
Zeitschrift: bulletin.ch / Electrosuisse

Herausgeber: Electrosuisse

Band: 94 (2003)

Heft: 9

Artikel: Un nouveau concept pour améliorer le développement des logiciels
interactifs

Autor: Petitpierre, Claude

DOI: https://doi.org/10.5169/seals-857550

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-857550
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

I
Développement de logiciel

Un nouveau concept pour améliorer le
développement des logiciels interactifs

Pour traiter l'interactivité, la plupart des environnements de

développement utilisent un concept de gestion des événements

particulier (appelé listener en Java). Ce concept offre peu de

contrôle car ces listeners peuvent en effet autoriser de très
nombreuses séquences d'actions parasites que le développeur de

logiciel a beaucoup de peine à identifier et qu'il ne peut donc

pas vérifier proprement. Cet article présente une alternative aux
listeners, basée sur le concept de processus ou pseudo-parallélisme,

qui rend les programmes interactifs beaucoup plus précis

et plus facile à mettre en œuvre.

La mise en service du système
informatique utilisé par la société Billetel pour
la vente de billets de théâtre et de concert
fut un cauchemar. Alors que ce service

devait introduire la vente par Internet, il
n'a même pas été à même de fournir le

service de base et a paralysé pendant de

longs mois la vente des billets de la plu-

Claude Petitpierre

part des manifestations gérées par cette

société. Cet exemple n'est malheureusement

pas isolé et les applications
d'informatique qui ne satisfont pas leurs utilisateurs

ont englouti des fortunes. D'où
peuvent donc provenir les problèmes de ces

projets
Le laboratoire de téléinformatique

(LTI) à l'EPFL n'a pas analysé le cas
particulier mentionné ci-dessus, mais son

expérience dans le domaine des systèmes
interactifs montre que les difficultés de

ces systèmes proviennent en bonne partie
des pièges que cache la gestion de cette

interactivité. En fait, les pannes des

systèmes interactifs sont difficilement
détectables avant qu'ils soient mis en

charge. Elles ne surviennent pas toujours
au même point des programmes, elles ne

sont pas reproductibles et les méthodes

habituelles de dépannages (dévermineur,
impressions de traces) changent le pro¬

gramme suffisamment pour masquer les

problèmes recherchés et pour en créer de

nouveaux. Finalement les concepts
utilisés pour développer ces systèmes sont
très loin d'être adéquats [1, 2],

Dans les environnements basés sur
Java, l'interactivité est actuellement
traitée au moyen de listeners, un outil,
décrit ci-dessous, qui permet de gérer les
événements extérieurs (arrivée de

messages, clics sur les boutons d'une fenêtre
d'écran, etc.) quel que soit leur ordre
d'arrivée. Les inconvénients des listeners
sont liés au peu de contrôle qu'ils offrent.
Ils autorisent en effet de très nombreuses
séquences d'actions parasites (clic sur un
bouton non prévu à un instant donné,

message arrivant au mauvais moment,
etc.) que le développeur a beaucoup de

peine à identifier et qu'il ne peut donc pas
vérifier proprement. Les considérations
faites dans ce texte sont valables pour la

plupart des autres langages et environnements

de développement car la plupart
d'entre eux utilisent des concepts
semblables à ces listeners.

Dans cet article, une alternative aux
listeners basée sur le concept de processus

ou pseudo-parallélisme sera
présentée. Cette alternative rend les

programmes interactifs beaucoup plus précis
et plus facile à mettre en œuvre. Bien que
les systèmes multi-processus aient la

réputation d'être particulièrement difficiles

à dépanner, la façon proposée de les

mettre en œuvre dans cet article évite ces
difficultés. Les processus ne sont utilisés
ici que pour introduire un peu de parallélisme,

juste le minimum qui permet à

l'application de ne pas attendre
indûment, mais qui n'autorise pas de

séquences d'actions imprévues.
La prochaine section présente un

exemple très simple de programme qui lit
des données dans des fenêtres (figure 1

puis elle démontre les problèmes créés

par son codage au moyen de listeners. La
section d'après présente un nouveau
concept d'objet actif synchrone et son
utilisation pour le codage du même

exemple et finalement la dernière section

-M*i
username: j

Cancel

Figure 1 Une fenêtre pour entrer des données
interactivement

montre que cette technique est compatible

avec l'Unified Modelling Language
(UML), le langage le plus couramment
utilisé pour planifier la construction
d'applications d'informatique.

