Zeitschrift: bulletin.ch / Electrosuisse
Herausgeber: Electrosuisse

Band: 96 (2005)

Heft: 7

Artikel: Weshalb Open-Source-Software entwickeln?
Autor: Zbinden, Andy

DOl: https://doi.org/10.5169/seals-857784

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-857784
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Softwareentwicklung

Weshalb Open-Source-Software entwickeln?

Zwei Open-Source-Entwickler im Gesprach

Martin F. Krafft, freiberuflicher Debian-Entwickler, und Valéry
Tschopp, Informatikingenieur und SourceForge-Entwickler bei
Switch, sprechen mit Andy Zbinden, Teamleiter der Switch-inter-
nen Gruppe System Engineering und Support, dartber, weshalb
sie fur die Open Source Community entwickeln.

Zbinden: Ihr entwickelt beide Soft-
ware fiir die Open Source Community,
weshalb?

Tschopp: Switch" wollte das so. Das
Einfachste war, eine Open-Source-Infra-
struktur wie SourceForge zu benutzen,
damit alle weiterentwickeln kénnen und
damit das Projekt dann fiir alle zur Verfii-
gung steht. Mehrere Entwickler in Bern

Andy Zbinden

und Ziirich arbeiten schon daran. Es ist
also einfacher, ein zentrales Concurrent
Versions System Repository zu haben,
das ist perfekt bei SourceForge. Man
sieht, was geédndert wurde.

Krafft: Ich mache das, weil ich selber
auch Benutzer der Open Source Commu-
nity bin. Neue Funktionalitit und neue
Eigenschaften sind in Open-Source-Pro-
dukten schneller implementiert als in
kommerziellen Programmen. Die Grund-
idee ist: Ich finde eine Software gut und
steuere etwas bei. Ich kann sie selber
meinen Bediirfnissen anpassen, Fehler
beheben, von mir gewiinschte Eigen-
schaften einbauen und anderen zur Verfii-
gung stellen. Ich bin nicht vom Hersteller
abhiingig, ich bin nicht nur auf die Funk-
tionalitidt gestellt, die der Hersteller fiir
notig hilt, sondern kann umsetzen, was
ich wirklich brauche.

Tschopp: Das ist ein wichtiger Punkt.
Du kannst Erweiterungen machen! Wenn
dir ein Stiick nicht gefillt, dann baust du
dir selber ein passendes. Du musst nicht
ein Mail an einen Unbekannten senden
und hoffen, dass es irgendwann beriick-
sichtigt wird. Man macht die Anderung
und hat sie sofort zur Verfiigung. Man

Bulletin SEV/VSE 7/05

kann mit den eigenen Erweiterungen
weiterarbeiten und ist trotzdem kompati-
bel. Deshalb ist der Zugang auf das Cen-
tral Repository natiirlich sehr wichtig.

Zbinden: Wie ist das denn mit der Soft-
ware, wenn so viele dran arbeiten? Ver-
astelt sie sich nicht auf unzdhlige Varian-
ten?

Krafft: Die verschiedenen Aste wer-
den parallel entwickelt und fliessen dann
wieder in die Hauptlinie ein. Die Erfah-
rung zeigt, dass es unwahrscheinlich ist,
dass zwei Personen gleichzeitig an der
gleichen Zeile feilen. Es gibt Software,
die solche unabhiingigen Anderungen zu-
sammenfiihren und sogar Konflikte behe-
ben kann (z.B. CVS).

Tschopp: Stimmt. Wenn man ein Fea-
ture zufiigt oder ein Problem 16st, ergibt
das nicht eine neue Software. Die Ande-
rung wird im neuen Release integriert
sein.

Krafft: Der wichtigere Aspekt von
Open Source ist die weltweite Zu-
sammenarbeit. Dadurch wird die Soft-
ware flexibel, universell, und Fehler wer-
den rund um die Uhr gefunden.

Zbinden: Wie sieht denn diese Zusam-
menarbeit aus?

Krafft: Firmen sind lokal, man sieht
sich tiglich, teilt die gleichen Riume.
Open Source erfordert weltweite Koope-
ration und Kommunikation, in einem
Projekt arbeite ich zum Beispiel mit je-
mandem in Australien zusammen und wir
kommunizieren #dusserst effizient. In der
Open Source Community sind Kommu-
nikationsmedien wie Mailinglisten und
IRC-Chat unverzichtbar.

