Zeitschrift: bulletin.ch / Electrosuisse
Herausgeber: Electrosuisse

Band: 94 (2003)

Heft: 9

Artikel: Un nouveau concept pour améliorer le développement des logiciels
interactifs

Autor: Petitpierre, Claude

DOl: https://doi.org/10.5169/seals-857550

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-857550
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Développement de logiciel

Un nouveau concept pour améliorer le
développement des logiciels interactifs

Pour traiter I'interactivité, la plupart des environnements de dé-
veloppement utilisent un concept de gestion des événements
particulier (appelé listener en Java). Ce concept offre peu de
controle car ces listeners peuvent en effet autoriser de trés nom-
breuses séquences d'actions parasites que le développeur de
logiciel a beaucoup de peine a identifier et qu'il ne peut donc
pas vérifier proprement. Cet article présente une alternative aux
listeners, basée sur le concept de processus ou pseudo-parallé-
lisme, qui rend les programmes interactifs beaucoup plus précis

et plus facile a mettre en ceuvre.

La mise en service du systeme infor-
matique utilisé par la société Billetel pour
la vente de billets de théatre et de concert
fut un cauchemar. Alors que ce service
devait introduire la vente par Internet, il
n’a méme pas été & méme de fournir le
service de base et a paralysé pendant de
longs mois la vente des billets de la plu-

Claude Petitpierre

part des manifestations gérées par cette
société. Cet exemple n’est malheureuse-
ment pas isolé et les applications d’infor-
matique qui ne satisfont pas leurs utilisa-
teurs ont englouti des fortunes. D’oll peu-
vent donc provenir les problemes de ces
projets ?

Le laboratoire de téléinformatique
(LTI) a ’'EPFL n’a pas analysé le cas par-
ticulier mentionné ci-dessus, mais son
expérience dans le domaine des systemes
interactifs montre que les difficultés de
ces systémes proviennent en bonne partie
des pieges que cache la gestion de cette
interactivité. En fait, les pannes des
systémes interactifs sont difficilement dé-
tectables avant qu’ils soient mis en
charge. Elles ne surviennent pas toujours
au méme point des programmes, elles ne
sont pas reproductibles et les méthodes
habituelles de dépannages (dévermineur,
impressions de traces) changent le pro-

Bulletin SEV/VSE 9/03

gramme suffisamment pour masquer les
problémes recherchés et pour en créer de
nouveaux. Finalement les concepts uti-
lisés pour développer ces systémes sont
tres loin d’étre adéquats [1, 2].

Dans les environnements basés sur
Java, [Dinteractivité est actuellement
traitée au moyen de listeners, un outil,
décrit ci-dessous, qui permet de gérer les
événements extérieurs (arrivée de mes-
sages, clics sur les boutons d’une fenétre
d’écran, etc.) quel que soit leur ordre
d’arrivée. Les inconvénients des listeners
sont liés au peu de contrdle qu’ils offrent.
Ils autorisent en effet de trés nombreuses
séquences d’actions parasites (clic sur un
bouton non prévu a un instant donné,
message arrivant au mauvais moment,
etc.) que le développeur a beaucoup de
peine a identifier et qu’il ne peut donc pas
vérifier proprement. Les considérations
faites dans ce texte sont valables pour la
plupart des autres langages et environne-
ments de développement car la plupart
d’entre eux utilisent des concepts sem-
blables a ces listeners.

Dans cet article, une alternative aux
listeners basée sur le concept de proces-
sus ou pseudo-parallélisme sera pré-
sentée. Cette alternative rend les pro-
grammes interactifs beaucoup plus précis
et plus facile a mettre en ceuvre. Bien que
les systémes multi-processus aient la ré-
putation d’étre particulierement difficiles

a dépanner, la facon proposée de les
mettre en ceuvre dans cet article évite ces
difficultés. Les processus ne sont utilisés
ici que pour introduire un peu de parallé-
lisme, juste le minimum qui permet a
I’application de ne pas attendre ind-
ment, mais qui n’autorise pas de sé-
quences d’actions imprévues.

