Zeitschrift: bulletin.ch / Electrosuisse

Herausgeber: Electrosuisse

Band: 96 (2005)

Heft: 7

Artikel: Feldbusse ersetzen Kabelsalat : Artikelserie Automation :

Kommunikation (3)

Autor: Santner, Guido / Felser, Max / Scheitlin, Hans

DOI: https://doi.org/10.5169/seals-857786

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Feldbusse ersetzen Kabelsalat

Artikelserie Automation: Kommunikation (3)

Wenn es 10 Sekunden dauert, bis die Internetseite aufgebaut ist, stört das niemanden. Wenn aber der Roboter 10 Sekunden lang seinen Schweisskopf in die falsche Richtung bewegt, ist das Auto auf dem Fliessband zerstört. Darum kommunizieren Steuerungen, Sensoren und Aktoren über Feldbusse, die dem Anwender garantieren, dass Eckdaten wie die Zykluszeit eingehalten werden.

«Das Dach an Koordinate x,y,z mit der Karosserie zusammenschweissen», befiehlt die Steuerung dem Schweissroboter. In der Chemie meldet der Temperaturfühler, dass die Mischung jetzt 71 °C heiss ist. Steuerungen kommunizieren mit Sensoren und Aktoren, ab und zu greift ein Mensch aus der Prozessleit-

Guido Santner, Max Felser, Hans Scheitlin

ebene ein. Dieser Austausch von Informationen muss koordiniert werden, denn der Mensch darf dem Schweissroboter, der viel schneller kommuniziert, nicht «ins Wort» fallen.

Bis Anfang der 90er-Jahre regelte eine zentrale Steuerung die Kommunikation, jeder Sensor und Aktor war direkt an die Steuerung angeschlossen. Übertragen wurde ein analoges Signal zwischen 4 und 20 mA oder eine binäre Spannung, zum Beispiel 0 und +24 V für eine logische Null bzw. eine Eins. Schon wenig Peripherie führte damals zu dicken Kabelbäumen, die zu den Schaltschränken führten.

Aus der Computerwelt kannte man das Ethernet, einen seriellen Bus, auf den mehrere Teilnehmer zugreifen konnten. Das wäre doch ideal, nicht? Doch in der Automation muss man bestimmte Übertragungszeiten garantieren können – und das konnte Ethernet nicht. Wenn sich ein Schweissroboter bewegt, muss ihn die Steuerung innerhalb von Millisekunden ansprechen können; werden Antriebe synchronisiert, liegen die Zeiten sogar unter einer Millisekunde. Beim Ethernet dagegen kann jeder Teilnehmer Informa-

tionen versenden, wann er will. Dies führt zu Kollisionen auf dem Bus, oder ein Switch muss die Datenpakete nacheinander einreihen. Beides führt zu Verzögerungen. Die Übertragung ist also nicht deterministisch - niemand weiss, wie lange ein Datenpaket unterwegs ist. Verschiedene Firmen entwickelten deshalb robuste Feldbusse, die zwar weniger Daten übertragen, dafür deterministisch arbeiten. Je nach Anwendung und Technologie liegen die Übertragungszeiten zwischen einer halben bis zu einigen hundert Millisekunden. Die Feldbusse kamen in den 80er-Jahren auf und sind seit den 90er-Jahren in der Automation weit verbreitet

Der Feldbuskrieg in den 90er-Jahren

Ende der 80er-Jahre arbeiteten verschiedene Firmen intensiv an ihren Feldbussen, vor allem in Deutschland und Frankreich. Der Profibus von Deutschland und das FIP von Frankreich waren aber zwei komplett verschiedene Systeme: Während der Profibus (FMS) auf einem Client-Server-Modell basierte und eine verteilte Intelligenz zuliess, arbeitete das FIP mit einer zentralen Kontrolle und dem Publisher-Subscriber-Modell. Die beiden Modelle unterscheiden sich im Wesentlichen darin, dass der Client die Daten beim Server holen muss, während der Publisher die Daten automatisch seinen Subscribern versendet1). Die IEC strebte eine gemeinsame Norm an, doch obwohl die beiden Feldbusse jeweils die anderen Datenmodelle integrierten (FIP heisst nun WorldFIP), konnte man sich

nicht auf einen gemeinsamen Standard einigen. Lediglich die physikalische Schicht wurde 1993 in der Norm IEC61158-2 verabschiedet.

