocknung soll im Folgenden vorge-
nommen werden.

\%

Strombelastbarkeit von Landkabeln
bei partieller Bodenaustrocknung
Ausgegangen wird wieder von der
Dauerbelastbarkeit I, des Kabels, die sich
unter Beriicksichtigung einer partiellen
Austrocknung des das Kabel umgebenden
Bodens aus der hochstzuldssigen Lei-
tererwirmung AG®, ju Mit AO¢ max — ABqy
+ ®x,D = A®c,max + ®a,D = T,ges,D "R’ [2D
ergibt, mit dem ohmschen Widerstands-
belag des Kabels bei Betriebstemperatur
R =Rec - (1 + X + %) A + Ay bedeu-
ten dabei die Zusatzverlustfaktoren fiir
Schirm/Mantel und Bewehrung nach [10]
und @,p den fiir den Dauerlastzustand
giiltigen Korrekturterm zur Erfassung der
partiellen Bodenaustrocknung, die bei
Uberschreiten einer Grenzerwirmung
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A®, durch die Kabeloberflichenerwir-
mung AG®gp auftritt (Zweischichtenmo-
dell [6, 7, 8, 10]).

Fiir die einzelnen Faktoren gelten dabei
die folgenden Zusammenhinge: ®,p =
(vx = 1) - O, mit vy = A/hr fiir A®Ogp >
AO®, und vy = 1 fiir ABgp < AQ,.

Die Indizes «F» und «I» stehen fiir
«feucht» bzw. «trocken».

Twesp ist der auf die ohmschen Verluste
bezogene, gesamte Wiarmewiderstand des
Kabelinneren 7% und der Kabelumge-
bung bei Dauerlast [6, 7, 8, 10], mit der
Bedingung Tgesp = Tk + Vx " Tap.

Im Folgenden wird davon ausgegan-
gen, dass bei dauernder Volllast des Ka-
bels mit Kabeloberflichentemperaturen,
die bei VPE-Kabeln iiblicherweise mehr
als 70 °C betragen, die Kabelumgebung
partiell austrocknet.

Wie im Fall ohne Bodenaustrocknung
ldsst sich auch hier der iiber die Zeit von
n Tagen zulissige Uberlaststrom mit dem
Uberlastfaktor vy = 1 + ii bestimmen,
woraus sich der zeitliche Mittelwert der
Leitererwidrmung AG, + ©, = (AO nax +
©.p) - V1 - ¢* - (1+ii)? berechnen lisst. vy
ist dabei der Quotient der beim Strommit-
telwert (T;;cs) und bei Dauerlast (T;es_D)
gegebenen Wirmewiderstdnde. Es sind
nun zwei Fille zu unterscheiden:

— Fall a: Auch fiir den Zeitmittelwert des
Laststromes trocknet die Kabelum-
gebung partiell aus (A®s>A®,). Fiir
diesen Fall gilt: vy = 1; Ox = O, ; Oa
= O,p. Daraus ergibt sich der bereits
ermittelte Uberlastfaktor nach For-
mel 6.

— Fall b: Bei dem zeitlichen Mittelwert
des Laststromes trocknet die Kabelum-
gebung nicht aus (AGs<AB,), woraus
sich vr=Toey / Tgesp; ©x = 0; ©a=-ABy
ergibt.

Fall b erscheint mit den vorliegenden
Daten der Windstatistik [7] realistisch,
wonach iiber einen Betrachtungszeitraum
von mehreren Jahren keine zusammen-
hingenden Volllastphasen (d.h. Zeiten
mit Windgeschwindigkeiten auf Naben-
héhe von mehr als 13 m/s) von mehr als
drei Tagen beobachtet wurden.

Das Einsetzen der Bodenaustrocknung
ist ein langwieriger Prozess, der erst nach
Erreichen einer kritischen Erwédrmung der
Kabeloberfliche (bei normalen Boden
um mindestens 15 K) einsetzt; die voll-
stindige Ausbildung des Austrocknungs-
bereiches, wie er vom Zweischichten-
modell stationdr angesetzt wird, braucht
tiblicherweise einige Monate [10]. Es ist
daher nicht zu erwarten, dass innerhalb
einer maximalen Dauer der anstehenden
Hochstlast von drei bis zu sechs Tagen
(als statistischer Ausreisser) die Kabelum-
gebung in spiirbarem Masse austrocknet,

Windenergie

zumal nach Bild 3 die Erwidrmung der
relevanten Bodenbereiche dann erst zu
einem Bruchteil stattgefunden hat.

Daher soll im Folgenden davon aus-
gegangen werden, dass der das Kabel
umgebende Boden keine Austrocknung
erfahrt, d.h. es wird Fall b vorausgesetzt.
Bedingung hierzu ist, dass die Kabel-
oberflichenerwirmung AOs als zeitli-
cher Mittelwert die Grenzerwdrmung
fiir Bodenaustrocknung A®, nicht iiber-
schreitet: A@s = T4r- (R - 1% + Py =
Tip- [Ry- It - g% - (1+40)* + Pyl £ AO,.