La prochaine section présente un
exemple tres simple de programme qui lit
des données dans des fenétres (figure 1),
puis elle démontre les problemes créés
par son codage au moyen de listeners. La
section d’aprés présente un nouveau
concept d’objet actif synchrone et son
utilisation pour le codage du méme
exemple et finalement la derniére section

username; |

‘ Cancel

Figure 1 Une fenétre pour entrer des données
interactivement

montre que cette technique est compa-
tible avec 1’Unified Modelling Language
(UML), le langage le plus couramment
utilisé pour planifier la construction d’ap-
plications d’informatique.

Exemple d'un programme
utilisant un Graphical User
Interface (GUI)

L’exemple de programme trés simple
présenté ci-dessous utilise une interface
pour entrer des données sur I’écran (notée
GUI dans la suite, selon son abréviation
anglaise). Cet exemple sera utilisé pour
montrer comment coder cette application,
tout d’abord a I’aide des listeners définis
par Java, puis au moyen de I’approche du
LTI

Définition de ’exemple de référence

Le programme de référence doit lire un
nom d’usager puis un mot de passe dans
le méme champ de texte, placé dans une
boite de dialogue semblable a celle qui
est illustrée a la figure 1. L’utilisateur
peut prendre autant de temps qu’il le dé-
sire pour entrer le nom d’usager, mais
une fois qu’il a tapé son nom

23

Développement de logiciel

—— > appel de méthode
-eeeeeeeeeeeeey activation/désactivation des événements

tener est introduit
dans I’objet champ
de texte par la mé-

champ de texte listeners thode addAction-
; Listener (ligne 1).
2 La méthode action-
GUI
el)| dell Performed est ap-
l pelée par le
poutans systtme chaque
fois que 1utilisa-
. teur du programme
%’_-—‘_J —

- 2 z frappe la touche

Instancié a partir Code par le développeur s ”
d'une library d’entrée sur son

clavier.

Figure 2 Programme basé sur les listeners

— soit il tape un mot de passe dans le
champ;

- soit il appuie le bouton d’interruption
(et la lecture du mot de passe est inter-
rompue);

— soit une période de temps prédéfinie
est écoulée (et la lecture est interrom-
pue).

Une fois que le nom d’usager et le mot
de passe ont été entrés, le programme doit
les valider et continuer 1’application.

Implémentation du programme au
moyen de listeners

La figure 2 montre la structure d’un
programme basé sur des listeners. Ces
listeners sont des objets qui possédent
des interfaces prédéfinies connues par les
éléments du GUL IIs sont instanciés et
enregistrés dans les éléments du GUI par
le programme principal et contiennent
soit des appels aux méthodes du pro-
gramme principal qui gerent les événe-
ments, soit directement le code qui gere
les événements.

Le codage de I’exemple au moyen de
ces listeners est imprimé dans les figure 3
et 4. Le programme principal placé dans
la figure 3 instancie la classe ADialog qui
lit le nom d’usager et le mot de passe,
puis il se termine. Le traitement des ré-
sultats est contenu dans une méthode
(continuation) définie dans la méme
classe que le programme principal. Cette
continuation est appelée par un des liste-
ners quand la récupération du nom de
I’'usager et du mot de passe est soit ter-
minée soit interrompue.

La classe ADialog crée la structure sta-
tique de la boite de dialogue et instancie
et enregistre un listener. Les actions qui
doivent étre exécutées pour traiter le nom
d’usager et le mot de passe (lignes 5 et 17
de la figure 4) sont placées dans la mé-
thode actionPerformed (ligne 3) elle-
méme située dans le listener ActionListe-
ner instancié sur la premiére ligne. Ce lis-

24

En fait les struc-
tures de ces mo-
dules sont trés mau-

vaises dans le sens ou le premier (figure
3) requiert une méthode de continuation
et que I’ordre dans lequel les lignes du se-
cond (figure 4) sont exécutées ne corres-

pond pas du tout a ’ordre lexical (c’est-
a-dire I’ordre du texte).

— Les lignes 1 et 2 de la figure 4 sont
exécutées a I’initialisation du pro-
gramme.

— Les lignes 3 a 9 et 15 (figure 4) sont
exécutées quand le champ de texte a
été rempli pour la premiére fois. La va-
leur booléenne readUsername a di
étre ajoutée pour indiquer si la mé-
thode est appelée pour entrer le nom
d’utilisateur ou le mot de passe, bien
que cette variable n’appar(it pas dans
la spécification du probleme actuel.
D’autre part, la ligne 9 modifie en fait
le programme en cours d’exécution en
introduisant un nouveau listener.

