Zeitschrift: bulletin.ch / Electrosuisse
Herausgeber: Electrosuisse

Band: 94 (2003)

Heft: 1

Artikel: Die .NET Common Language Runtime : Uberblick und technischer
Einstieg

Autor: Willers, Michael

DOI: https://doi.org/10.5169/seals-857511

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-857511
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Informatik

Die .NET Common Language Runtime -
Uberblick und technischer Einstieg

Das .NET Framework ist der fir Entwickler wichtigste Bestandteil
der neuen .NET-Plattform von Microsoft. Herzstlick des Frame-
works ist die Common Language Runtime. Grund genug also, ein
wenig hinter die Kulissen zu schauen und die Konzepte dieser
Laufzeitumgebung naher zu beleuchten. Dieser Artikel gibt
einen Uberblick und liefert einen Einstieg in die Thematik.

Die meist gestellte Frage bei der Ein-
fithrung neuer Technologien ist die nach
dem Warum. Warum also eine gemein-
same Laufzeitumgebung? Blicken wir
dazu ein wenig zuriick. Das Anfang der
90er-Jahre von Microsoft eingefiihrte
Component Object Model (COM) sollte
dazu dienen, die Kommunikation und In-

Michael Willers

tegration zwischen Softwarekomponen-
ten zu vereinheitlichen. Dieses Modell
hat sich am Markt durchgesetzt. Das be-
legen die zahlreichen Losungen, die
heute verfiigbar sind — von einfachen vi-
suellen Komponenten (Controls) bis hin
zur kompletten Anbindung an SAP-Sys-
teme (SAP/R3).

Die Idee dahinter: Die Integration soll-
te bindr und somit unabhingig von Pro-
grammiersprachen erfolgen. Um diese
Integration zu ermdglichen, bringt COM
ein eigenes Typsystem mit. Kurz gesagt:
Jede Sprache muss neben dem eigenen
Typsystem zusétzlich das Typsystem von
COM implementieren, um interoperabel

zu sein. Diese Vorgehensweise bringt im

Wesentlichen drei Probleme mit sich:

— Die Sprache benétigt einen Layer, der
das Typsystem von COM implemen-
tiert.

— Der Entwickler muss iiber diesen
Layer die Konvertierungen von
Sprachtypen in COM-Typen und um-
gekehrt von Hand programmieren.

— Der Entwickler muss neben der Kon-
vertierung zusétzlichen Infrastruktur-
code fiir den Layer programmieren,
um den Aufrufkonventionen von COM
zu geniigen.

Diese zusitzliche Programmierung
macht den Code komplex und extrem
fehleranfdllig. Wer als C**-Programmie-
rer hdufig mit Feldern oder Zeichenketten
(COM-Typ SAFEARRAY bzw. BSTR)
arbeitet, der weiss, wovon hier die Rede
1st.

Im Laufe der Jahre ist dieses Modell
weiterentwickelt und um Dienste fiir ver-
teilte Anwendungen sowie die Moglich-
keit fiir Fernaufrufe (Microsoft Transac-
tion Server, MTS bzw. Distributed COM,
DCOM) erweitert worden. Diese Weiter-
entwicklungen sind mit Windows 2000

zu einem einheit-

Typsystem

Dienste
flr verteilte
Anwendungen

Loader
Remoting

lichen Modell zu-
sammengeflossen,
das unter der Be-
zeichnung COM*
weitldufig bekannt
ist. Aber auch
COM* konnte die
Basisprobleme
nicht Iosen: Jede
Sprache bendtigt
weiterhin einen
Layer, der das Ty-

Bild 1 Die Common Language Runtime bietet ein einheitliches Integra-

tionsmodell

36

psystem von COM
implementiert, und
der Entwickler

muss durch zusitzliche Programmierung
seine Spache an COM anpassen .

Hier setzt die Common Language
Runtime (CLR) an und bietet ein einheit-
liches Integrationsmodell (Bild 1). Die
eingangs gestellte Frage nach dem
Warum kann also wie folgt beantwortet
werden: Die Common Language Run-
time bietet ein einheitliches Integrations-
modell, und dieses Modell sorgt dafiir,
dass die Anwendungsentwicklung kon-
sistenter und einfacher wird.

