
Zeitschrift: bulletin.ch / Electrosuisse

Herausgeber: Electrosuisse

Band: 96 (2005)

Heft: 7

Artikel: Weshalb Open-Source-Software entwickeln?

Autor: Zbinden, Andy

DOI: https://doi.org/10.5169/seals-857784

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-857784
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Softwareentwicklung

Weshalb Open-Source-Software entwickeln?
Zwei Open-Source-Entwickler im Gespräch

Martin F. Krafft, freiberuflicher Debian-Entwickler, und Valéry
Tschopp, Informatikingenieur und SourceForge-Entwickler bei

Switch, sprechen mit Andy Zbinden, Teamleiter der Switch-internen

Gruppe System Engineering und Support, darüber, weshalb
sie für die Open Source Community entwickeln.

Zbinden: Ihr entwickelt beide
Software für die Open Source Community,
weshalb?

Tschopp: Switch" wollte das so. Das
Einfachste war, eine Open-Source-Infra-
struktur wie SourceForge zu benutzen,
damit alle weiterentwickeln können und
damit das Projekt dann für alle zur Verfügung

steht. Mehrere Entwickler in Bern

Andy Zbinden

und Zürich arbeiten schon daran. Es ist
also einfacher, ein zentrales Concurrent
Versions System Repository zu haben,
das ist perfekt bei SourceForge. Man
sieht, was geändert wurde.

Krafft: Ich mache das, weil ich selber
auch Benutzer der Open Source Community

bin. Neue Funktionalität und neue

Eigenschaften sind in Open-Source-Pro-
dukten schneller implementiert als in
kommerziellen Programmen. Die Grundidee

ist: Ich finde eine Software gut und
steuere etwas bei. Ich kann sie selber
meinen Bedürfnissen anpassen. Fehler
beheben, von mir gewünschte
Eigenschaften einbauen und anderen zur Verfügung

stellen. Ich bin nicht vom Hersteller
abhängig, ich bin nicht nur auf die
Funktionalität gestellt, die der Hersteller für
nötig hält, sondern kann umsetzen, was
ich wirklich brauche.

Tschopp. Das ist ein wichtiger Punkt.
Du kannst Erweiterungen machen! Wenn

dir ein Stück nicht gefällt, dann baust du

dir selber ein passendes. Du musst nicht
ein Mail an einen Unbekannten senden

und hoffen, dass es irgendwann berücksichtigt

wird. Man macht die Änderung
und hat sie sofort zur Verfügung. Man

kann mit den eigenen Erweiterungen
weiterarbeiten und ist trotzdem kompatibel.

Deshalb ist der Zugang auf das Central

Repository natürlich sehr wichtig.

Zbinden: Wie ist das denn mit der
Software, wenn so viele dran arbeiten?
Verästelt sie sich nicht auf unzählige Varianten?

Krafft: Die verschiedenen Äste werden

parallel entwickelt und fliessen dann
wieder in die Hauptlinie ein. Die Erfahrung

zeigt, dass es unwahrscheinlich ist,
dass zwei Personen gleichzeitig an der
gleichen Zeile feilen. Es gibt Software,
die solche unabhängigen Änderungen
zusammenführen und sogar Konflikte beheben

kann (z.B. CVS).
Tschopp: Stimmt. Wenn man ein Feature

zufügt oder ein Problem löst, ergibt
das nicht eine neue Software. Die Änderung

wird im neuen Release integriert
sein.

Krafft: Der wichtigere Aspekt von
Open Source ist die weltweite
Zusammenarbeit. Dadurch wird die Software

flexibel, universell, und Fehler werden

rund um die Uhr gefunden.

Zbinden: Wie sieht denn diese
Zusammenarbeit aus?

Krafft: Firmen sind lokal, man sieht
sich täglich, teilt die gleichen Räume.

Open Source erfordert weltweite Kooperation

und Kommunikation, in einem
Projekt arbeite ich zum Beispiel mit
jemandem in Australien zusammen und wir
kommunizieren äusserst effizient. In der
Open Source Community sind
Kommunikationsmedien wie Mailinglisten und
IRC-Chat unverzichtbar.

Tschopp: In unserem Projekt haben

wir keine Probleme mit der Kommunikation.