Diese Gleichung stellt eine Grenzbe-
dingung fiir den zu ermittelnden Uber-
lastfaktor (1+ii) dar (fiir Dauerlast wird
iiblicherweise A®, = 15 K gewiihlt).

Mit dem Widerstandsbelag des Kabels
R’; wird noch eine Temperaturkorrektur
eingefiihrt, da unter der Bedingung AOs
< AQ, die Leitertemperatur ®., nicht
wesentlich hoher als die Grenztempera-
tur ®, liegen wird. Mit O., = @, + 5
K und O nmax = 90 K bestimmt sich der
Temperaturkorrekturfaktor ro aus R, =
R rg=R [l +ar-(0,—20K)I1 +
ot (Ocmax —20K) ' =R+ 0,847.

Bei Vernachldssigung des Einflusses
der dielektrischen Verluste ergibt sich
so die Abschitzung fiir 1 + i geméss For-
mel 7.

AQ, -v,
1+ii< —= @)
o q '(AGS,D +0,)

Damit ergibt sich die Enderwidrmung
auf Grund des Stromsprunges von I auf
i zu AOr = (Aec.max + G)AD) 'VT'qZ’
(1+ii)? - (1-¢?). Nach dem Betrachtungs-
zeitraum von n Tagen ist der Bruchteil
fi - AOr dieser Erwidrmung erreicht, der
sich der mittleren Leitererwidrmung AGc
so iiberlagert, dass gerade die hochstzu-
lissige Leitererwirmung AO. ya = AOc +
fi - AOr erreicht wird.

Daraus folgt die fiir den Fall b und
unter der in Formel 7 angegebenen Be-
dingung mogliche, zeitweilige Uberlast-
barkeit des Kabels um den Faktor v; ge-
miss Formel 8.

AG)c,max — A®d .
A®C,max "AG)d = G)x

RSN S
't fi+q? (- fy)

=1+ =(

®)

Beispiel

Betrachtet wird die gebiindelte An-
ordnung eines Einleiter-Drehstromkabel-
Systems nach Bild 1, das sich in einer
Tiefe h im Erdboden befindet. Dem
Boden werden thermische Standard-
eigenschaften mit dem spezifischen
Wirmewiderstand des feuchten Bodens
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150 @

140
5 v=9m/s
130
va [%] ~
120
\{
h=12m
i pe= 1,0 Km/W
100 i ‘ ‘

150 | (%
[ o v=10m/s
o e X
130 =
va[%]
1208 e
110 h=1,2m\:<
p.= 1,0 Km/W
100 : : :
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Bild4 Uberlastfaktoren nach Tabelle Il fiir mittlere Windgeschwindigkeiten von 9,0 m/s (a) und 10,0 m/s (b),

als Funktion der Volllastdauer

Kennlinie 1: Fall a, mit spontaner Bodenaustrocknung, siehe Formel 6; Kennlinie 2: Fall b, ohne Bodenaustrock-
nung, siehe Formel 8; Kennlinie 3: Vermeidung von Bodenaustrocknung, Begrenzung durch den Verlustmittel-

wert, siehe Formel 7

(pr=1,0 K-m/W), dem spezifischen
Wirmewiderstand des ausgetrockneten
Bodens (pr=2,5 K-m/W) und der unge-
storten Bodentemperatur Oy = 20°C zu-
geordnet.

Die 150-kV-Kabeladern sind vom Typ
N2XS(FL)SY 1x1200 mm? rms/50 mm?
(Bild 1b), d.h. sie weisen einen Kupfer-
leiterquerschnitt von 1200 mm?, eine
18,5 mm starke XLPE-Isolierung mit
leitfdhigen Schichten, einen Kupferdraht-
schirm und einen &dusseren Korrosions-
schutz (4 mm) bei einem Aussendurch-
messer von rund 103 mm auf. Der La-
destrom des Kabels betrage weniger als
25% des hochsten vom Windpark gelie-
ferten Wirkstroms, so dass sein Einfluss
auf den Strommittelwert vernachléssigt
werden kann.