Die Normenentwürfe wurden in der Folge dicker und umfangreicher. Für die zweite Schicht, dem Datenlink, wurden Token-, Master/Slave- und CSMA-Verfahren vorgeschlagen. 1995 definierten amerikanische Firmen einen eigenen Feldbus, den Foundation Fieldbus (FF). Dieser ist auf die Prozesstechnik optimiert, benutzt das Zugriffsverfahren des WorldFIP und das Anwendungsprotokoll des Profibusses. Die Europäer einigten sich in der Folge auf eine europäische Feldbusnorm, die alle bestehenden nationalen Normen so aufnahm, wie sie sind – sie blieben aber inkompatibel. Es entstanden die Normen EN50170 für die allgemeine Automation, die Norm EN 50254 für schnelle, dezentrale Peripherie (Fertigungsautomation) und die Norm EN 50325 für Feldbusse mit CAN-Technologie (Devicenet, CANopen).

1999 einigen sich die Firmen schliesslich zu einer Internationalen Norm IEC61158, die ähnlich der europäischen Norm sieben Feldbusse einschliesst: Profibus, WorldFIP, Foundation Fieldbus, Interbus, Controlnet, P-Net und Swiftbus. CAN und das AS-Interface werden in einer separaten Norm definiert. Die IEC-Norm markiert das Ende des «Feldbuskrieges», gibt den Kunden aber keine kompatiblen Systeme. Die Feldbusse, die

Artikelserie zur Automation

Das Bulletin SEV/VSE veröffentlicht dieses Jahr eine Serie zur Automation. Im Monatsrhythmus erscheinen in der Electrosuisse-Ausgabe des Bulletins SEV/VSE folgende Artikel:

- Einführung (Nr. 1/05)
- Steuerung (Nr. 3/05)
- Kommunikation (Nr. 7/05)
- Sensoren, Bildverarbeitung
- Antriebe, Regelungstechnik
- Software, Bedienen, Beobachten
- Sicherheit

	Fertigungsautomation (Roboter)	Prozessautomation (Chemie/Food)	Gebäudeautomation (Heizung/Lüftung)
Zykluszeiten	1 ms	100 ms	100 ms
Anzahl I/O	< 100	> 100	1001000
Kabellängen	< 100 m	> 1000 m	> 1000 m
Störsicherheit	hoch	hoch	mittel
Aufgaben	Ablauf steuern, regeln, überwachen	Ablauf steuern, regeln, überwachen	Überwachen, para- metrieren, Service
Beispiele	Profibus DP, Interbus, ControlNet, CAN	Profibus PA, Foundation Fieldbus	LON, EIB, Modbus-TCP (Ethernet)

Tabelle I Bereiche der Automation

darin aufgeführt sind, bleiben eigenständig.

Profibus für das Fliessband, Fieldbus Foundation für die Chemie

Jede Branche in der Automation bevorzugt seine speziellen Feldbusse. Die Automobilindustrie in Deutschland arbeitet mit dem Profibus, die Papierindustrie schwört auf den Modbus oder Sercos, die Amerikaner setzen auf Devicenet und die Japaner auf CC-Link. Die Feldbusse

sind auf die jeweilige Anwendung optimiert, der Profibus DP oder der Interbus für die Fertigungsautomation sind zum Beispiel sehr schnell. In der Prozessautomation dürfen die Busse langsamer arbeiten, müssen aber viele Ein- und Ausgabepunkte unterstützen und die Daten besonders sicher übertragen. Der Foundation Fieldbus und der Profibus PA sind darauf ausgelegt. Die Feldbusse für die Gebäudeautomation (LON, IEB) dürfen noch langsamer sein, es werden aber auch noch mehr Geräte angeschlossen – über lange Leitungen.

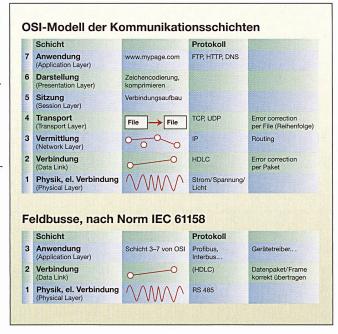
Entscheidet sich jemand für einen Feldbustyp, entscheidet er sich für eine ganze Systemfamilie, nicht nur für die Kommunikation. Jede Feldbusfamilie hat eigene Geräte- und Anwendungsprofile mit dem entsprechenden «Look and Feel», die Geräte werden also auch verschieden bedient. So basiert der Profibus auf Gerätestammdateien (GSD), über die das System konfiguriert wird. Sie entsprechen den Treibern der PC-Welt. Innerhalb der Systemfamilie kontrolliert eine Nutzerorganisation, ob die Geräte verschiedener Hersteller der Norm entsprechen und damit kompatibel sind. Zwischen den verschiedenen Feldbusfamilien kann man keine Geräte austauschen. Es gibt Ansätze mit standardisierten Treibern (FDT/DTM), womit zumindest das Engineering auf fremde Hardware zugreifen kann, zum Beispiel um Versionen auszulesen oder Geräte zu parametrieren. FDT/DTM arbeitet aber nicht in Echtzeit.

Einige Bits oder ganze Files übertragen?