Der Überblick bei drei oder vier
Leuten ist einfach. Bei Open Source hat

man generell keine Koordinationsstelle.
Die Leute machen, wovon sie fühlen,
dass es richtig oder wichtig ist. Was man
braucht, ist Vertrauen, dass das, was die
anderen hinzufügen, sich lohnt. Ein einziger

Mensch könnte alles zerstören.

Krafft: Vertrauen ist eine grundlegende

Voraussetzung, aber nicht das

einzige Mittel, sonst wären wir schnell am
Ende. Die Verwaltungssoftware ermöglicht

uns jederzeit ein Rückgängigmachen

von Änderungen.
Tschopp: Das braucht aber viel Zeit,

besonders im Fall eines Ausfalls, Fehlers,

von Störung, Sabotage.
Krafft: Aus diesem Grund muss man

sich den Zugriff auf das Softwarearchiv
erst erarbeiten, zum Beispiel indem man
indirekt aushilft. Dadurch kann viel
Zerstörerischem vorgebeugt werden. Wenn

jemandem ein zerstörerischer Akt
nachgewiesen werden kann, wird er
augenblicklich rausgeschmissen. Die Versions-

Valéry Tschopp entwickelt bei
Switch das AAI-Portal, das auf
Shibboleth-Software basiert. AAI ist
ein verteiltes Authentisierungs- und
Autorisierungs-System. Er arbeitet
mit zwei andern Entwicklern zusammen,

das Projekt wird von SourceForge

gehostet. Bei Shibboleth hat
Tschopp nicht selber Zugang zum
Central Repository, sondern schickt
seine Erweiterungen in Form von
Patches an einen Entwickler, der sie
dann ins Gesamtprojekt einfliessen
lässt.
tschopp@switch. ch

Martin F. Krafft ist Debian-Entwickler
und -Evangelist und schrieb ein

Buch mit dem Titel «The Debian
System». Es richtet sich an erfahrene

Administratoren, die Debian
einsetzen respektive eine
Entscheidungshilfe brauchen. Es erschien im
Februar bei OpenSourcePress.de.
madduck@debian. org

Bulletin SEV/VSE 7/05 9



Softwareentwicklung

Quelle: Switch

Software kann seine Änderungen eindeutig

identifizieren und wieder entfernen.

Zbinden: Wie geht das?

Krafft: Man lässt sich die Änderungen

von X in der fraglichen Zeitperiode
anzeigen, geht dann jede Änderung durch

und analysiert sie. Das muss ein Mensch

entscheiden, die Software kann das nicht
selber.

Wenn so was passiert, werden die
Benutzer über die Ausmasse des

«Einbruchs» informiert. Der Debian Social

Contract, sozusagen unser Leitdokument,
schreibt vor, dass wir keine Probleme
verstecken. Wir setzen alles daran, um die

Verschlechterung des Problems auszu-
schliessen, und informieren alle Benutzer,

denn ein Benutzer möchte entscheiden

können, ob er mit dem Fehler leben

will oder nicht. Natürlich machen wir uns

daran, den Fehler auszumerzen, meist in

Zusammenarbeit mit dem Autor des

betroffenen Produktes. Wir wähnen unsere

Benutzer also nicht in falscher Sicherheit,
wie das in anderen Firmen der Fall ist, wo

man erst Monate später erfährt, dass die

Software die ganze Zeit anfällig war.

Tschopp: Das ist so. Der Entwickler
ist durch die Zugangsregelung zum Central

Repository bekannt. Das heisst,
erstens: er muss ein Stück Software zeigen,
zweitens: die Leute finden es gut,
drittens: er rnuss sich regelkonform verhalten.

Die Regeln sind ungeschrieben:
Ethikverständnis beispielsweise.

Krafft: Um Debian-Entwickler zu
werden, bedarf es mehrerer Schritte.
Erstens: Der Entwickler muss sich einen

kryptografischen Schlüssel besorgen, den

er von einem bereits eingetragenen
Entwickler signieren lassen muss, unter
Vorzeigen einer Identitätskarte oder eines an-

«Wenn dir ein Stück nicht
gefällt, dann baust du dir
selber ein passendes»,
Valéry Tschopp (Mitte) zu
Open Source.

deren amtlichen Papiers, das seinen
Namen beglaubigt. Zweitens: Er muss
seine Fähigkeit unter Beweis stellen, d.h.

er muss ein Debian-Paket packen, mit
einem Betreuer zusammen. Es geht hier
darum, dass er die Methoden und Praktiken

kennt, um dann regelkonform zu
sein.