— Les lignes 16 a 20 (figure 4) sont exé-
cutées apres la deuxieme fois que le
champ de texte a été rempli.

1 public class DialogMain {
2 public static void main (String args []) {
3 dm = new DialogMain ();
4 aDialog = new ADialog (dm);
5 }
6 public void continuation (String [] names) {
7 // continue ici apres les événements du dialogue
8 System.out.println (names [0] + names [1]);
9 }
10 }
Figure3 Codage de I'exemple de référence
1 textField.addActionListener (new ActionListener () {
2 boolean readUsername = true;
3 public void actionPerformed (ActionEvent e) {
4 if (readUsername) {
5 names [0] = textField.getText ();
6 label.setText ("password: ");
7 readUsername = false;
8 cancelButton.addActionListener (
9 new ActionListener () {
10 public void actionPerformed (ActionEvent e) .{
11 timer.stop ();
12 de.continuation (names);
13 }
14 })
15 timer.start (); // code executed somewhere else
16 } else {
17 names [1] = textField.getText ();
18 timer.stop ();
19 de.continuation (names);
20 }
21 }
22 IH
23)

Figure 4 Codage: introduction d'un listener

Bulletin SEV/AES 9/03

// active object a
run () {

b.myMethod() ;

// active object b

public void myMethod() { .. }
run() {

accept myMethod;

Figure 5 Synchronisation par appel de méthode

// object a

run () |

b.myMethod() ;

// object b
public void myMethod() { .. }
run() {

accept myMethod;

Figure 6 Synchronisation par communication

— Les lignes 10 a 13 (figure 4) sont exé-
cutées apres que le bouton cancel a été
cliqué.

— L’horloge est gérée par un listener. Ce
dernier a été créé (ce qui n’est pas
montré ci-dessus), mais il a quand
méme dii étre activé et désactivé
(lignes 11, 15 et 18, figure 4). De nou-
veau cela n’était pas explicité dans la
spécification du probleme.

Ainsi, si lutilisation des listeners est
une bonne chose a premiere vue, parce
qu’elle permet I’élimination du pro-
gramme principal, un examen plus appro-
fondi révéle qu’il n’y a pas de miracle: le
code est juste déplacé et de plus a un en-
droit ot il est plus difficile a concevoir.
Des actions non prévues peuvent €tre
exécutées, telles I’entrée d’un troisieme
nom ou un clic sur le bouton cancel avant
de taper le nom d’usager. Le développeur
doit identifier toutes les séquences d’ac-
tions possibles et étre siir qu’elles ne pro-
voquent pas de problemes. Cependant,
quand I’application devient plus grande,
le nombre de cas se multiplie et dépasse
rapidement les capacités de tout dévelop-
peur.

Objets actifs synchrones

La technique décrite dans les derniers
paragraphes a été introduite quand les
GUIs ont introduit le non-déterminisme

Bulletin SEV/VSE 9/03

dans les applications (par le fait que le
programme ne peut pas deviner quel élé-
ment du GUI sera activé le prochain) et a
remplacé les appels bloquants. Cela est
dommage car la lecture des données au
moyen d’appels bloquants est trés simple,
elle assure que le résultat est disponible
quand la méthode retourne, et en fait le
non-déterminisme peut tout a fait étre
géré au moyen d’appels bloquants. La so-
lution qui va étre présentée repose sur le
parallélisme et sur une facon standardisée
de synchroniser les listeners avec les pro-
cessus (threads).

Ces synchronisations pourraient étre
implantées a 1’aide de librairies, mais le
LTI a développé des instructions particu-
lieres, adaptées tout d’abord a C++ [3] et
maintenant a Java. Ces instructions ca-
chent les détails d’implémentation, pré-
sentent une bonne vue conceptuelle d’une
application, mais peuvent étre facilement
traduites en pur Java.