Codemanager

Im .NET Framework spielt der Begriff
Managed eine zentrale Rolle. So wird
Code, der unter der Regie der Runtime
ausgefiihrt wird, mit Managed Code be-
zeichnet. Das bedeutet, dass Aktionen
wie das Anlegen eines Objekts oder der
Aufruf einer Methode nicht direkt erfol-
gen, sondern an die Runtime delegiert
werden. Diese kann dann zusitzliche
Dienste wie beispielsweise Versionsiiber-
priifungen ausfiihren.

Aus diesem Grund erzeugen die Com-
piler des Frameworks keinen native Code
mehr. Vielmehr wird aus dem Quelltext
eine prozessorunabhidngige Zwischen-
sprache erzeugt (Bild 2), die dann unter
Aufsicht der Runtime bei Bedarf zu na-
tive Code kompiliert und ausgefiihrt wird
(Just in time Compiler, JIT). Diese Zwi-
schensprache wird mit Common Interme-
diate Language, CIL, kurz IL, bezeichnet.
IL-Code wird vor der Ausfiihrung grund-
sdtzlich in echten Maschinencode liber-
setzt. Somit ist gewéhrleistet, dass immer
die schnellstmdglichste Ausfithrungsge-
schwindigkeit gegeben ist. Zudem er-
laubt dieses Verfahren eine Entkopplung
der Runtime von der zugrunde liegenden
Hardware. Ein Vorldufer ist bereits unter
Windows CE im Einsatz. Dort erzeugen
die Compiler der Entwicklungumgebung
auch eine Zwischensprache; erst beim
Download auf das CE-Gerit wird die An-
wendung in native Code iibersetzt und
damit hardwareabhéngig.

Einzige Ausnahme: Der Visual-C**-
Compiler. Er auch kann weiterhin native
Code erzeugen. Hier ist der Grund aller-
dings einleuchtend. Nur ein Bruchteil
aller Entwickler kommt mit der rauhen
Wirklichkeit der Programmierung in Be-
riihrung: Die Kernel- und Treiberent-

Bulletin SEV/AES 3/03

.Net CLR

Compiler Compiler Compiler—— ASM Code

C++

Bild2 Sprachintegration erfolgt zukiinftig auf
Codeehene

Visual C** kann allerdings weiterhin native Code er-
zeugen, damit es auch zuknftig noch performante
Treibersoftware gibt.

wickler. Fiir diese Einsatzgebiete ist eine
Runtime denkbar ungeeignet, da in der
Regel eine Plattformabhéngigkeit vor-
liegt und maximale Performance zwin-
gend erforderlich ist.

Wenn die Methode 1 (IL) der Klasse A
aufgerufen wird, sucht diese in der
Klasse B die Methode 1 (ASM). Falls
diese vorhanden ist, wird sie aktiviert,
wenn nicht, wird die IL-Methode vom
JIT-Compilers in eine ASM-Methode
tibersetzt und dann ausgefiihrt. Die Com-
mon Intermediate Language ist komplett
offen gelegt; sie wurde im Dezember
2001 von der europdischen Standardisie-
rungsbehdrde ECMA als Standard ver-
abschiedet. Weitere Informationen fin-
det man unter http://msdn.microsoft.com/
net/ecma.

Somit kann jeder Compiler, der IL-
Code erzeugt, diesen unter Aufsicht der
Runtime ausfiihren lassen. Oder anders

' Datei BASICDOG.VB

Option Strict Off
Namespace DogClone
Public Class BasicDog

End Sub
Public Sub Ouch
Dim x as integer = 0
Dim y as integer = 42 / x

End Sub
End Class
End Namespace

// Datei EXTDOG.CS
/7
namespace DogClone {

public class ExtendedDog :