Tschopp: Nicht einfach.

Krafft: Richtig. Es gibt aber Leute, die
legen ein Paket vor, da muss ich sagen:
«He, warum hast du dich nicht schon vor
einem Jahr beworben?» Drittens: Er muss
sich mit drei Dokumenten vertraut
machen: dem Social Contract, den Free-
Software-Richtlinien und dem Policy
Manual. Diese Dokumente werden abgefragt,

und wir setzen auch voraus, dass

der Bewerber sich gut in der Debian-Ge-
meinschaft bewegen kann. All das trägt
hauptsächlich zur Stärke des Betriebssystems

bei.

Tschopp: Gibt es in einem der Dokumente

Richtlinien liber Coding Style?
Krafft: Nein. Die Fragen um den

Quelltext sind jedem Projekt selbst tiber-

SB!;i
IP

Quelle: Switch

«Ich entwickle für die Open Source Community, weil
ich selber auch Benutzer bin», Martin F. Krafft.

lassen. Es geht um die Richtlinien für das

System, die Regeln, die es 10000 Paketen

ermöglichen, friedlich parallel installiert

zu sein. Der Prozess, einen Entwickler

aufzunehmen, dauert sicherlich zwei
Monate und ist nicht einfach; wir wollen
schliesslich auch nur dedizierte Leute in
unseren Kreis aufnehmen. Demnach ist
ein Debian-Entwickler auch stolz darauf
und setzt diesen Status nicht leichtfertig
aufs Spiel (z.B. durch mutwillige Zerstörung).

Wenn er rausgeschmissen wird,
braucht er eine Vierfünftelmehrheit, die
ihn wieder zulassen will. Bislang ist noch
nie jemand rausgeworfen worden.

Zbinden: Ist das in deiner Welt
anders?

Tschopp: Sehr. Wir drei in unserem
Projektteam machen kein Package, das in
eine offizielle Distribution eingefügt
wird. Wenn ich das Paket in die Debian-
Distribution bringen wollte, müsste ich
die von dir geschilderte Prozedur
durchwandern.

Krafft: Oder jemanden finden wie
mich, der es für dich verpackt.

Oder du verpackst es und ich «sponsere»

das Paket: ich schaue es an und
füge es hinzu, wenn es den Qualitätsansprüchen

genügt. Aber du bist der
Paketverwalter, also auch weiterhin für das
Paket zuständig.

Tschopp: In jedem Fall braucht es eine

Vertrauensperson als Eingangswächter.

Zbinden: Interessantes Konzept.
Tschopp: Die Open Source Community

regelt sich selbst. Es sind sehr starke
Regeln, stärker als in einer Firma.

Krafft: Zudem sind der Innovationsgrad

und das Potenzial stärker als in einer
Firma.

Tschopp: In einer Firmensoftware
kannst du noch schnell einen Bug einfügen,

wenn du gefeuert wirst. Man wird
kaum Möglichkeiten haben, das rauszu-
finden. Wenn du in einer Firma arbeitest,
traut man dir.

Krafft: Von einer Firma bist du exis-
tenziell abhängig. Du beziehst den Lohn
von ihr. Bei Open Source geht es nicht
um existenzielle Fragen. Da geht es um
deine Ehre. Die Motivation ist da ganz
anders. Viele sehen das als zu idealistisch.

Aber es scheint zu funktionieren,
und das mit grossem Erfolg.

Zbinden: Ist nicht auch die physische
Nähe oder Ferne des Kollegen ein Faktor?

In der Firma sieht man sich ja
täglich, da ist die Hemmschwelle doch grösser,

etwas Schädliches zu tun, als gegenüber

einem unbekannten Gesicht in
Australien.