Natürlich ist es ein Unterschied für den Feldbus, wenn er nur übertragen muss, ob ein Endschalter angesprochen hat, oder

Übersicht Feldbusstandards

Feldbus	Treibende Firma	Nutzerorganisation	Vorteil
Profibus	Siemens	Profibus International, Europa: Profibus Nutzerorganisation (PNO)	Verbreitet in Europa (Marktanteil >50%), Lösungen für alle Anwendungen, viele Geräte auf dem Markt
WorldFIP	Schneider Electric (Cegelec)	WorldFIP	Gute Echtzeiteigenschaften (Physik)
Interbus	Phoenix Contact	Interbus Club	Einfache Inbetriebnahme, schnell
Devicenet/ Controlnet	Rockwell	ODVA/Controlnet International	Weltweit verbreitet (Allen Bradley Steuerungen) v.a. USA, Lösungen für alle Anwendungen, integriert in vielen Prozessoren
CC-Link	Mitsubishi	CC-Link Partner Association (CLPA)	Verbreitet in Japan
Modbus Plus	Schneider Electric	Proprietärer Bus, einzelne Partnerfirmen für E/A-Systeme, Frequenzumrichter	Einfache Inbetriebnahme, lehnt sich an Gould- Modicon DB-Ankopplung an
Foundation Fieldbus	Emerson	Fieldbus Foundation	Komfortable Gerätebeschreibungen, Applikationsfunktionen (Function Blocks)
AS-Interface	Siemens	AS-Interface	Günstig, viele mögliche Netztopologien, Stromversorgung und Daten auf der gleichen Leitung, definiertes Sicherheitsprotokoll
Hart	Emerson (ehem. Fisher Rosemount)	HART Communication Foundation	Auf 420 mA Schleifen aufmoduliert (FM, robust), retrofit-tauglich
Sercos	Bosch Rexroth	Sercos	Schnell, bewährt, weit verbreitet in Antriebstechnik, definierte Applikationsschicht
CANopen	Heute: Schneider Electric (ehem. Selectron) Urspr.: Bosch	CAN in Automation (CiA)	Flexibel (eigene Anpassungen), umfassende Profile, billige Chips
LON	Echelon (USA)	Lonmark	Multimaster, 7-Layer-Kommunikation (mehrere physikalische Layer), komplexe eigene Entwicklungen möglich, breite Nutzer- organisation
EIB	Siemens (Europa)	EIBA	Einfach, verbreitet


ob ein Benutzer die Prozessdaten der letzten 24 Stunden herunterlädt. Die Feldbusfamilien bestehen darum meist aus verschiedenen Feldbussen, einem einfachen Bus für die Sensoren und Aktoren, einem schnellen Bus für die Steuerung und einem leistungsfähigen Bus für die Prozessebene.

Sensoren übertragen nur wenige Datenbits, die Verbindung muss aber robust und günstig sein. Unter Umständen wird der Sensor gar über das Signalkabel gespiesen. Die Distanzen gehen bis höchstens 100 Meter in der Fertigungsautomation, dafür müssen die Daten innerhalb Millisekunden übertragen werden. Ein typischer Bus für diese unterste Feldebene ist das AS-Interface oder der Interbus Loop.

In der Prozesstechnik müssen die Sensoren mehr Daten übertragen, denn es müssen Parameter eingestellt werden oder die Sensoren übergeben Kalibrationsdaten. Dafür darf es einige 100 Millisekunden dauern. Typische Feldbusse für Sensoren in der Prozesstechnik sind der Foundation Fieldbus oder der Profibus PA. Diese arbeiten über Distanzen von 1900 Meter und können wesentlich mehr Teilnehmer einbinden. Sie sind eigensicher erhältlich (Explosionsge-

Tabelle II Schichtenmodell nach OSI und vereinfachtes Modell für Feldbusse

Das OSI-Modell beschreibt die hierarchischen Schichten der Kommunikation. Die drei Schichten der Feldbusse entsprechen den Schichten 1,2 und 7 des OSI-Modells. Die Funktionen der fehlenden Schichten 3 bis 6 werden oftmals reduziert in Schicht 7 integriert.

fahr), die Anzahl Teilnehmer ist dann aber eingeschränkt.