Exemple d'un programme
utilisant un Graphical User
Interface (GUI)

L'exemple de programme très simple
présenté ci-dessous utilise une interface

pour entrer des données sur l'écran (notée
GUI dans la suite, selon son abréviation
anglaise). Cet exemple sera utilisé pour
montrer comment coder cette application,
tout d'abord a l'aide des listeners définis
par Java, puis au moyen de l'approche du
LTI.

Définition de l'exemple de référence
Le programme de référence doit lire un

nom d'usager puis un mot de passe dans
le même champ de texte, placé dans une
boîte de dialogue semblable à celle qui
est illustrée à la figure 1. L'utilisateur
peut prendre autant de temps qu'il le
désire pour entrer le nom d'usager, mais
une fois qu'il a tapé son nom

Bulletin SEV/VSE 9/03 23

I
Développement de logiciel

Figure 2 Programme basé sur les listeners

- soit il tape un mot de passe dans le

champ;

- soit il appuie le bouton d'interruption
(et la lecture du mot de passe est

interrompue);

- soit une période de temps prédéfinie
est écoulée (et la lecture est interrompue).

Une fois que le nom d'usager et le mot
de passe ont été entrés, le programme doit
les valider et continuer l'application.

Implémentation du programme au
moyen de listeners

La figure 2 montre la structure d'un

programme basé sur des listeners. Ces

listeners sont des objets qui possèdent
des interfaces prédéfinies connues par les

éléments du GUI. Ils sont instanciés et

enregistrés dans les éléments du GUI par
le programme principal et contiennent
soit des appels aux méthodes du

programme principal qui gèrent les événements,

soit directement le code qui gère
les événements.

Le codage de l'exemple au moyen de

ces listeners est imprimé dans les figure 3

et 4. Le programme principal placé dans

la figure 3 instancie la classe ADialog qui
lit le nom d'usager et le mot de passe,
puis il se termine. Le traitement des
résultats est contenu dans une méthode
0continuation) définie dans la même
classe que le programme principal. Cette
continuation est appelée par un des listeners

quand la récupération du nom de

l'usager et du mot de passe est soit
terminée soit interrompue.

La classe ADialog crée la structure
statique de la boîte de dialogue et instancie
et enregistre un listener. Les actions qui
doivent être exécutées pour traiter le nom
d'usager et le mot de passe (lignes 5 et 17

de la figure 4) sont placées dans la
méthode actionPerformed (ligne 3) elle-
même située dans le listener ActionListe-
ner instancié sur la première ligne. Ce lis¬

tener est introduit
dans l'objet champ
de texte par la
méthode addAction-
Listener (ligne 1).
La méthode
actionPerformed est
appelée par le

système chaque
fois que l'utilisateur

du programme
frappe la touche
d'entrée sur son
clavier.

En fait les structures

de ces
modules sont très

mauvaises dans le sens où le premier (figure
3) requiert une méthode de continuation
et que l'ordre dans lequel les lignes du
second (figure 4) sont exécutées ne corres¬

pond pas du tout à l'ordre lexical (c'est-
à-dire l'ordre du texte).

- Les lignes 1 et 2 de la figure 4 sont
exécutées à l'initialisation du

programme.

- Les lignes 3 à 9 et 15 (figure 4) sont
exécutées quand le champ de texte a
été rempli pour la première fois. La
valeur booléenne readUsername a dû
être ajoutée pour indiquer si la
méthode est appelée pour entrer le nom
d'utilisateur ou le mot de passe, bien

que cette variable n'apparût pas dans

la spécification du problème actuel.
D'autre part, la ligne 9 modifie en fait
le programme en cours d'exécution en
introduisant un nouveau listener.

- Les lignes 16 à 20 (figure 4) sont
exécutées après la deuxième fois que le

champ de texte a été rempli.