10 Bulletin SEV/AES 7/05



Softwareentwicklung

Krafft: Es sind nicht nur die
unbekannten Gesichter in Australien. Es geht
auch um die 10000 Entwickler, die
unzähligen Benutzer, es geht um die
Gemeinschaft. Auf der anderen Seite ist es ja
auch mein Projekt. Ich setze es ein, es

geht um mich selbst. Wenn ich dem Projekt

schade, dann schneide ich mir ins

eigene Fleisch. In einer Firma trägt die
Firma die Last von Schäden, nicht der
Einzelne. Ich kann mich nicht erinnern,
dass bei Debian mal ein Fall eingetroffen
ist, wo...

Tschopp: Da hat doch im letzten Jahr

jemand einen Bufferoverflow in einen
Befehl im Kernelmodul eingebaut. Mit
gestohlenem PGP-Key. Aber 10 Leute
haben gestutzt, warum das File nun geändert

hat, und haben die Änderungen
untersucht.

Krafft: Ist mir von Debian nicht
bekannt.

Tschopp: Stimmt, da war das Linux-
Kernel-Source-Projekt direkt betroffen.

Krafft: In einer Instant-Messager-Soft-
ware gab es einen von früher geerbten
Hackercode. Man hat das Paket dann als

Ganzes entfernt. Der Entwickler der Software

hat sich ins eigene Fleisch geschnitten,

denn er hat die meisten Benutzer
verloren, die er durch Debian hatte.

Tschopp: Das ist ein wichtiger Punkt.
Die Leute sollen meine Software benutzen,

denn dies ist die einzige Anerkennung,

die ich bekommen kann.

Krafft: Auch. Für mich zählt aber vor
allem die Resonanz, die ich erhalte. Die
Benutzer sorgen dafür, dass neue
Eigenschaften dazukommen und Fehler gefunden

werden. So gesehen ist Open Source
immer Beta-Software. Sie ist nie wirklich
fertig. Man muss ja auch nichts verkaufen.

Je mehr Benutzer ein Projekt hat,
desto schneller kann die Entwicklung
voranschreiten.

Zbinden: Wird die Software denn
immer grösser?

Tschopp: Das ist eine Frage des Ziels.
Irgendwann ist ein Ziel erreicht, dann
kann es um Optimierung oder Refacto-
ring eines Teiles gehen.

Krafft: Man hält das Projekt so einfach
wie möglich. KISS - keep it short and

simple. Wenn das Projekt an Featuritis
leidet, geht das auf Kosten von Sicherheit
und Stabilität. Das Debian-Projekt hat
sich in vier Jahren verfünffacht, heute
sind es 15000 Pakete. Das wird auch als

Problem erkannt. Die Struktur des

Software Repository muss diese Kapazität
aufnehmen können.

Benutzer empfinden diese Menge an
Paketen zum Teil als unangenehm; einen

aus 72 Editoren auszuwählen ist ein Rie-

Andy Zbinden (Mitte)
leitet das Gespräch mit
den Open-Source-Ent-
wicklern Martin F. Krafft
(links) und Valéry Tschopp
(rechts).

senaufwand. Der Unterschied ist dann
auch nicht mehr so gross. Es gibt
Überschneidungen. Und bei grösserer Anzahl
an Programmen ist die Wahrscheinlichkeit

von Sicherheitsproblemen
dementsprechend höher.

Tschopp: Gewisse Firmen haben
genau einen Editor. Der kann unmöglich die

Anforderungen aller Benutzer erfüllen,
auch wenn er riesengross wird. Gut ist,
fünf oder sechs verschiedene
Anwendungsgebiete mit fünf oder sechs
verschiedenen Softwares zu bedienen. Ein
einziges Monster ist schlecht, 23 Monster,

die sich kaum unterscheiden, sind
auch schlecht. Ein kleiner, aber guter Zoo
ist viel besser.

Zbinden: Wie sieht's denn aus mit der
Kommunikationsmenge?

Krafft: Ganz wichtig sind die Mailinglisten.

Es kostet viel Zeit. Bei einer
Beteiligung von 10000 Leuten könnte das

eigentlich ein Vollzeitjob sein.

Tschopp: Shibboleth hat etwa 20
Mails am Tag. Auch da ist es schon

schwierig, zu folgen. Das muss man fast,
denn man möchte ja den Überblick behalten,

um Trends zu erkennen.