Le concept d’objet actif

Un objet actif a une méthode (nommée
run en Java) exécutée sur un processus
(thread) attribué a 1’objet. Un tel objet
peut étre opposé aux objets passifs (c’est-
a-dire aux objets courants). Les objets
passifs subissent des actions alors que les
objets actifs peuvent agir de leur propre
gré sans étre appelés de I’extérieur. Un
objet actif est congu comme tel, et on

Développement de logiciel

peut considérer qu’un processus n’est pas
un élément qui peut étre introduit juste
pour éviter un appel bloquant. La struc-
ture concurrente d’une application doit
étre pensée soigneusement dans les pre-
micres phases de développement d’un
projet. Le LTI a donc proposé de définir
un moyen de spécifier des classes pour
objets actifs en décorant ces classes avec
le mot-clé active. Le mot-clé active in-
dique au compilateur qu’un processus
doit étre démarré a la fin de I’exécution
du constructeur, quand 1’objet est instan-
cié, et que les appels a cet objet sont spé-
ciaux, dans le sens décrit dans les pro-
chains paragraphes.

Synchronisations entre objets actifs

La fagon la plus naturelle de réaliser
une communication entre deux objets ac-
tifs est évidemment de recourir a des ap-
pels de méthodes semblables a ceux qui
sont utilisés d’un objet passif a 1’autre.
Cependant, comme les objets actifs intro-
duisent de la concurrence, ces appels doi-
vent étre synchronisés. Les synchronisa-
tions que le LTI a définies peuvent étre
vues sous deux angles. Sous le premier
angle, illustré dans la figure 5, le point
central est I’appel de méthode: I’objet a
gauche appelle une méthode de I’objet b,
défini a droite. Comme b est un objet
actif, cet appel est bloquant et son exécu-
tion est reportée jusqu’au moment ou la
méthode run de 1’objet b accepte 1’appel.

Sous le second angle (figure 6) I’atten-
tion est portée sur les communications.
L’instruction accept dans 1’objet b est
aussi bloquante et elle n’est exécutée que
quand I’appel a la méthode myMethod a
été exécuté. Ainsi, une communication
entre deux objets actifs synchrones ex-
prime également le rendez-vous indiqué
dans la figure 6. Le premier processus
doit étre arrivé a I’instruction d’appel et
le second a I’instruction accept pour que
le rendez-vous ait lieu. La méthode est
exécutée pendant le rendez-vous, alors
que les deux objets sont bloqués.

Le fonctionnement de ’instruction est
le méme dans les deux cas, mais suivant
les situations, une explication ou 1’autre
est préférée. Quand on étudie le fonction-
nement interne d’un objet, le point im-
portant est le fait que la méthode soit exé-
cutée, alors que lorsque 1’on analyse le
comportement global d’une application
comportant des objets actifs, I’aspect im-
portant est I’entrelacement des rendez-
vous.

L’instruction select

Les appels synchrones simples sont
évidemment trop contraignants et, par
exemple, ne permettraient pas d’implan-

25

Développement de logiciel

accept myMethod;

public void run () {
for (;;) |
select {
case
y = obj.method(x);
case
when (guard)
case
waituntil

(currentTimeMillis ()+1000) ;

Figure 7 Codage: instruction «select-case»

public class Main {
static String [] name =
static Dislog dialog =

}
public class Dialog {
JDialog dialog =
JLabel label =

AButton cancel =
Container pane;

dialog.pack();
dialog.setVisible(true);
name[0] =

name[1l] = null ;

case
name[l] =
case
case
cancel.pressed() ;
}

return name;

Pl

new String[2];
new Dialog ();
public static void main ()
name = dialog.getNames();
// the program obviously continues here
System.out.println (names

new JDialog();

new JLabel ("username: ");
ATextField nameField = new ATextField(20);
new AButton("Cancel");

String [] name = new String[2];
public String [] getNames () {
pane = dialog.getContentPane();

pane.add(label, BorderLayout.WEST) ;
pane.add (name, BorderLayout .CENTER) ;
pane.add(cancel, BorderLayout.SOUTH) ;

nameField.read();

label.setText ("password: ");
select { //appels paralleles: le premier prét est exécuté

nameField.read();
System.out.println("U:

waituntil (System.currentTimeMillis()+5000);
System.out.println("Cancelled !");

System.out.println("Cancelled !");

{

[0] + names [1]);

// initializations

// initializations

"+username+" P: "+passwd);

Figure 8 Code: Comment traiter le non-déterminisme?

ter le probleme défini au debut de cet ar-
ticle (I’exemple de référence). Une ins-
truction (select) a été introduite pour im-
plémenter le choix défini par CCSY [4]

26

ou par CSP? [5] de fagon a permettre a un
programme d’attendre autant d’appels,
d’accept et de délais qu’il est nécessaire.
De plus une notion d’instruction gardée a

été introduite. Cette nouvelle notion est
illustrée dans le deuxieme cas du select
décrit dans la figure 7. Les gardes sont
optionnelles mais elles peuvent étre intro-
duites dans les trois sortes de cas.