1 public class DialogMam {

2 public static void main (String args [] {

3 dm new DialogMain ;

4 aDialog new ADialog dm ;

5 }

6 public void continuation String [] names {

7 // continue ici après les événements du dialogue
8 System.out.println names [0] + names [1]);
9 1

10 }

Figure 3 Codage de l'exemple de référence

1 textField addActionListener (new ActionListener {

2 boolean readUsername true;
3 public void actionPerformed (ActionEvent e) {

4 if (readUsername) {

5 names [0] textField.getText ();
6 label.setText ("password: ");
7

8

readUsername false;
cancelButton.addActionListener

9 new ActionListener {

10 public void actionPerformed (ActionEvent e) {
11 timer.stop ();
12 de.continuation (names);
13 }

14 In15

timer, start 0; // code executed somewhere else
16 } else {
17 names [1] textField.getText);
18 timer.stop ();
19 de.continuation (names);
20 }

21 }

22 }) ;

23 }

Figure 4 Codage: introduction d'un listener

24 Bulletin SEV/AES 9/03

I
Développement de logiciel

// active object a // active object b

run {

b.myMethod(); public void myMethod() { }

I run() {

accept myMethod;

}

Figure 5 Synchronisation par appel de méthode

// object a

run {

b.myMethod();

}

// object b

public void myMethodf) { }

run() {

accept myMethod;

}

Figure 6 Synchronisation par communication

- Les lignes 10 à 13 (figure 4) sont
exécutées après que le bouton cancel a été

cliqué.

- L'horloge est gérée par un listener. Ce

dernier a été créé (ce qui n'est pas
montré ci-dessus), mais il a quand
même dû être activé et désactivé

(lignes 11, 15 et 18, figure 4). De
nouveau cela n'était pas explicité dans la

spécification du problème.
Ainsi, si l'utilisation des listeners est

une bonne chose à première vue, parce
qu'elle permet l'élimination du

programme principal, un examen plus approfondi

révèle qu'il n'y a pas de miracle: le

code est juste déplacé et de plus à un
endroit où il est plus difficile à concevoir.

Des actions non prévues peuvent être

exécutées, telles l'entrée d'un troisième

nom ou un clic sur le bouton cancel avant

de taper le nom d'usager. Le développeur
doit identifier toutes les séquences d'actions

possibles et être sûr qu'elles ne

provoquent pas de problèmes. Cependant,

quand l'application devient plus grande,
le nombre de cas se multiplie et dépasse

rapidement les capacités de tout développeur.

Objets actifs synchrones
La technique décrite dans les derniers

paragraphes a été introduite quand les

GUIs ont introduit le non-déterminisme

dans les applications (par le fait que le

programme ne peut pas deviner quel
élément du GUI sera activé le prochain) et a

remplacé les appels bloquants. Cela est

dommage car la lecture des données au

moyen d'appels bloquants est très simple,
elle assure que le résultat est disponible
quand la méthode retourne, et en fait le
non-déterminisme peut tout à fait être
géré au moyen d'appels bloquants. La
solution qui va être présentée repose sur le

parallélisme et sur une façon standardisée
de synchroniser les listeners avec les

processus (threads).
Ces synchronisations pourraient être

implantées à l'aide de librairies, mais le
LTI a développé des instructions particulières,

adaptées tout d'abord à C++ [3] et

maintenant à Java. Ces instructions
cachent les détails d'implémentation,
présentent une bonne vue conceptuelle d'une
application, mais peuvent être facilement
traduites en pur Java.

Le concept d'objet actif
Un objet actif a une méthode (nommée

run en Java) exécutée sur un processus
(thread) attribué à l'objet. Un tel objet
peut être opposé aux objets passifs (c'est-
à-dire aux objets courants). Les objets
passifs subissent des actions alors que les

objets actifs peuvent agir de leur propre
gré sans être appelés de l'extérieur. Un

objet actif est conçu comme tel, et on

peut considérer qu'un processus n'est pas
un élément qui peut être introduit juste
pour éviter un appel bloquant. La structure

concurrente d'une application doit
être pensée soigneusement dans les
premières phases de développement d'un
projet. Le LTI a donc proposé de définir
un moyen de spécifier des classes pour
objets actifs en décorant ces classes avec
le mot-clé active. Le mot-clé active
indique au compilateur qu'un processus
doit être démarré à la fin de l'exécution
du constructeur, quand l'objet est instan-
cié, et que les appels à cet objet sont
spéciaux, dans le sens décrit dans les
prochains paragraphes.