Krafft: Ein Bug/Request-Tracker ist
ähnlich wichtig. Die Informationen sind
darin sehr strukturiert. Für die 20-30
Pakete, die ich betreue, kommen so zirka 10

Fehlermeldungen pro Woche.

Tschopp: Nicht jeder gemeldete Fehler

ist ein Fehler.

Krafft: Und die Benutzer schauen
nicht, ob schon jemand den gleichen Fehler

gemeldet hat. Manches ist auch
einfach ein Wunsch.

Tschopp: Oder der Benutzer hat etwas
falsch verstanden oder falsch angewendet.

Krafft: Das ist auch ein Fehler.

Tschopp: In der Dokumentation.

Krafft: Und nicht jeder Minifehler
wird zu einem neuen Release. Ich priori-
siere die Fehler nach Dringlichkeit und
Lust. Ein Monat Reaktionszeit für einen

neuen Release ist bei meinen Projekten
okay, ich habe nichts Sicherheitsrelevantes

wie ssh oder libc, die sofort behandelt
werden müssen.

Es ist nicht selten, dass ein anderer
Entwickler oder sogar der Benutzer selbst
einen Fehler in meiner Software repariert
und mir die relevanten Änderungen
zukommen lässt, mit der Bitte, sie einflies-
sen zu lassen.

Wenn es eilt, ich beispielsweise einen
Fehler in ssh entdecken würde und der
Verwalter von ssh ist nicht erreichbar,
dann kann ich die Korrektur auch selber
veröffentlichen, als so genannten NMU
(Non Maintainer Upload). Der Verwalter
kann dann darauf basierend seine nächste
offizielle Version herausgeben.

Tschopp: Bei meinem Projekt bin ich
der Hauptbenutzer. Eine To-do-Liste zum
Priorisieren haben wir trotzdem, die ist
sehr praktisch. Auch zum Auseinander-

«Die Open Source Community regelt sich selbst. Es

sind sehr starke Regeln, stärker als in einer Firma»,

Valéry Tschopp (links) über die Qualität von Open-
Source-Software.

Bulletin SEV/VSE 7/05 11



Softwareentwicklung

Glossar
Central Repository
Zentraler Softwarespeicher, siehe
auch Concurrent Versions System
Concurrent Versions System
Ein System zur Verwaltung von Software

und Softwareteilen
Debian Social Contract
Die gesellschaftliche Grundlage der
Gemeinschaft für freie Software -
http://www.debian.org/social_con-
tract.html

Open Source
Freie Software, frei zugänglicher
Quellcode, unentgeltlich zu benutzen,

bzw. das diesem zugrunde
liegende Konzept
Open Source Community
Die Gemeinschaft der Entwickler
von freier Software

SourceForge
Der nach eigenen Angaben grösste
Speicher für Open-Source-Software
- http://www.sourceforge.net

halten von Bugs, Features, Erweiterungen

und Vereinfachungen. Bei Fragen
nach Erweiterungen kommt oft auch die

Frage, wie aufwändig es denn sei, wann
es eingebaut wird und ob überhaupt.

Zbinden: Wo ist diese To-do-Liste?
Lokal aufdeiner Harddisk?

Tschopp: Beides, lokal und ein Teil
davon ist publiziert. Auf der publizierten
sehen andere Leute, was ansteht, und
können spontan mitarbeiten.

Zbinden: Das mit dem Mitarbeiten ist
bestechend, aber wie ist es, wenn man im
Fremdteil einen Bug entdeckt? Wie

schwierig ist der Code zu lesen, wenn
man keine Coding-Richtlinien hat?

Krafft: Innerhalb des Projektes gibt es

schon Normen. Es ist nicht immer klug,
ein C++-Projekt zum Beispiel mit Py-
thon-Extensions zu ergänzen. Dann
würde der Entwickler diesen Teil an sich
reissen, wenn die anderen das nicht
beherrschen. Das ist unsinnig. Projektspezifische

Coding-Guidelines sind meist
ziemlich pedantisch, aber auch offen für
Änderungen, um das Projekt dynamisch
zu halten.