Für den Profibus DP, das Controlnet oder der Interbus, die auf der Steuerungsebene eingesetzt werden, ist es wesentlich, dass sie deterministisch arbeiten – also bestimmte Zykluszeiten einhalten und die Kommunikation nicht blockieren. Diese Feldbusse übertragen Daten zwischen Steuerungen, zu Frequenzumrichtern oder zu Ein-/Ausgabemodulen. Die Daten, hier sind es bereits mehrere Bytes, werden innerhalb Millisekunden übertragen. Die Distanzen können bis zu einem

Nachteil	Bemerkungen	Anwendung
Aufwändige Konfiguration, da umfangreiche Funktionen in Kommunikations- und Anwendungsschicht	Drei verschiedene Varianten (FMS, DP, PA), je nach Anwendung	Fertigungs-, Prozess- und Antriebstechnik (weltweit, stark verbreitet in Europa: Autoindustrie)
Schwache Unterstützung, teure Komponenten	Verbreitet in Frankreich, sonst wenig Support und Anwender	Fertigungstechnik, Bahntechnik, CERN (Frankreich)
Nur Linientopologie, begrenzte Anzahl Signale, aufgesetzte Meldungskommunikation	Nähert sich mit Profinet an Profibus an	Fertigungstechnik, Druckereien (Europa)
Lockere Standardisierung, deshalb mehrere inkom- patible Varianten; begrenzte Ausdehnung, schwa- che Physik	Devicenet nutzt CAN-Technologie für die Verbindungsschicht	Automobil, Fertigungs-, Prozess- und Antriebstechnik (USA, weltweit)
		Fertigungstechnik (Japan)
Proprietärer Bus, wenig Produkte von Drittfirmen, Lizenzen	Bus der Modicon-Steuerungen, oft als übergeordneter Bus	USA: Chemie, Pharma, Papierindustrie CH: Gebäudetechnik
Physik unterstützt nur wenig Geräte in Ex- Anwendungen, teuer	Verbreitet in den USA, kleiner Markt in Europa, von Hart verdrängt	Prozesstechnik, Petrochemie (USA)
Nur binäre Sensoren/Aktoren, max. 62 Teilnehmer	Setzt sich langsamer durch als erwartet	Sensor-Ebene in der Fertigungsautomation, Gebäudeautomation
Urspr. Punkt zu Punkt, eigentlich kein Bus, langsam	Verbreitetste digitale Verbindung auf Sensorebene	Sensor-Ebene in der Prozessautomation
Nischen-Dasein, nur Antriebstechnik	Immer LWL	Motion/Antriebstechnik, Druckereien, Verpackungsmaschinen, CNC
Wenig Applikationssoftware, unbefriedigende Standardisierung, begrenzte Ausdehnung	Eine der zahlreichen CAN-Normen	Untere Ebenen/ embedded (Medizintechnik, Fahrzeuge,)
Komplexe Technik, spezielle Prozessoren, nicht- deterministische Protokolle	Wurde entwickelt für HLK-Steuerung; geschlossene Welt, von Echolon und Freescale kontrolliert	Gebäudeautomation, eher obere Ebenen: Heizung- Lüftung-Klima
Tiefe Datenraten, wenig Schnittstellen, nur einfache Funktionen	Kommt von den Elektroinstallationen im Raum: Licht, Storen; Konkurrent zu AS-Interface und LONworks	Gebäudeautomation, eher untere Ebenen: Elektroinstallation

Automation

Kilometer betragen, allerdings nehmen die Datenraten bei diesen Distanzen ab. Feldbusse auf Steuerungsebene können meist mit einem Sicherheitsprotokoll überlagert werden. Damit kommunizieren Sicherheitsschalter und Notaus-Taster über den normalen Feldbus und es braucht keine separaten Kabel.

Die grössten Datenmengen werden auf der Prozessleitebene übertragen. Meist ist es ein Büro-PC, der sich Daten aus einer Steuerung holt. Die Zeit spielt dabei keine Rolle. Wichtig ist, dass die Systeme kompatibel sind, denn die Fabrikleitung möchte nicht für jedes Fertigungssystem einen eigenen PC pflegen. So kommunizieren die Systeme auf dieser Ebene mit Ethernet über das TCP/IP-Protokoll. Daten werden zum Beispiel über das standardisierte OPC-Protokoll ausgetauscht.

RS485 für die physikalische Schicht

Die meisten Feldbusse in der Fertigungsautomation arbeiten mit RS485 auf der physikalischen Schicht. Die Schnittstelle RS485 funktioniert ähnlich wie die vom PC bekannte RS232-Schnittstelle; sie unterstützt aber zusätzlich Mehrpunktverbindungen. Die Signale werden mit 5V-Pegel differenziell auf einem verdrillten Leitungspaar übertragen. Auf einer geschirmten Zweidrahtleitung kann man so Daten mit 9,6 kBit/s bis 12 MBit/s übertragen, wobei die Teilnehmer asynchron kommunizieren; es gibt keinen gemeinsamen Takt. Der Empfänger erkennt an einer bestimmten Bitfolge, dass ein neues Telegramm ankommt.