/] =mmmmmmmm e
// Und noch ein Testprogramm in C#
// Datei DOGDEMO.CS

/] ===

using DogClone;

namespace DogApp {
class EntryPoint {
static void Main() {

try {
ExtendedDog myDog =
myDog.Bark ("Michael");
myDog.Ouch() ;
myDog .Growl ("Simon") ;

}

}
System.Console.ReadLine();

' Die Basisklasse in VB.NET formuliert

Public Sub Bark(ByVal strName as System.String)

System.Console.WriteLine("Hello, {0}!",strName)

System.Console.WriteLine("Ouch")

Lol e e e e e e e e e
// Eine abgeleitete Klasse in C# formuliert

BasicDog {

public void Growl(string strName) {
System.Console.WriteLine("Hello,

new ExtendedDog();

catch (System.Exception e) {
System.Console.WriteLine(e);

{0}. I will bite you!", strName);

Listing 1 Vererbung und einheitliche Fehlerbehandlung iiber Sprachgrenzen hinweg

gesagt: Dreh- und Angelpunkt der Run-
time ist die Integration auf Codeebene.
Ob man nun Cobol, Pascal, C# oder Vi-
sual Basic benutzt, ist egal, solange der
Compiler IL-Code erzeugt. Man kann
nun beispielsweise eine Klasse in einer
Sprache erstellen

(1) Methodenaufruf

Klasse A
Methode 1 (IL)

o
o

*~-=-- JIT Compiler -~

D

und mittels einer
anderen Sprache
eine weitere Klasse
davon ableiten
(Bild 3). Die Be-
b deutung, welche
Sprache man zur
Entwicklung von
Anwendungen be-
nutzt, riickt damit
in den Hintergrund.
Man arbeitet mit
der Sprache, die

(2) IL-Code
durch native
Code ersetzen

“--_———

Bild3 IL-Code wird durch den JIT-Compiler der Common Language Runtime bei

Bedarf in native Code {ibersetzt und ausgefiihrt.
Der Compiler wird zur Laufzeit erst dann benétigt, wenn

folgt - und nicht vorher. IL: Intermediate Language; JIT: Just In Time; ASM: Assem-

bler Language

Bulletin SEV/VSE 3/03

einem am besten
liegt (Listing 1).
Allen .NET-
Compilern ist tibri-
gens gemeinsam,

der Methodenaufruf er-

dass sie die umfangreiche Klassenbiblio-
thek der Runtime benutzen. Diese verein-
heitlicht die bisherigen Programmier-
schnittstellen zu einem gemeinsamen
Modell und bietet Klassen fiir nahezu
jede Lebenslage — von Basisklassen fiir
die Bearbeitung von Zeichenketten bis
hin zu Klassen fiir die Thread-Program-
mierung. Zugriffe auf das Betriebssystem
und das Win32-API erfolgen also nicht
mehr direkt, sondern werden iiber Klas-
sen abstrahiert.

Ein weiterer Bereich der Bibliothek
befasst sich mit Fehlerbehandlung — sie
erfolgt iiber alle Sprachen einheitlich in
Form von Exceptions.

Das Common Type System

Die Idee der Integration auf Code-
ebene geht allerdings noch einen Schritt
weiter. Die Common Language Runtime
stellt allen .NET-Sprachen ein umfassen-
des Typsystem zur Verfiigung (Bild 4).
Kurz gesagt: Das Typsystem wandert

37

Informatik

Services = Ul

HtmiControls

Runtime
p——

Bild 4 Die Klassenbibliothek im .NET Framework - ein einheitliches Programmiermodell

vom Compiler in die Runtime. Es ist
nicht mehr Bestandteil einer Sprache.
Vielmehr setzen alle Sprachen auf dem
Common Type System (CTS) der Run-
time auf. Das bedeutet: Typen werden
eindeutig, da es nicht mehr verschiedene
Reprisentationen ein und desselben Typs
gibt — so ist beispielsweise eine Zeichen-
kette unter Visual Basic.NET identisch
mit einer Zeichenkette unter C#.

Typkonvertierungen und Anpassungen
an COM-Aufrufkonventionen (Bild 5a)
sind somit nicht mehr erforderlich, wenn
Komponenten unterschiedlicher Spra-
chen miteinander kommunizieren. Spra-
chen sind per Definition interoperabel
(Bild 5b), da sie das gleiche Typsystem
benutzen.