La premiére instruction de chaque cas
doit étre une instruction synchronisante
(qui peut étre gardée) c’est-a-dire un
appel a un autre objet actif, un accept ou
un waituntil. Les cas qui ont une garde
fausse quand le programme arrive sur
I’instruction select sont ignorés pour cette
exécution du select. Les instructions
placées dans le corps d’un cas sont exé-
cutées apres que le rendez-vous qui syn-
chronise le cas a été exécuté. Le corps
d’un cas peut contenir des appels passifs
ou des appels synchrones aussi bien que
de nouvelles instructions select.

On note que I’instruction select est trés
proche de celle d’Ada®. La différence
principale est que I’instruction proposé
peut contenir autant d’appels synchrones,
d’accept et de waintuntil que nécessaire.
Le concept d’objet actif synchrone res-
semble également au concept d’Actors?
[6], mais les Actors exécutent les mé-
thodes en parallele avec les appelants.
Elles ne sont donc pas bloquantes. Ces
deux approches ne pourraient donc pas
remplacer le concept proposé pour ré-
soudre les problemes considérés dans cet
article.

Réalisation de I’exemple avec des
appels synchrones

Le code source présenté dans la
figure 8 montre comment les objets
précédemment décrits permettent d’im-
plémenter 1’application de référence dé-
crite au début de cet article. On peut noter
que les mots mis en évidence dans la
classe Dialog peuvent se reporter directe-
ment aux mots de la spécification, qu’a
coté de linitialisation des éléments du
GUI il n’y a pas d’instruction supplémen-
taire et que la classe Dialog peut étre réu-
tilisée sans modification ailleurs dans la
méme application ou dans une autre.
L’appelant ne doit introduire aucune ins-
truction spéciale (nouvelle méthode, pro-
cessus) pour continuer le programme
principal.

Ce module de programme utilise les
classes AButton et ATextField qui sont
supposées accepter les appels synchrones
(nameField.read et cancel.pressed)
quand les éléments correspondants ont
été activés (voir paragraphe suivant).

Un aspect trés important du pro-
gramme (figure 8) est la facon dont le
programme traite le non-déterminisme:
grace a l'instruction select il est possible
d’appeler les éléments (de classe AButton
and ATextField) directement depuis le

Bulletin SEV/AES 9/03

public void pressed(){}
public AButton() {

select {
case

case

public active class AButton extends JButton {

addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

accept pressed;

default;

Figure 9 La réalisation de la synchronisation d'un processus utilisant un listener

programme qui les a instanciés comme ce
qu’on ferait avec des objets passifs ins-
tanciés d’une librairie — et a la différence
de ce qui est fait avec les listeners pré-
sentés pour I’exemple de référence. Dans
I’exemple des figures 3 et 4, les €l€éments
de la librairie (les listeners) appellent
eux-mémes leur créateur (le programme
principal) sous forme de callbacks. L ap-
proche du LTI élimine cette inversion de
contrdle et produit des programmes di-
rects qui sont beaucoup plus faciles a
comprendre et & dépanner. Le code pré-
senté dans la figure 8 est compréhensible
méme pour quelqu’un qui n’a pas de no-
tions de parallélisme.

Synchronisation des objets actifs avec
les appels synchrones

Le code source dans la figure 9 montre
comment réaliser la synchronisation d’un
processus avec un listener d’une maniére
standard qui peut étre reprise sans chan-
gement dans tout programme. Ce code
peut étre écrit par un spécialiste et mis &
disposition des autres utilisateurs de Java
par le biais d’une librairie qui cache les
détails des listeners.