Synchronisations entre objets actifs
La façon la plus naturelle de réaliser

une communication entre deux objets
actifs est évidemment de recourir à des

appels de méthodes semblables à ceux qui
sont utilisés d'un objet passif à l'autre.
Cependant, comme les objets actifs
introduisent de la concurrence, ces appels
doivent être synchronisés. Les synchronisations

que le LTI a définies peuvent être

vues sous deux angles. Sous le premier
angle, illustré dans la figure 5, le point
central est l'appel de méthode: l'objet à

gauche appelle une méthode de l'objet b,

défini à droite. Comme b est un objet
actif, cet appel est bloquant et son exécution

est reportée jusqu'au moment où la
méthode run de l'objet b accepte l'appel.

Sous le second angle (figure 6) l'attention

est portée sur les communications.
L'instruction accept dans l'objet b est
aussi bloquante et elle n'est exécutée que
quand l'appel à la méthode myMethod a

été exécuté. Ainsi, une communication
entre deux objets actifs synchrones
exprime également le rendez-vous indiqué
dans la figure 6. Le premier processus
doit être arrivé à l'instruction d'appel et
le second à l'instruction accept pour que
le rendez-vous ait lieu. La méthode est
exécutée pendant le rendez-vous, alors

que les deux objets sont bloqués.
Le fonctionnement de l'instruction est

le même dans les deux cas, mais suivant
les situations, une explication ou l'autre
est préférée. Quand on étudie le fonctionnement

interne d'un objet, le point
important est le fait que la méthode soit
exécutée, alors que lorsque l'on analyse le

comportement global d'une application
comportant des objets actifs, l'aspect
important est l'entrelacement des rendez-
vous.

L'instruction select
Les appels synchrones simples sont

évidemment trop contraignants et, par
exemple, ne permettraient pas d'implan-

Bulletin SEV/VSE 9/03 25

I
Développement de logiciel

public void run {

for (;;) 1

select {

case
y obj.method(x);

case
when (guard) accept myMethod;

case
waituntil (currentTimeMillis()+1000) ;

} } }

Figure 7 Codage: instruction «select-case»

public class Main {

static String [] name new String[2];
static Dislog dialog new Dialog ();
public static void main {

name dialog.getNames() ;

// the program obviously continues here
System.out.println names [0] + names [1]);

}

}

public class Dialog {

JDialog dialog new JDialogO; // initializations
JLabel label new JLabel("username: ");
ATextField nameField new ATextField(20) ;

AButton cancel new AButton("Cancel") ;

Container pane;
String [] name new String[2];

public String [] getNames {

pane dialog.getContentPane(); // initializations
pane.add(label,BorderLayout.WEST);
pane.add(name,BorderLayout.CENTER);
pane.add(cancel,BorderLayout.SOUTH);
dialog.pack();
dialog.setVisible(true);
name[0] nameField.read();
name[l] null ;

label.setText("password: ");
select { //appels parallèles: le premier prêt est exécuté

case
name[l] nameField.read() ;

System.out.println("U: "+username+" P: "+passwd);
case

waituntil(System.currentTimeMillis()+5000);
System.out.println("Cancelled !");

case
cancel.pressed();
System.out.println("Cancelled !");

}

return name;
} }

Figure 8 Code: Comment traiter le non-déterminisme?

ter le problème défini au debut de cet
article (l'exemple de référence). Une
instruction (select) a été introduite pour im-
plémenter le choix défini par CCS1' [4]

ou par CSP2) [5] de façon à permettre à un

programme d'attendre autant d'appels,
d'accept et de délais qu'il est nécessaire.
De plus une notion d'instruction gardée a

été introduite. Cette nouvelle notion est
illustrée dans le deuxième cas du select
décrit dans la figure 7. Les gardes sont

optionnelles mais elles peuvent être
introduites dans les trois sortes de cas.