Sensor/Aktor	Steuerungsebene	Prozessebene
AS-Interface	Profibus	Profinet
Interbus Loop	Interbus	Profinet
Devicenet	Controlnet	Ethernet/IP
Foundation Fieldbus F	Foundation Fieldbus H1	Foundation Fieldbus

Tabelle III Feldbusfamilien

Jede Busfamilie bietet für die verschiedenen Anwendungsschichten entsprechende Technologien (Protokolle) an. Innerhalb einer Feldbusfamilie sind die Protokolle durchgängig. Profibus, Interbus und Controlnet sind aber untereinander nicht kompatibel.

In der Prozesstechnik, zum Beispiel dem Profibus PA, wird eine synchrone Manchestercodierung eingesetzt. Der Vorteil dieser Codierung ist, dass kein Gleichstromanteil übertragen wird. Eine Null entspricht einer 01-Bitfolge, eine Eins entspricht 10²⁾. Auch Ethernet wird so codiert. Die Übertragung ist synchron getaktet, mit 31,25 kBit/s. Die geschirmte oder auch ungeschirmte Zweidrahtleitung ist eigensicher und speist bei Bedarf den Teilnehmer.

Licht kommt auf

Bei elektronischen Antrieben oder Schweissanlagen, die die Kommunikation stören könnten, setzt man gerne Lichtwellenleiter statt Kupfer ein. Anstelle einer Spannung wird hier das Datenbit als Lichtimpuls übertragen. Der Lichtwellenleiter aus Plastik oder Glas ist unempfindlich gegen elektromagnetische Störungen, trennt die Teilnehmer galvanisch und überträgt hohe Datenraten über grosse Distanzen. Er verbindet immer nur zwei Teilnehmer als Punkt-zu-Punkt-Ver-

bindung. Die elektrische Schnittstelle im Gerät entspricht meist RS485.

Wer spricht wann?

Mit der ersten, physikalischen Schicht sind die Geräte lediglich miteinander verbunden. Sie wissen aber noch nicht, wie sie miteinander sprechen sollen. In der zweiten Schicht wird deshalb die Datenverbindung definiert. Wird zum Beispiel eine Information wie über eine Zeitung an die Leser verschickt, oder muss jeder Teilnehmer eine Auskunftsstelle anrufen, um seine Informationen zu bekommen? Letzteres ist das Client-Server-Modell. Der Kunde verlangt vom Server einen Dienst, wie die Steuerung, die vom Sensor einen Wert verlangt. Die Verbindung geht immer von Punkt zu Punkt. Das Client-Server-Modell wird angewendet, wenn Sensoren und Aktoren parametriert werden oder der Mensch etwas bedient.

Beim zweiten Modell, dem Publisher-Subscriber-Modell, sendet der Herausgeber seine Daten regelmässig allen Abon-

Übersicht Industrial Ethernet

Ethernet-Standard	Treibende Firma	Nutzerorganisation	Vorteil
Profinet	Siemens (Phoenix Contact, Softing)	Profibus International	Grosser Anteil Profibussysteme, Software- unterstützung Switch-Struktur: fehlertolerant, flexible Netzstrukturen
Powerlink	B&R Automation	EPSG	Standard-Ethernet-Hardware
Ethercat	Beckhoff	ETG	Schnell, viele I/Os
Modbus TCP	Schneider Electric	Modbus-IDA	Standard-Hardware, Standard-Ethernet- Protokoll, von vielen Firmen unterstützt
Ethernet/IP	Rockwell	ODVA, Controlnet International	Grosser Anteil Devicenet/Controlnet-Systeme (USA) -> Protokolle durchgängig Standard-Hardware, Standard-Ethernet- Protokoll
Sercos III	Bosch Rexroth	Sercos	Schnell und fehlertolerant

nenten. Sie werden per Broadcast oder Multicast versendet, es ist also eine Punkt-Mehrpunkt-Verbindung. Gerade für Echtzeitanwendungen ist dies ein schnelles Verfahren, das zum Beispiel Antriebe einsetzen, um regelmässig ihre Ist-Werte zu senden.

Die Teilnehmer müssen zudem koordinieren, wann sie miteinander sprechen. Daten können übertragen werden, wenn ein bestimmtes Ereignis eintritt (ereignisgesteuert), oder sie werden regelmässig nach einer bestimmten Zeit verschickt (zeitgesteuert). Werden die Daten nur nach einem bestimmten Ereignis verschickt, verstopfen keine unnützen Daten die Leitungen. Man kann aber schlecht abschätzen, ob ein Netzwerk in speziellen Situationen überlastet ist. Werden die Daten in regelmässigen Zeitabständen übertragen, kann man die Netzauslastung genau bestimmen. Dadurch ist das System deterministisch, das Verfahren ist aber ineffizient, da Daten auch übertragen werden, wenn sich nichts geändert hat. Die meisten Systeme erlauben heute eine Mischung dieser beiden Systeme: Das Profibus DP-V0-Protokoll überträgt die Daten zyklisch (zeitgetrieben), Profibus DP-V1 ist ereignisgetrieben. Beide können auf demselben Link-Layer (Schicht 2) eingesetzt werden. Der Anwender entscheidet.