Das Drehstromkabel hat unter diesen
Standardbedingungen eine Dauerbelast-

barkeit von I, = 971 A bei einem Verlust-
belag von 60,4 W/m, der zur hochsten
zuldssigen Leitertemperatur von O yax =
90 °C und zu einer Kabeloberflichentem-
peratur von A@gsp = 80,4°C fiihrt. Die
sonstigen sich aus dieser Belastbarkeits-
berechnung ergebenden Kenngrossen
sind: A®y4 <1 K, Tk = 0,504 K-m/W und
Tyr=0,55 K-m/W. Daraus ergibt sich
ein  Wirmewiderstandsverhiltnis  von
VT = T’gcs / T,:;cs,D = (Tx + Vi~ T,4F) (Tx
+Typ) ' =0,561. '

Bodenaustrocknung wird vermieden,
wenn die im zeitlichen Mittel anstehende
Kabeloberflichenerwiarmung die Grenz-
erwirmung fiir Bodenaustrocknung nicht
tiberschreitet, Formel 7 also erfiillt wird.
Diese Hochstgrenze des Uberlastfaktors
fiir mittlere Windgeschwindigkeiten von
9 m/s und 10 m/s ist in der rechten Spalte
von Tabelle II angegeben.

Mittlere Wind- Volllast- Leiter-
geschwindig- Tage n

Ju

el e
9,0 3 59,5

6 69,1

12 79,5

10,0 3 59,5

6 69,1

12 79,5

Erwérmung  Fall a:

Uberlastfaktor (1+4) nach
~ Eallib o Rallba i
Bodenaus-  keine Boden-  keine Boden-
trocknung  austrocknung  austrocknung
Formel 6 Formel 8 - Formel 7 :
[%] Rl %]
121,1 140,7 153,6
114,9 133,5 153,6
109,2 126,8 153,6
119,0 138,2 135,2
113,5 131,8 135,2
108,4 125,9 1352

Tabelle Il Erwarmungsfaktoren f; und Uberlastfaktoren (1+i)

Fir n aufeinander folgende Volllasttage bei mittleren Windgeschwindigkeiten von 9,0 m/s (q = 0,462) und
10,0 m/s (g = 0,525) und A®¢, max = 70 K; A@q ~0; T = 0,504 Km/W; T4 ¢ = 0,55 K-mW; vr=0,561;

vx =25 Ox=225K; Os 5 = 654K; re = 0,847; fett eingetragen: zuldssige Uberlastfaktoren
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Der wihrend der Volllastphasen ab-
laufende Erwidrmungsvorgang begrenzt
iiber die hochste zuldssige Leitertempe-
ratur die Kabelbelastbarkeit weiter. Ge-
geniiber der Dauerbelastbarkeit ergeben
sich Uberlastfaktoren, die in der vierten
Spalte der Tabelle II fiir die Annahme
spontaner Bodenaustrocknung und in der
fiinften Spalte fiir die Annahme nicht aus-
trocknenden Bodens wiedergegeben sind.
Bild 4 stellt diese Ergebnisse grafisch
dar. Daraus ist ersichtlich, dass fiir
mittlere  Windgeschwindigkeiten von
weniger als 9 m/s die transiente Leiter-
erwiarmung die Belastbarkeit beschriinkt
(Kennlinie 2), wihrend fiir eine mittlere
Windgeschwindigkeit von 10 m/s der
Zeitmittelwert der Last bzw. der Kabel-
verluste die Begrenzung darstellt (Kenn-
linie 3).

Um auf der sicheren Seite zu liegen,
soll im Folgenden eine mittlere Wind-
geschwindigkeit von 10 m/s in Betracht
gezogen werden. Schon ohne Beriick-
sichtigung eines giinstigeren Bodenver-
haltens (d.h. bei Annahme spontaner
Bodenaustrocknung) ergibt sich fiir die
lingste Volllastperiode von r; = 3 Tage
ein Erwdrmungsfaktor von f; = 59,5%,
woraus mit Formel 6 bzw. aus Bild 4
ein Uberlastfaktor von (1 + i) = 119,0%
folgt. Die Kabelbelastbarkeit kann mit-
hin selbst unter dieser zu pessimistischen
Annahme von I, = 971 A auf 1,155 kA
gesteigert werden.

Mit den vorangegangenen Uber-
legungen sind keine Austrocknungs-
vorgidnge im Boden wihrend der Voll-
lastphasen zu erwarten. Die fiir homo-
genen, feuchten Boden im Volllastfall
auftretende Leitererwdrmung fithrt mit
Formel 8 zu einem Uberlastfaktor von (1
+ ii) = 138,2%, also zu einem Hochst-
strom von 1,342 kA. Allerdings ver-
stosst der so ermittelte Uberlastfaktor
gegen die Grenzbedingung von Formel
7. Dies bedeutet, dass dieser Hochststrom
mit einem zeitlich mittleren Strom (g =
0,525) von 704 A verbunden ist, der be-
reits zur partiellen Bodenaustrocknung
fiihren wiirde.

Nach Formel 7 darf der Uberlastfaktor
maximal (1 + ii) = 135,2% betragen. Als
Endergebnis kann demnach die Kabel-
belastbarkeit gegeniiber dem Dauerlast-
fall mit Ip = 971 A auf 1,313 kA erhoht
werden.
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