La première instruction de chaque cas
doit être une instruction synchronisante
(qui peut être gardée) c'est-à-dire un
appel à un autre objet actif, un accept ou

un waituntil. Les cas qui ont une garde
fausse quand le programme arrive sur
l'instruction select sont ignorés pour cette
exécution du select. Les instructions
placées dans le corps d'un cas sont
exécutées après que le rendez-vous qui
synchronise le cas a été exécuté. Le corps
d'un cas peut contenir des appels passifs
ou des appels synchrones aussi bien que
de nouvelles instructions select.

On note que l'instruction select est très

proche de celle d'Ada3'. La différence
principale est que l'instruction proposé
peut contenir autant d'appels synchrones,
d'accept et de waintuntil que nécessaire.

Le concept d'objet actif synchrone
ressemble également au concept d'Actors4'

[6], mais les Actors exécutent les
méthodes en parallèle avec les appelants.
Elles ne sont donc pas bloquantes. Ces

deux approches ne pourraient donc pas
remplacer le concept proposé pour
résoudre les problèmes considérés dans cet
article.

Réalisation de l'exemple avec des

appels synchrones
Le code source présenté dans la

figure 8 montre comment les objets
précédemment décrits permettent d'im-
plémenter l'application de référence
décrite au début de cet article. On peut noter

que les mots mis en évidence dans la
classe Dialog peuvent se reporter directement

aux mots de la spécification, qu'à
côté de l'initialisation des éléments du
GUI il n'y a pas d'instruction supplémentaire

et que la classe Dialog peut être
réutilisée sans modification ailleurs dans la
même application ou dans une autre.
L'appelant ne doit introduire aucune
instruction spéciale (nouvelle méthode,
processus) pour continuer le programme
principal.

Ce module de programme utilise les
classes AButton et ATextField qui sont
supposées accepter les appels synchrones
(nameField. read et cancel.pressed)
quand les éléments correspondants ont
été activés (voir paragraphe suivant).

Un aspect très important du

programme (figure 8) est la façon dont le

programme traite le non-déterminisme:
grâce à l'instruction select il est possible
d'appeler les éléments (de classe AButton
and ATextField) directement depuis le

26 Bulletin SEV/AES 9/03

public active class AButton extends JButton {

public void pressed(){}
public AButton() {

addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

select {

case
accept pressed;

case
default ;

} I

)};
} }

Figure 9 La réalisation de la synchronisation d'un processus utilisant un listener

programme qui les a instanciés comme ce

qu'on ferait avec des objets passifs
instanciés d'une librairie - et à la différence
de ce qui est fait avec les listeners
présentés pour l'exemple de référence. Dans

l'exemple des figures 3 et 4, les éléments
de la librairie (les listeners) appellent
eux-mêmes leur créateur (le programme
principal) sous forme de callbacks.
L'approche du LTI élimine cette inversion de

contrôle et produit des programmes
directs qui sont beaucoup plus faciles à

comprendre et à dépanner. Le code
présenté dans la figure 8 est compréhensible
même pour quelqu'un qui n'a pas de

notions de parallélisme.

Synchronisation des objets actifs avec
les appels synchrones

Le code source dans la figure 9 montre
comment réaliser la synchronisation d'un

processus avec un listener d'une manière

standard qui peut être reprise sans

changement dans tout programme. Ce code

peut être écrit par un spécialiste et mis à

disposition des autres utilisateurs de Java

par le biais d'une librairie qui cache les

détails des listeners.
Du fait que la classe AButton génère

un objet actif, la méthode pressed est

bloquante. Elle n'est acceptée que lorsque le

bouton a été pressé, que la méthode ac-

tionPerformed a été appelée, et donc que
l'instruction accept pressed a été

exécutée. La classe AButton hérite de la

classe JButton, ce qui fait qu'elle peut
être introduite dans un GUI de la même

manière que la classe JButton.
Dans les programmes simples, ce code

pourrait être écrit directement à partir
des instructions wait et notify qui sont les

instructions de synchronisation de base

de la Java. Les instructions présentées
dans la figure 9 sont par contre plus
intéressantes que wait/notify si l'application

contient également des communications
sur un réseau ou d'autres sources
d'événements.