Wer ist der Chef?

In einer Schulklasse dürfen nicht alle Schüler gleichzeitig sprechen – der Lehrer koordiniert die Kommunikation. Wenn ein Schüler seine Hand aufstreckt, fordert ihn der Lehrer zum Sprechen auf.

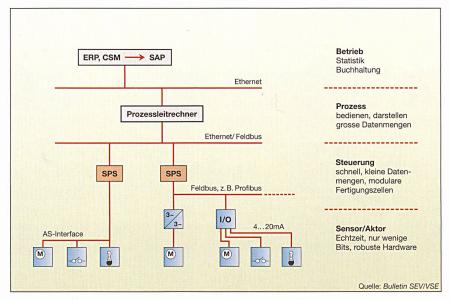


Bild 1 Ebenen der Automation

Analog dazu gibt es bei den Feldbussen unter den Teilnehmern einen Chef, einen Master. Dieser koordiniert die Kommunikation. Einige Feldbusse unterstützen mehrere Master (Multimaster). Diese sprechen sich untereinander ab, zum Beispiel über einen logischen Token³⁾, wer für den Moment der Chef ist.

Ring oder Baum: Netzwerkstruktur

Je nach Feldbus hat das Netzwerk eine andere Struktur. Beim Interbus wird das Kabel durch alle Teilnehmer hindurchgeschlauft. Jeder Teilnehmer muss die Daten, auch die fremden, aktiv weiterleiten. Jedes Kabel, das der Installateur einsteckt, besteht aus einem Hin- und Rückleiter. So ergibt sich eine Ringstruktur. Sercos funktioniert ähnlich, nur dass hier mit den Lichtwellenleitern ein Doppelring aufgebaut wird. Das heisst, die Geräte werden nicht nur in einer Linie verbunden (mit je einem Hin- und Rückleiter), sondern in einem Kreis. So entsteht ein Doppelring, der auch bei einem Unterbruch weiterarbeitet. Bei Profibus und den meisten anderen Feldbussen hängen die Teilnehmer passiv an einem Buskabel. Dies hat den Vorteil, dass nicht jede Station alle Daten empfangen und weiterleiten muss. Wenn ein Teilnehmer ausfällt, können die anderen weiter kommunizieren. In der Regel hat jeder Teilnehmer eine eigene Knotennummer, eine

Nachteil	Bemerkungen	Anwendung
Spezieller ASIC bei Profinet IRT (Echtzeit), der bis- her nur von Siemens geliefert wird	3 versch. Ebenen, je nach Zeitanforderungen. Arbeitet mit Standard-Ethernet-Protokoll, ausser beim deterministischen Profinet IRT (ASIC)	Fertigungstechnik, Prozesstechnik, Antriebstechnik
Im deterministischen Betrieb nur Powerlink- Teilnehmer (max. 250), arbeitet mit Hubs; neuer Standard ohne grosse Feldbusfamilie dahinter	Nutzt CANopen-Profile (CAN hat keine Ethernet- Version entwickelt)	Antriebstechnik, schnelle Prozesse
Spezieller ASIC, neuer Standard ohne grosse Feldbusfamilie dahinter, Struktur schon weit von Ethernet entfernt	Netzstruktur ähnlich wie Interbus, alle Ethercat- Knoten sind nur ein Ethernet-Teilnehmer Kann CANopen oder Sercos-Profile nutzen	Gebäudetechnik, dezentrale E/A (Antriebstechnik)
Nicht deterministisch		Übergeordnete Kommunikation
Nicht deterministisch		Fertigungstechnik, Prozesstechnik (v.a. USA, z.B. General Motors -> Automobilindustrie)
Spezieller ASIC	Standard wenig fortgeschritten. Da Sercos spät anfing mit Ethernet, schwenkten viele Sercos- Mitglieder auf Powerlink ein. Direkter Konkurrent zu Profinet IRT	Schnelle, synchronisierte Antriebstechnik

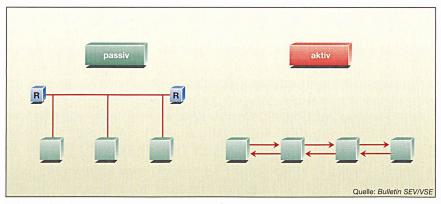


Bild 2 Buskopplung

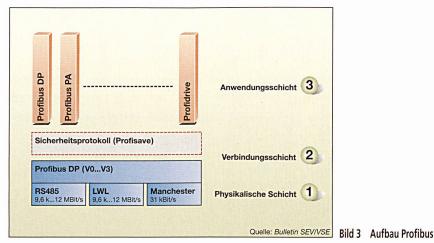
Bei der aktiven Buskopplung werden die Daten durch alle Teilnehmer hindurch geschlauft. Andere Systeme arbeiten mit passiver Buskopplung, jeder Teilnehmer bearbeitet nur seine Daten.