Tschopp: In unserem Projekt haben
wir keine Probleme mit der Kommunika-
tion. Der Uberblick bei drei oder vier
Leuten ist einfach. Bei Open Source hat
man generell keine Koordinationsstelle.
Die Leute machen, wovon sie fiihlen,
dass es richtig oder wichtig ist. Was man
braucht, ist Vertrauen, dass das, was die
anderen hinzufiigen, sich lohnt. Ein einzi-
ger Mensch konnte alles zerstoren.

Krafft: Vertrauen ist eine grundle-
gende Voraussetzung, aber nicht das ein-
zige Mittel, sonst wiren wir schnell am
Ende. Die Verwaltungssoftware ermog-
licht uns jederzeit ein Riickgidngigma-
chen von Anderungen.

Tschopp: Das braucht aber viel Zeit,
besonders im Fall eines Ausfalls, Fehlers,
von Storung, Sabotage.

Krafft: Aus diesem Grund muss man
sich den Zugriff auf das Softwarearchiv
erst erarbeiten, zum Beispiel indem man
indirekt aushilft. Dadurch kann viel Zer-
storerischem vorgebeugt werden. Wenn
jemandem ein zerstorerischer Akt nach-
gewiesen werden kann, wird er augen-
blicklich rausgeschmissen. Die Versions-

Valéry Tschopp entwickelt bei
Switch das AAl-Portal, das auf
Shibboleth-Software basiert. AAl ist
ein verteiltes Authentisierungs- und
Autorisierungs-System. Er arbeitet
mit zwei andern Entwicklern zusam-
men, das Projekt wird von Source-
Forge gehostet. Bei Shibboleth hat
Tschopp nicht selber Zugang zum
Central Repository, sondern schickt
seine Erweiterungen in Form von
Patches an einen Entwickler, der sie
dann ins Gesamtprojekt einfliessen
lasst.

tschopp@switch.ch

Martin F. Krafft ist Debian-Entwick-
ler und -Evangelist und schrieb ein
Buch mit dem Titel «The Debian
System». Es richtet sich an erfah-
rene Administratoren, die Debian
einsetzen respektive eine Entschei-
dungshilfe brauchen. Es erschien im
Februar bei OpenSourcePress.de.
madduck@debian.org

articles spécialisés



fachbeitrage

Softwareentwicklung

Software kann seine Anderungen eindeu-
tig identifizieren und wieder entfernen.

Zbinden: Wie geht das?

Krafft: Man lisst sich die Anderungen
von X in der fraglichen Zeitperiode an-
zeigen, geht dann jede Anderung durch
und analysiert sie. Das muss ein Mensch
entscheiden, die Software kann das nicht
selber.

Wenn so was passiert, werden die Be-
nutzer iiber die Ausmasse des «Ein-
bruchs» informiert. Der Debian Social
Contract, sozusagen unser Leitdokument,
schreibt vor, dass wir keine Probleme
verstecken. Wir setzen alles daran, um die
Verschlechterung des Problems auszu-
schliessen, und informieren alle Benut-
zer, denn ein Benutzer mochte entschei-
den konnen, ob er mit dem Fehler leben
will oder nicht. Natiirlich machen wir uns
daran, den Fehler auszumerzen, meist in
Zusammenarbeit mit dem Autor des be-
troffenen Produktes. Wir withnen unsere
Benutzer also nicht in falscher Sicherheit,
wie das in anderen Firmen der Fall ist, wo
man erst Monate spiter erfihrt, dass die
Software die ganze Zeit anfillig war.

Tschopp: Das ist so. Der Entwickler
ist durch die Zugangsregelung zum Cen-
tral Repository bekannt. Das heisst, er-
stens: er muss ein Stiick Software zeigen,
zweitens: die Leute finden es gut, drit-
tens: er muss sich regelkonform verhal-
ten. Die Regeln sind ungeschrieben:
Ethikverstindnis beispielsweise.

Krafft: Um Debian-Entwickler zu
werden, bedarf es mehrerer Schritte. Ers-
tens: Der Entwickler muss sich einen
kryptografischen Schliissel besorgen, den
er von einem bereits eingetragenen Ent-
wickler signieren lassen muss, unter Vor-
zeigen einer Identititskarte oder eines an-

10

«Wenn dir ein Stiick nicht
gefallt, dann baust du dir
selber ein passendesn,
Valéry Tschopp (Mitte) zu
Open Source.