Implémentation d'une
spécification UML

L'approche du LTI est également
idéale pour implémenter les diagrammes
d'activité, d'état ou de collaboration définis

par UML (Unified Modelling
Language), le langage standard utilisé par le
génie logiciel. Cette section montre
comment coder un diagramme d'état, les
autres diagrammes pouvant être réalisés
de façon semblable. Dans cette réalisation,

on peut considérer que tous les
éléments de l'environnement (GUI, accès au
réseau) sont traités au moyen d'appels
synchrones qui implémentent donc
directement les transitions.

Implémentation d'un diagramme
d'état

La figure 10 montre un diagramme
d'état UML qui spécifie une machine d'états

imbriquée dans une autre. Ces
machines d'états exécutent des actions
similaires à celles qui sont décrites dans les

a
display

» i

doing finished

post

10

iiiiieuuiil20

ready cancel jfinished
<§>

Figure 10 Diagramme d'états Unified Modelling

Language (UML)

I
Développement de logiciel

exemples précédents. Il y a beaucoup de

possibilités de coder un tel diagramme.
L'une d'entre elles est reportée dans le

listing de la figure 11. Il est si simple de

faire correspondre les différentes parties
du diagramme de la figure 10 à ces codes

sources que le code source est presque
aussi expressif que le diagramme lui-
même.

Conclusion
Dans l'article un concept d'appels

synchrones basé sur les moyens de synchronisation

décrits par les théories CCS [4]
et CSP [5] a été présenté et on a montré

que ce concept est très utile pour éviter
les problèmes soulevés par l'utilisation
des listeners et de l'inversion de contrôle

que ceux-ci impliquent.
Le LTI a vérifié que ce concept pouvait

être utilisé pour implémenter toutes les

constructions habituelles utilisées en

concurrence tels que les sémaphores, les
boîtes aux lettres, l'exclusion mutuelle,
les moniteurs, etc.

D'autres travaux proches de ceux du

LTI [7, 8], également basés sur Java et
CSP, mais ne permettant pas d'introduire
des appels dans les select ont été poursuivis

et leurs auteurs prétendent également
qu'une telle approche simplifie
considérablement le développement d'applications

utilisant la concurrence.
L'article a finalement montré que le

concept d'objet synchrone s'intégrait
parfaitement dans les méthodes de développement

logiciel basées sur UML.
Le concept présenté dans cet article

fournit une contribution importante pour
combler le fossé existant aujourd'hui
entre la phase de design et les produits
attendus par les clients souvent pendant
beaucoup trop longtemps. Il peut être
considéré également comme source
d'inspiration pour réaliser des

programmes simples, mais bien structurés au

moyen des instructions de base de Java,
wait et notify.

Outils disponibles
Le LTI a développé des compilateurs

qui traitent les appels synchrones et les

instructions select présentées dans ce
papier tout d'abord pour C++ [3], puis pour
Java5'. Ce dernier compilateur, développé
en collaboration avec Zenger6', produit
soit des codes binaires soit des codes

sources en Java standard. En fait, les
instructions qui traitent les synchronisations
sont simples et peuvent aussi bien être
codées à la main, soit en utilisant le

noyau du LTI soit en utilisant directement
les instructions wait et notify. Le déve-

Bulletin SEV/VSE 9/03 27

s

Développement de logiciel

loppeur n'est donc pas lié à l'utilisation
du compilateur, mais la structure des

programmes est naturellement plus claire
quand le compilateur est utilisé.

Le LTI a également développé un
analyseur d'états qui peut traiter un sous-en-
semble de Java et des instructions et qui
détermine si le code contient des

interblocages (Deadlocks). Cet analyseur produit

également une description CCS. En
outre le LTI a réalisé quelques librairies.
Les développements sont disponibles sur
le site Web5) du LTI.