Adresse, über die er angesprochen wird. Die Ausnahme bildet der Interbus, denn hier bestimmt der physikalische Platz im Ring den Zeitpunkt, zu dem er senden und empfangen kann. Einfache Sensoren und Aktoren, bei denen es sich nicht lohnt, eine eigene Feldbusschnittstelle zu integrieren, werden über dezentrale Ein-/Ausgabemodule an den Bus angeschlossen. Diese Module sind meist robust ausgeführt und werden bei der Maschine vor Ort platziert.

Ethernet dringt in die **Automation**

Mittlerweile dringen das Ethernet und das TCP/IP-Protokoll4) zunehmend in die Automation, obwohl sie ursprünglich nicht dafür entwickelt wurden - man spricht von Industrial Ethernet. Das Ethernet hat sich in der Bürokommunikation so stark verbreitet und Komponenten sind mittlerweile so billig, dass die Automatisierer sie ebenfalls einsetzen wollen⁵⁾. Zudem steigen in der Automation die Datenmengen an und die Anwender

gewöhnen sich an Standards wie das drahtlose WLAN, die sie nun auch für ihre Steuerung wollen. Für das TCP/IP-Protokoll sind diese Standards durchgän-


Es gibt verschiedene Lösungsansätze, wie Ethernet für die Automation fit gemacht werden kann. Eine erste Möglichkeit ist, man verzichtet auf die strenge Echtzeit. Man geht einfach davon aus, dass der Bus im Normalfall genügend schnell ist. Da das Ethernet Unmengen von Daten übertragen kann, wird es in der Automation selten voll ausgelastet. Eine zweite Möglichkeit ist, dass man dem CSMA-Zugriff ein Master/Slave-Verfahren überordnet und die Teilnehmer damit nur begrenzt auf das Netz zugreifen lässt. So bestimmt bei Powerlink ein Master, wer wann auf dem Bus kommuniziert. Der dritte Weg ist eine spezielle Hardware, die den Zugriff regelt. So entspricht beim Realtime-Profinet jeder Teilnehmer einem speziellen Ethernet-Switch, der die Kommunikation koordiniert.

Wie bei den Feldbussen gibt es verschiedene Lösungen für das RealtimeEthernet. Elf davon wurden in die Norm IEC 61784-2 aufgenommen⁶⁾. Für Europa dürfte wohl Profinet der wichtigste Standard werden (siehe Übersicht «Industrial Ethernet»). Ein weiterer, wichtiger Standard dürfte IEEE 1588 werden. womit die Zeit in einem Netzwerk auf eine Mikrosekunde genau synchronisiert werden kann. Obwohl damit keine bestimmte Reaktionszeit garantiert wird, reicht es für die meisten Anwendungen aus, auch für Antriebssysteme. IEEE 1588 wird von Profinet, Ethernet/IP und den meisten anderen Standards für Industrial Ethernet unterstützt.

Welchen Feldbus soll ich nun verwenden?

Den besten Feldbus für alle Anwendungen gibt es nicht. Sowohl die Fertigungs-, die Prozess- als auch die Gebäudeautomation hat ihre Spezialisten. Dabei geht es um die Zykluszeiten, die Anzahl Ein-/Ausgabepunkte, die Distanzen oder den Datendurchsatz. Oft ist es so, dass ganze Branchen mit einem bestimmten

WLAN

Wireless Local Area

Network

Feldbus arbeiten. Weltweit ist der Profibus am stärksten verbreitet, mit 10 Millionen verkauften Knoten. Darauf folgen Interbus (6 Mio.), Devicenet (4 Mio.) und CC-Link (2 Mio.). Wer einen weit verbreiteten Bus verwendet, findet am einfachsten mehrere Hersteller mit kompatiblen Produkten. Wer aber eine kundenspezifische Anpassung will, stösst bei den grossen Nutzerorganisationen wie Profibus oder ODVA auf Granit. Hier sind Nischenanbieter wie B&R mit Powerlink oder Beckhoff mit Ethercat schneller und flexibler.

In der Übersicht «Feldbusstandards» sind die wichtigsten Feldbusse aufgeführt. Nicht in der Tabelle sind der Bitbus von Intel, quasi der Grossvater aller Feldbusse, das P-Net aus Dänemark, das wenig verbreitet, aber doch in der IEC-Norm aufgeführt ist, und das Swiftnet, das fast ausschliesslich in Boeing-Flugzeugen eingesetzt wird.