3 ~

Quelle: Switch

deren amtlichen Papiers, das seinen
Namen beglaubigt. Zweitens: Er muss
seine Fihigkeit unter Beweis stellen, d.h.
er muss ein Debian-Paket packen, mit
einem Betreuer zusammen. Es geht hier
darum, dass er die Methoden und Prakti-
ken kennt, um dann regelkonform zu
sein.

Tschopp: Nicht einfach.

Krafft: Richtig. Es gibt aber Leute, die
legen ein Paket vor, da muss ich sagen:
«He, warum hast du dich nicht schon vor
einem Jahr beworben?» Drittens: Er muss
sich mit drei Dokumenten vertraut ma-
chen: dem Social Contract, den Free-
Software-Richtlinien und dem Policy
Manual. Diese Dokumente werden abge-
fragt, und wir setzen auch voraus, dass
der Bewerber sich gut in der Debian-Ge-
meinschaft bewegen kann. All das trigt
hauptsichlich zur Stirke des Betriebssys-
tems bei.

Tschopp: Gibt es in einem der Doku-
mente Richtlinien tiber Coding Style?

Krafft: Nein. Die Fragen um den
Quelltext sind jedem Projekt selbst iiber-

Quelle: Switch.

«lch entwickle fiir die Open Source Community, weil
ich selber auch Benutzer binn, Martin F. Krafft.

lassen. Es geht um die Richtlinien fiir das
System, die Regeln, die es 10000 Pake-
ten ermoglichen, friedlich parallel instal-
liert zu sein. Der Prozess, einen Entwick-
ler aufzunehmen, dauert sicherlich zwei
Monate und ist nicht einfach; wir wollen
schliesslich auch nur dedizierte Leute in
unseren Kreis aufnehmen. Demnach ist
ein Debian-Entwickler auch stolz darauf
und setzt diesen Status nicht leichtfertig
aufs Spiel (z.B. durch mutwillige Zersto-
rung). Wenn er rausgeschmissen wird,
braucht er eine Vierfiinftelmehrheit, die
ihn wieder zulassen will. Bislang ist noch
nie jemand rausgeworfen worden.

Zbinden: Ist das in deiner Welt an-
ders?

Tschopp: Sehr. Wir drei in unserem
Projektteam machen kein Package, das in
eine offizielle Distribution eingefiigt
wird. Wenn ich das Paket in die Debian-
Distribution bringen wollte, miisste ich
die von dir geschilderte Prozedur durch-
wandern.

Krafft: Oder jemanden finden wie
mich, der es fiir dich verpackt.

Oder du verpackst es und ich «spon-
sere» das Paket: ich schaue es an und
fiige es hinzu, wenn es den Qualititsan-
spriichen geniigt. Aber du bist der Paket-
verwalter, also auch weiterhin fiir das
Paket zustindig.

Tschopp: In jedem Fall braucht es eine
Vertrauensperson als Eingangswiichter.

Zbinden: Interessantes Konzept.

Tschopp: Die Open Source Commu-
nity regelt sich selbst. Es sind sehr starke
Regeln, stirker als in einer Firma.

Krafft: Zudem sind der Innovations-
grad und das Potenzial stirker als in einer
Firma.

Tschopp: In einer Firmensoftware
kannst du noch schnell einen Bug einfii-
gen, wenn du gefeuert wirst. Man wird
kaum Moglichkeiten haben, das rauszu-
finden. Wenn du in einer Firma arbeitest,
traut man dir.

Krafft: Von einer Firma bist du exis-
tenziell abhédngig. Du beziehst den Lohn
von ihr. Bei Open Source geht es nicht
um existenzielle Fragen. Da geht es um
deine Ehre. Die Motivation ist da ganz
anders. Viele sehen das als zu idealis-
tisch. Aber es scheint zu funktionieren,
und das mit grossem Erfolg.

Zbinden: Ist nicht auch die physische
Niéihe oder Ferne des Kollegen ein Fak-
tor? In der Firma sieht man sich ja tdig-
lich, da ist die Hemmschwelle doch gros-
ser, etwas Schddliches zu tun, als gegen-
iiber einem unbekannten Gesicht in Aus-
tralien.