Références
[1] J. A. Whittaker, S. Atkin: Software Engineering is

not Enough. IEEE Software, July/August 2002.

[2] P. B. Hansen: Java's Insecure Parallelism. ACM Sig-

plan Notices, V. 34(4), April 1999, pp.38-44.
[3] C. Petitpierre: Synchronous C++, a Language for

Interactive Applications. IEEE Computer, September

1998, pp 65-72.

[4] R. Milner: Communication and Concurrency.
Prentice Hall, 1989.

[5] C. A. R. Hoare: Communicating Sequential Pro¬

cesses. Prentice Hall, 1984.

[6] 6. Agha, P. Wegner, A. Yonezawa: Research Di¬

rections in Concurrent 00 Programming. MIT

Press, Cambridge, Mass., 1993.

[7] P. Welch, P. D. Austin: The JCSP Home Page.

http://www.cs.ukc.ac.uk/projects/ofa/jcsp/, 2002.

[8] 6. Hilderink, A. Bakkers, J. Broenink: A Distribu¬

ted Real-Time Java System Based on CSP. ISORC

2000, Newport Beach, CA, pp 400-407.

Informations sur l'auteur
Prof. Dr Claude Petitpierre a obtenu un diplôme

d'ingénieur électricien à l'EPFL. Il a ensuite passé 6 ans
à développer des logiciels de contrôle de cimenteries

avant d'entamer des recherches sur la conception des

systèmes de communications à l'EPFL, puis pendant
une année aux Laboratoires Bell de l'AT&T aux États-

Unis. Depuis 1987 il dirige le Laboratoire de téléinformatique

(LTI) à l'Ecole polytechnique fédérale de

Lausanne (EPFL), CH-1015 Lausanne.

Contact: claude.petitpierre@epfl.ch

1 CCS: Calculus of Communicating Systems. Une théorie

permettant d'analyser le comportement de systèmes
de processus parallèles et d'assurer par exemple qu'ils
ne possèdent pas d'interblocages
2 CSP: Communicating Sequential Processes. Une théorie

légèrement différente de CCS, mais visant les mêmes
buts.
3 ADA: Langage défini pour le Département de la
défense américain, qui introduit un concept de rendez-vous

pour la communication entre processus.
4 Actor: Un concept particulier d'object actif.
5 http://ltiwww.epfl.ch/sJava
6 http://lamp.epfl.ch/~zenger/jaco/

public class StateDiagram {

int doing { // machine d'états interne
state 10;
result 0;
for ; ; {

switch (state) {

case 10:

proxy,post_remoteMeth ();
case 20:

select {

case
proxy.ready_remoteMeth ();
result++;
state 10;

case
cancelButton.pressed ();
return -1;

case
finishedButton.pressed ();
return result;

case
waituntil (System.currentTimeMi11is()+1000);
display ("I am alive");

1 1 } I

public void run { // machine d'états externe
for ; ; {

a: startButton.pressed ();
result doing ();
if (result>=0)

b: display (result);
} 1 1

Figure 11 Codage d'un diagramme d'état UML (Unified Modelling Language) qui spécifie une machine
d'états imbriquée dans une autre.

Ein neues Konzept erleichtert die
Entwicklung interaktiver Software

Um interaktive Prozesse in Programmen abarbeiten zu können, verwenden die
meisten Entwicklungsumgebungen ein spezielles, ereignisgesteuertes Konzept,
das bei Java Listener genannt wird. Dieses Konzept bietet allerdings nur geringe
Kontrollmöglichkeiten, denn diese Listener lassen zahlreiche, unerwünschte
Nebensequenzen zu, die der Programmentwickler nur schwer identifizieren kann,
was eine korrekte Prüfung stark behindert. Der vorliegende Beitrag stellt eine
Alternative zu den Listenern vor, die mittels des so genannten pseudo-parallelen
Konzeptes eine wesentlich genauere und leichtere Umsetzung interaktiver
Programme ermöglicht.

28 Bulletin SEV/AES 9/03

	Un nouveau concept pour améliorer le développement des logiciels interactifs