Weiterführende Literatur

- W. Kriesel, T. Heimbold, D. Telschow: Bustechnologien für die Automation, Hüthig Verlag, 2000 (2. Auf-
- Hans Scheitlin: Feldbuskurs, http://home.zhwin.ch/~ sln/Feldbuskurs/
- Profibus International: Profibus Technologie und Anwendung, Oktober 2002, www.profibus.com/ downloads/05585
- Profibus International: Profinet Technologie und Anwendung, November 2003, www.profibus.com/ downloads/05587
- Foundation Fieldbus: System Engineering Guidelines (AG-181) Revision 1.0
- Foundation Fieldbus: Fieldbus Application Guide (AG-163) Revision 2.0

Angaben zu den Autoren

Guido Santner, Dipl. El.-Ing. ETH, ist Redaktor des Bulletins SEVIVSE. Electrosuisse, 8320 Fehraltorf, guido.santner@electrosuisse.ch

Max Felser, Dipl. El.-Ing. ETH, ist Dozent für Automation und Kommunikation an der Berner Fachhochschule und betreut dort das Profibus- und Profinet-Kompetenzzentrum.

Berner Fachhochschule, 3400 Burgdorf, max.felser@bfh.ch

Hans Scheitlin, Dipl. El.-Ing. ETH, ist Dozent für technische Informatik an der Zürcher Hochschule Winterthur (ZHWIN), mit Schwerpunkt Industrial Ethernet. Die ZHWIN koordiniert im Bereich Industrial Ethernet die Powerlink-Standardisierungsgruppe EPSG und forscht auf dem Bereich IEEE1588. Zürcher Hochschule Winterthur, 8401 Winterthur, hans.scheitlin@zhwin.ch

Weitere Experten, die am Artikel mitarbeiteten: Klaus H. Korsten (Endress+Hauser), Hubert Kirrmann (ABB), Toni Hofer (Schneider Electric), Stephan Schaufelberger (Rockwell)

¹ Je nach Art der Mitteilung haben diese beiden Strategien einen grossen Einfluss auf die Systemperformance. Das Verbreiten einer Systemzeit, zum Beispiel «es ist jetzt 12:00 Uhr», erledigt das Publisher-Subscriber-Modell mit einem einzigen Telegramm, wogegen bei der Client-Server-Strategie pro Teilnehmer je eine Anfrage und eine Antwort verschickt werden. Über 90% aller Mitteilungen sind jedoch Punkt-Punkt orientiert. Hier ist wiederum die Client-Server-Kommunikation überlegen. Der Unterschied liegt auch in der Ausrichtung der Kommunikation: Publisher-Subscriber ist für Teilnehmer auf der gleichen Ebene und Client-Server für unterschiedliche Ebenen.

- ² Ganz korrekt ist bei der Manchester-Codierung eine 1 ein 0-zu-1-Übergang in der Bitmitte, eine 0 ist ein 1-zu-0-Übergang.
- ³ Ein logischer Token ist wie ein Stab, den sich die Master weitergeben. Wer den Stab hat, ist zu diesem Zeitpunkt der Master auf dem Bus.

 ⁴ Im Feldbus-Einsatz spielt UDP/IP eigentlich die wich-
- tigere Rolle.
- ⁵ Die günstigen Preise haben sich für die industriellen Komponenten leider noch nicht bewahrheitet.
- ⁶ Die Norm IEC 61784-2 sollte im Oktober 2004 ratifiziert werden, die Mitglieder wurden sich jedoch nicht einig. Nun spielen (firmen-)politische Kräfte; technisch dürfte die Norm kaum noch Bedeutung haben, da diverse (inkompatible) Systeme darin aufgenommen wer-

Les bus de terrain remplacent les enchevêtrements de câbles

Série d'articles consacrés à l'automation: Communication (3)

S'il faut attendre 10 secondes pour que la page Internet se forme, cela ne dérange personne. Mais si le robot déplace sa tête de soudage dans la mauvaise direction durant 10 secondes, la voiture sur la chaîne de montage est détruite. C'est pourquoi commandes, palpeurs et actionneurs de positionnement fonctionnent par l'intermédiaire de bus de terrain qui garantissent à l'utilisateur que les données de base, comme le temps de cycle, sont respectées.

Zu kaufen gesucht

gebrauchte Stromaggregate und Motoren

(Diesel oder Gas) ab 250 bis 5000 kVA, alle Baujahre, auch für Ersatzteile

LIHAMLI

Postfach 51, 5595 Leende - Holland Tel. +31 (0) 40 206 14 40, Fax +31 (0) 40 206 21 58

E-Mail: sales@lihamij.com

Vereinfacht:

aequus, aequa, aequum lat. = flach, eben, waagrecht im Sport: ex-aequo = im gleichen Rang