Du fait que la classe AButton génére
un objet actif, la méthode pressed est blo-
quante. Elle n’est acceptée que lorsque le
bouton a été pressé, que la méthode ac-
tionPerformed a été appelée, et donc que
instruction accept pressed a été€ exé-
cutée. La classe ABurton hérite de la
classe JButton, ce qui fait qu’elle peut
étre introduite dans un GUI de la méme
maniéere que la classe JButton.

Dans les programmes simples, ce code
pourrait étre écrit directement a partir
des instructions wait et notify qui sont les
instructions de synchronisation de base
de la Java. Les instructions présentées
dans la figure 9 sont par contre plus inté-
ressantes que wait/notify si ’application

Bulletin SEV/VSE 9/03

contient également des communications
sur un réseau ou d’autres sources d’éve-
nements.

Implémentation d'une
spécification UML

L’approche du LTI est également
idéale pour implémenter les diagrammes
d’activité, d’état ou de collaboration défi-
nis par UML (Unified Modelling Lan-
guage), le langage standard utilisé par le
génie logiciel. Cette section montre com-
ment coder un diagramme d’état, les
autres diagrammes pouvant étre réalisés
de facon semblable. Dans cette réalisa-
tion, on peut considérer que tous les élé-
ments de 1’environnement (GUI, accés au
réseau) sont traités au moyen d’appels
synchrones qui implémentent donc direc-
tement les transitions.

Implémentation d’un diagramme
d’état

La figure 10 montre un diagramme
d’état UML qui spécifie une machine d’é-
tats imbriquée dans une autre. Ces ma-
chines d’états exécutent des actions simi-
laires a celles qui sont décrites dans les

[—J display
a
start cancel

doing %’led

I timeout

Figure 10 Diagramme d'états Unified Modelling
Language (UML)

Développement de logiciel

exemples précédents. Il y a beaucoup de
possibilités de coder un tel diagramme.
L'une d’entre elles est reportée dans le
listing de la figure 11. II est si simple de
faire correspondre les différentes parties
du diagramme de la figure 10 a ces codes
sources que le code source est presque
aussi expressif que le diagramme lui-
méme.

Conclusion

Dans I’article un concept d’appels syn-
chrones basé sur les moyens de synchro-
nisation décrits par les théories CCS [4]
et CSP [5] a été présenté et on a montré
que ce concept est tres utile pour éviter
les problemes soulevés par I’utilisation
des listeners et de I'inversion de contrdle
que ceux-ci impliquent.

Le LTI a vérifié que ce concept pouvait
étre utilisé pour implémenter toutes les
constructions habituelles utilisées en
concurrence tels que les sémaphores, les
boites aux lettres, ’exclusion mutuelle,
les moniteurs, etc.

D’autres travaux proches de ceux du
LTI [7, 8], également basés sur Java et
CSP, mais ne permettant pas d’introduire
des appels dans les select ont été poursui-
vis et leurs auteurs prétendent également
qu’une telle approche simplifie considé-
rablement le développement d’applica-
tions utilisant la concurrence.

L’article a finalement montré que le
concept d’objet synchrone s’intégrait par-
faitement dans les méthodes de dévelop-
pement logiciel basées sur UML.

Le concept présenté dans cet article
fournit une contribution importante pour
combler le fossé existant aujourd’hui
entre la phase de design et les produits at-
tendus par les clients souvent pendant
beaucoup trop longtemps. Il peut étre
considéré également comme source
d’inspiration pour réaliser des pro-
grammes simples, mais bien structurés au
moyen des instructions de base de Java,
wait et notify.

Outils disponibles

Le LTI a développé des compilateurs
qui traitent les appels synchrones et les
instructions select présentées dans ce pa-
pier tout d’abord pour C++ [3], puis pour
Java®. Ce dernier compilateur, développé
en collaboration avec Zenger®, produit
soit des codes binaires soit des codes
sources en Java standard. En fait, les ins-
tructions qui traitent les synchronisations
sont simples et peuvent aussi bien étre
codées a la main, soit en utilisant le
noyau du LTI soit en utilisant directement
les instructions wait et notify. Le déve-

27

Développement de logiciel

loppeur n’est donc pas lié a I'utilisation
du compilateur, mais la structure des pro-
grammes est naturellement plus claire
quand le compilateur est utilisé.