Bulletin SEV/AES 7/05



Krafft: Es sind nicht nur die unbe-
kannten Gesichter in Australien. Es geht
auch um die 10000 Entwickler, die un-
zihligen Benutzer, es geht um die Ge-
meinschaft. Auf der anderen Seite ist es ja
auch mein Projekt. Ich setze es ein, es
geht um mich selbst. Wenn ich dem Pro-
jekt schade, dann schneide ich mir ins ei-
gene Fleisch. In einer Firma trigt die
Firma die Last von Schiden, nicht der
Einzelne. Ich kann mich nicht erinnern,
dass bei Debian mal ein Fall eingetroffen
ist, wo...

Tschopp: Da hat doch im letzten Jahr
jemand einen Bufferoverflow in einen
Befehl im Kernelmodul eingebaut. Mit
gestohlenem PGP-Key. Aber 10 Leute
haben gestutzt, warum das File nun gein-
dert hat, und haben die Anderungen
untersucht.

Erafft: Tst mir von Debian nicht be-
kannt.

Tschopp: Stimmt, da war das Linux-
Kernel-Source-Projekt direkt betroffen.

Krafft: In einer Instant-Messager-Soft-
ware gab es einen von frither geerbten
Hackercode. Man hat das Paket dann als
Ganzes entfernt. Der Entwickler der Soft-
ware hat sich ins eigene Fleisch geschnit-
ten, denn er hat die meisten Benutzer ver-
loren, die er durch Debian hatte.

Tschopp: Das ist ein wichtiger Punkt.
Die Leute sollen meine Software benut-
zen, denn dies ist die einzige Anerken-
nung, die ich bekommen kann.

Krafft: Auch. Fiir mich zéhlt aber vor
allem die Resonanz, die ich erhalte. Die
Benutzer sorgen dafiir, dass neue Eigen-
schaften dazukommen und Fehler gefun-
den werden. So gesehen ist Open Source
immer Beta-Software. Sie ist nie wirklich
fertig. Man muss ja auch nichts verkau-
fen. Je mehr Benutzer ein Projekt hat,
desto schneller kann die Entwicklung
voranschreiten.

Zbinden: Wird die Software denn
immer grosser?

Tschopp: Das ist eine Frage des Ziels.
Irgendwann ist ein Ziel erreicht, dann
kann es um Optimierung oder Refacto-
ring eines Teiles gehen.

Krafft: Man hilt das Projekt so einfach
wie moglich. KISS — keep it short and
simple. Wenn das Projekt an Featuritis
leidet, geht das auf Kosten von Sicherheit
und Stabilitit. Das Debian-Projekt hat
sich in vier Jahren verfiinffacht, heute
sind es 15000 Pakete. Das wird auch als
Problem erkannt. Die Struktur des Soft-
ware Repository muss diese Kapazitit
aufnehmen kénnen.

Benutzer empfinden diese Menge an
Paketen zum Teil als unangenehm; einen
aus 72 Editoren auszuwihlen ist ein Rie-

Bulletin SEV/VSE 7/05

Andy Zbinden (Mitte)
|eitet das Gesprach mit
den Open-Source-Ent-
wicklern Martin F. Krafft
(links) und Valéry Tschopp
(rechts).

senaufwand. Der Unterschied ist dann
auch nicht mehr so gross. Es gibt Uber-
schneidungen. Und bei grosserer Anzahl
an Programmen ist die Wahrscheinlich-
keit von Sicherheitsproblemen dement-
sprechend hoher.

Tschopp: Gewisse Firmen haben ge-
nau einen Editor. Der kann unméglich die
Anforderungen aller Benutzer erfiillen,
auch wenn er riesengross wird. Gut ist,
funf oder sechs verschiedene Anwen-
dungsgebiete mit fiinf oder sechs ver-
schiedenen Softwares zu bedienen. Ein
einziges Monster ist schlecht, 23 Mons-
ter, die sich kaum unterscheiden, sind
auch schlecht. Ein kleiner, aber guter Zoo
ist viel besser.

Zbinden: Wie sieht’s denn aus mit der
Kommunikationsmenge?

Krafft: Ganz wichtig sind die Mailing-
listen. Es kostet viel Zeit. Bei einer Betei-
ligung von 10000 Leuten konnte das ei-
gentlich ein Vollzeitjob sein.

Tschopp: Shibboleth hat etwa 20
Mails am Tag. Auch da ist es schon
schwierig, zu folgen. Das muss man fast,
denn man mochte ja den Uberblick behal-
ten, um Trends zu erkennen.