Tschopp: Das ist auch wichtig. Der
Code muss schnell und einfach lesbar
sein, mit Kommentaren versehen, mit
sinnvollen Variablen-Namen. Das sind
ungeschriebene Gesetze, eine Art Meta-

gesetze.
Krafft: Aufgrund der Selbstprofilierung

will der Entwickler zeigen, was er

drauf hat, fast ein bisschen angeben.
Wenn ich was für mich mache, dauert das

nur halb so lange wie ein Open-Source-
Projekt, denn Letzteres ist irgendwie wie
ein Brief, den man nach der ersten

Fassung in Reinschrift veredelt. Damit kann
man sich einen Ruf aufbauen: «Ja, der
schreibt tollen Code, mit dem arbeite ich

gerne zusammen.»
Tschopp: Man zeigt seine Fähigkeiten

als Entwickler. Die Qualität des Produktes

ist nicht nur an der Funktionalität
messbar, sondern auch daran, wie es
geschrieben ist. Alle Konzepte von
Softwareentwicklung sind drin, aus diesem
Grunde ist eine Open Source Community
möglich. Und dank dem Central Repository,

und Versioning, und IRC, und Mail.
Früher hatte man diese Hilfsmittel nicht,
da war alles viel schwieriger.

Zbinden: Habt ihr Wünsche an die
Benutzer eurer Projekte?

Krafft: Feedback. Konstruktives Feedback.

Anhand von Feedback sehen wir,
ob die Benutzer zufrieden sind. Und
manchmal haben sie auch Visionen für
weitere Verwendungen des Projektes. So

bleibt das Produkt interessant und
konkurrenzfähig.

Tschopp: Feedback. Das ist das

Wichtigste. Um mehrere Gesichtspunkte zu
haben, muss ich Feedback von den
Benutzern bekommen: um herauszufinden,
ob ich auf dem richtigen Weg bin, ob ich
in die richtige Richtung gehe, ob das auch

jemand braucht.
Feedback macht wirklich Spass, auch

Bug-Meldungen. Dann sieht man, dass

jemand die Software benutzt.

Krafft: Ich darf jedem Benutzer auch

empfehlen, selbst auf Fragen in den

Mailinglisten zu antworten, wenn man die
Antwort kennt. Und das nicht nur, um uns
Arbeit abzunehmen, sondern vor allem

wegen des Lerneffektes.

Zbinden: Auf welche Weise

beziehungsweise wohin wollt ihr den
Feedback?

Krafft: debian-user@lists.debian.org
ist vielleicht die beste Adresse. Generell
ist es jedoch besser, erst kleinere Kreise
anzusprechen und zum Beispiel debian-x
anzuschreiben, wenn es sich um ein
Problem mit dem X-Server handelt.

debian-user ist das Auffangbecken.
Aber je spezifischer, desto besser.

Tschopp: Jedes Projekt hat an prominenter

Stelle seinen Kontakt: im About
oder in der Authors-Datei steht, von wem
die Software entwickelt wurde und an

wen man Feedback schicken kann. Jedes

Projekt hat eine E-Mail-Adresse.

Zbinden: Vielen Dank.

Angaben zum Autor
Andy Zbinden arbeitet seit 10 Jahren bei Switch.

1998 wechselte er von der Netzwerk- in die Systemgruppe

und übernahm vor gut 3 Jahren eine leitende
Funktion. Heute ist er Teamleiter der Gruppe System

Engineering und Support der Switch-internen IT-

Dienstleistungsabteilung. Abdruck mit freundlicher
Genehmigung aus dem Switch-Journal; Ausgabe Juni

2004.

Switch, 8021 Zürich, zbindenêswitch.ch

1 Switch betreibt das Netzwerk zwischen den Schweizer
Universitäten und verbindet diese mit dem Internet.
Zudem ist Switch zuständig für die Schweizer Domain-
Namen.

Pourquoi développer du logiciel
Open-Source?
Deux développeurs Open-Source s'entretiennent

Martin F. Krafft, développeur Debian indépendant, et Valéry Tschopp,
ingénieur en informatique et développeur SourceForge chez Switch, s'entretiennent
avec Andy Zbinden, du groupe interne System Engineering and Support chez

Switch, sur les raisons pour lesquelles ils développent pour l'Open Source
Community.

12 Bulletin SEV/AES 7/05


	Weshalb Open-Source-Software entwickeln?