Le LTI a également développé un ana-
lyseur d’états qui peut traiter un sous-en-
semble de Java et des instructions et qui
détermine si le code contient des inter-
blocages (Deadlocks). Cet analyseur pro-
duit également une description CCS. En
outre le LTI a réalisé quelques librairies.
Les développements sont disponibles sur
le site Web> du LTL

Références

(1] J. A. Whittaker, S. Atkin: Software Engineering is

not Enough. IEEE Software, July/August 2002.

P. B. Hansen: Java's Insecure Parallelism. ACM Sig-

plan Notices, V. 34(4), April 1999, pp.38-44.

C. Petitpierre: Synchronous C++, a Language for

Interactive Applications. IEEE Computer, Septem-

ber 1998, pp 65-72.

(4] R. Milner: Communication and Concurrency.
Prentice Hall, 1989.

[5] C A. R. Hoare: Communicating Sequential Pro-
cesses. Prentice Hall, 1984.

[6] G. Agha, P Wegner, A. Yonezawa: Research Di-
rections in Concurrent 00 Programming. MIT
Press, Cambridge, Mass., 1993.

[71 P. Welch, P D. Austin: The JCSP Home Page.
http:/www.cs.ukc.ac.uk/projects/ofaljcsp/, 2002.

[8] G. Hilderink, A. Bakkers, J. Broenink: A Distribu-

ted Real-Time Java System Based on CSP. ISORC

2000, Newport Beach, CA, pp 400-407.

[2
B

Informations sur I'auteur

Prof. D' Claude Petitpierre a obtenu un diplome
d'ingénieur électricien a I'EPFL. I a ensuite passe 6 ans
a développer des logiciels de contréle de cimenteries
avant d'entamer des recherches sur la conception des
systémes de communications & I'EPFL, puis pendant
une année aux Laboratoires Bell de I'AT&T aux Etats-
Unis. Depuis 1987 il dirige le Laboratoire de téléinfor-
matique (LTI) a I'Ecole polytechnique fédérale de Lau-
sanne (EPFL), CH-1015 Lausanne.

Contact: claude.petitpierre@epfl.ch

' CCS: Calculus of Communicating Systems. Une théo-
rie permettant d’analyser le comportement de systémes
de processus paralléles et d’assurer par exemple qu’ils
ne possedent pas d’interblocages .

2CSP: Communicating Sequential Processes. Une théo-
rie 1égeérement différente de CCS, mais visant les mémes
buts.

3 ADA: Langage défini pour le Département de la dé-
fense américain, qui introduit un concept de rendez-vous
pour la communication entre processus.

Actor: Un concept particulier d’object actif.

S http:/ltiwww.epfl.ch/sJava

© http:/lamp.epfl.ch/~zenger/jaco/

28

public class StateDiagram {

int doing () { // machine d’états interne
state = 10;
result = 0;
for (;;) {
switch (state) {
case 10:
proxy.post_remoteMeth ();
case 20:
select {
case
proxy.ready_remoteMeth ();
result++;
state = 10;
case

cancelButton.pressed ();
return -1;

case
finishedButton.pressed ();
return result;

case
waituntil (System.currentTimeMillis()+1000);
display ("I am alive");

} } } }

public void run () { // machine d'états externe
for lry) |
a: startButton.pressed ();

result = doing ();

if (result>=0)

b: display (result);

Figure 11 Codage d'un diagramme d'état UML (Unified Modelling Language) qui spécifie une machine
d'etats imbriquée dans une autre.

Ein neues Konzept erleichtert die
Entwicklung interaktiver Software

Um interaktive Prozesse in Programmen abarbeiten zu konnen, verwenden die
meisten Entwicklungsumgebungen ein spezielles, ereignisgesteuertes Konzept,
das bei Java Listener genannt wird. Dieses Konzept bietet allerdings nur geringe
Kontrollméglichkeiten, denn diese Listener lassen zahlreiche, unerwiinschte
Nebensequenzen zu, die der Programmentwickler nur schwer identifizieren kann,
was eine korrekte Priifung stark behindert. Der vorliegende Beitrag stellt eine
Alternative zu den Listenern vor, die mittels des so genannten pseudo-parallelen
Konzeptes eine wesentlich genauere und leichtere Umsetzung interaktiver Pro-
gramme ermoglicht.

Bulletin SEV/AES 9/03

	Un nouveau concept pour améliorer le développement des logiciels interactifs