Krafft: Ein Bug/Request-Tracker ist
dhnlich wichtig. Die Informationen sind
darin sehr strukturiert. Fiir die 20-30 Pa-
kete, die ich betreue, kommen so zirka 10
Fehlermeldungen pro Woche.

Tschopp: Nicht jeder gemeldete Feh-
ler ist ein Fehler.

Krafft: Und die Benutzer schauen
nicht, ob schon jemand den gleichen Feh-
ler gemeldet hat. Manches ist auch ein-
fach ein Wunsch.

Tschopp: Oder der Benutzer hat etwas
falsch verstanden oder falsch angewen-
det.

Krafft: Das ist auch ein Fehler.

Tschopp: In der Dokumentation.

Softwareentwicklung

Krafft: Und nicht jeder Minifehler
wird zu einem neuen Release. Ich priori-
siere die Fehler nach Dringlichkeit und
Lust. Ein Monat Reaktionszeit fiir einen
neuen Release ist bei meinen Projekten
okay, ich habe nichts Sicherheitsrelevan-
tes wie ssh oder libc, die sofort behandelt
werden miissen.

Es ist nicht selten, dass ein anderer
Entwickler oder sogar der Benutzer selbst
einen Fehler in meiner Software repariert
und mir die relevanten Anderungen zu-
kommen ldsst, mit der Bitte, sie einflies-
sen zu lassen.

Wenn es eilt, ich beispielsweise einen
Fehler in ssh entdecken wiirde und der
Verwalter von ssh ist nicht erreichbar,
dann kann ich die Korrektur auch selber
veroffentlichen, als so genannten NMU
(Non Maintainer Upload). Der Verwalter
kann dann darauf basierend seine niichste
offizielle Version herausgeben.

Tschopp: Bei meinem Projekt bin ich
der Hauptbenutzer. Eine To-do-Liste zum
Priorisieren haben wir trotzdem, die ist
sehr praktisch. Auch zum Auseinander-

Quelle: Switch

«Die Open Source Community regelt sich selbst. Es
sind sehr starke Regeln, starker als in einer Firman,
Valéry Tschopp (links) tiber die Qualitat von Open-
Source-Software.

articles spécialisés




fachbeitrage

Softwareentwicklung

Glossar

Central Repository

Zentraler Softwarespeicher, siehe
auch Concurrent Versions System
Concurrent Versions System

Ein System zur Verwaltung von Soft-
ware und Softwareteilen

Debian Social Contract

Die gesellschaftliche Grundlage der
Gemeinschaft fur freie Software -
http://www.debian.org/social_con-
tract.html

Open Source

Freie Software, frei zuganglicher
Quellcode, unentgeltlich zu benut-
zen, bzw. das diesem zugrunde lie-
gende Konzept

Open Source Community
Die Gemeinschaft der Entwickler
von freier Software

SourceForge

Der nach eigenen Angaben grdsste
Speicher flir Open-Source-Software
— http://www.sourceforge.net

halten von Bugs, Features, Erweiterun-
gen und Vereinfachungen. Bei Fragen
nach Erweiterungen kommt oft auch die
Frage, wie aufwindig es denn sei, wann
es eingebaut wird und ob iiberhaupt.

Zbinden: Wo ist diese To-do-Liste?
Lokal auf deiner Harddisk?

Tschopp: Beides, lokal und ein Teil
davon ist publiziert. Auf der publizierten
sehen andere Leute, was ansteht, und
konnen spontan mitarbeiten.

Zbinden: Das mit dem Mitarbeiten ist
bestechend, aber wie ist es, wenn man im
Fremdteil einen Bug entdeckt? Wie
schwierig ist der Code zu lesen, wenn
man keine Coding-Richtlinien hat?

Krafft: Innerhalb des Projektes gibt es
schon Normen. Es ist nicht immer klug,
ein C++-Projekt zum Beispiel mit Py-
thon-Extensions zu ergédnzen. Dann
wiirde der Entwickler diesen Teil an sich
reissen, wenn die anderen das nicht be-
herrschen. Das ist unsinnig. Projektspezi-
fische Coding-Guidelines sind meist
ziemlich pedantisch, aber auch offen fiir
Anderungen, um das Projekt dynamisch
zu halten.

Tschopp: Das ist auch wichtig. Der
Code muss schnell und einfach lesbar
sein, mit Kommentaren versehen, mit
sinnvollen Variablen-Namen. Das sind
ungeschriebene Gesetze, eine Art Meta-
gesetze.

Krafft: Aufgrund der Selbstprofilie-
rung will der Entwickler zeigen, was er

12

drauf hat, fast ein bisschen angeben.
Wenn ich was fiir mich mache, dauert das
nur halb so lange wie ein Open-Source-
Projekt, denn Letzteres ist irgendwie wie
ein Brief, den man nach der ersten Fas-
sung in Reinschrift veredelt. Damit kann
man sich einen Ruf aufbauen: «Ja, der
schreibt tollen Code, mit dem arbeite ich
gerne zusammen.»

Tschopp: Man zeigt seine Fihigkeiten
als Entwickler. Die Qualitiit des Produk-
tes ist nicht nur an der Funktionalitit
messbar, sondern auch daran, wie es ge-
schrieben ist. Alle Konzepte von Soft-
wareentwicklung sind drin, aus diesem
Grunde ist eine Open Source Community
moglich. Und dank dem Central Reposi-
tory, und Versioning, und IRC, und Mail.
Friiher hatte man diese Hilfsmittel nicht,
da war alles viel schwieriger.

Zbinden: Habt ihr Wiinsche an die Be-
nutzer eurer Projekte?

Krafft: Feedback. Konstruktives Feed-
back. Anhand von Feedback sehen wir,
ob die Benutzer zufrieden sind. Und
manchmal haben sie auch Visionen fiir
weitere Verwendungen des Projektes. So
bleibt das Produkt interessant und kon-
kurrenzfihig.

Tschopp: Feedback. Das ist das Wich-
tigste. Um mehrere Gesichtspunkte zu
haben, muss ich Feedback von den Be-
nutzern bekommen: um herauszufinden,
ob ich auf dem richtigen Weg bin, ob ich
in die richtige Richtung gehe, ob das auch
jemand braucht.

Feedback macht wirklich Spass, auch
Bug-Meldungen. Dann sieht man, dass
jemand die Software benutzt.

Krafft: Ich darf jedem Benutzer auch
empfehlen, selbst auf Fragen in den Mai-
linglisten zu antworten, wenn man die
Antwort kennt. Und das nicht nur, um uns
Arbeit abzunehmen, sondern vor allem
wegen des Lerneffektes.

Zbinden: Auf welche Weise bezie-
hungsweise wohin wollt ihr den Feed-
back?

Krafft: debian-user @lists.debian.org
ist vielleicht die beste Adresse. Generell
ist es jedoch besser, erst kleinere Kreise
anzusprechen und zum Beispiel debian-x
anzuschreiben, wenn es sich um ein Pro-
blem mit dem X-Server handelt.

debian-user ist das Auffangbecken.
Aber je spezifischer, desto besser.

Tschopp: Jedes Projekt hat an promi-
nenter Stelle seinen Kontakt: im About
oder in der Authors-Datei steht, von wem
die Software entwickelt wurde und an
wen man Feedback schicken kann. Jedes
Projekt hat eine E-Mail-Adresse.

Zbinden: Vielen Dank.

Angaben zum Autor

Andy Zbinden arbeitet seit 10 Jahren bei Switch.
1998 wechselte er von der Netzwerk- in die System-
gruppe und bernahm vor gut 3 Jahren eine leitende
Funktion. Heute ist er Teamleiter der Gruppe System
Engineering und Support der Switch-internen IT-
Dienstleistungsabteilung. Abdruck mit freundlicher
Genehmigung aus dem Switch-Journal; Ausgabe Juni
2004.

Switch, 8021 Zirich, zbinden@switch.ch

! Switch betreibt das Netzwerk zwischen den Schweizer
Universititen und verbindet diese mit dem Internet.
Zudem ist Switch zustindig fiir die Schweizer Domain-
Namen.

Open-Source?

munity.

Pourquoi développer du logiciel

Deux développeurs Open-Source s’entretiennent

Martin F. Krafft, développeur Debian indépendant, et Valéry Tschopp, ingé-
nieur en informatique et développeur SourceForge chez Switch, s’entretiennent
avec Andy Zbinden, du groupe interne System Engineering and Support chez
Switch, sur les raisons pour lesquelles ils développent pour 1’Open Source Com-

Bulletin SEV/AES 7/05



	Weshalb Open-Source-Software entwickeln?