Fiir Anwendungsentwickler und Com-
pilerbauer wird es einfacher. Der Anwen-
dungsentwickler wird von fehleranfilli-
gem Konvertierungscode entlastet und
der Compilerbauer muss weder Typsys-
tem noch eine Klassenbibliothek imple-
mentieren, da beides fester Bestandteil
der CLR ist. Andererseits muss Letzterer
dafiir sorgen, das bei der Portierung einer
bereits bestehenden Sprache auf die CLR

38

ein Mapping von Sprachtypen auf die
Typen des Common Type Systems er-
folgt. Aus der Sicht des Anwendungsent-
wicklers ist dies transparent, er benutzt
wie gewohnt seine Sprache. Das Map-
ping erfolgt «behind the scenes»; beim
Ubersetzen durch den Compiler wird der
entsprechende IL-Code erzeugt (Visual
C**NET ist ein Beispiel fiir eine solche
Portierung).

Alles ist Objekt?

Samtliche Typen, die tiber das CTS de-
finiert sind, werden mit Managed Types
bezeichnet. Sie werden grundsitzlich von
Typ System.Object abgeleitet. Kurz ge-
sagt: Alles ist ein Objekt (Bild 6).

Dabei stellt sich automatisch die Frage
nach der Performance, denn Objekte wer-
den normalerweise stets auf einem eige-
nen Speicherbereich, dem Heap (Halde)
abgelegt. Betrachen wir diesen Umstand
ein wenig genauer. Grundsitzlich wird
zwischen zwei Arten von Typen unter-
schieden: ValueType und ReferenceType.

ValueTypes zeichnen sich durch fol-
gende Eigenschaften aus:

— sie werden auf dem Stack angelegt;

— sie enthalten Daten;

— sie konnen nicht dem Wert Null anneh-
men;

— sie reprisentieren im Wesentlichen fol-
gende Typen: Primitive Datentypen
wie int, Aufzihlungen und Strukturen.

Im Gegensatz dazu gilt fiir Reference-
Types:
— sie werden auf dem Heap angelegt;
— sie enthalten Referenzen auf Objekte;
— sie konnen den Wert Null annehmen;
— sie reprisentieren im Wesentlichen fol-
gende Typen: Zeichenketten, Klassen
und Felder.

Fiir C**-Programmierer ist das ein alter
Hut. Allerdings mit einer Ausnahme:.
Wenn eine Struktur mit new erzeugt wird,
landet diese auf dem Stack und nicht auf
dem Heap. Man behalte diese Tatsache
im Hinterkopf. Primitive Datentypen sind
also als ValueTypes definiert und werden
somit auf dem Stack abgelegt. Wie aber
kann dann ein ValueType eine Objektme-
thode aufrufen, wenn doch alle Typen
von System.Object abgeleitet werden?

Bulletin SEV/AES 3/03

Bild5 Programmieren
unter COM und Common
Language Runtime

a: Unter COM wird jeder
Sprache ein eigener Layer
Ubergesttilpt, um intero-
perabel zu sein. Der Ent-
wickler muss Typkonver-
tierungen erledigen und
sich an die Aufrufkonven-
tionen von COM halten.
Die Folge: Komplexer
Code und Fehler sind vor-
programmiert.

b: Die Common Language
Runtime sorgt dafir, dass
Sprachen per Definitio-
nem interoperabel sind
und stellt eine entspre-
chende Infrastruktur be-
reit. Typkonvertierungen
und das Einhalten von
COM-Aufrufkonventio-
nen sind nicht mehr not-
wendig.

Bild 6 Das Common Type System - alles ist ein
Objekt

Sobald ein ValueType eine Objektme-
thode aufruft, legt die Runtime automa-
tisch ein temporires Objekt auf dem
Heap an und kopiert den Wert des Value-
Types dort hinein. Dann erfolgt der Me-
thodenaufruf. Nach der Ausfiihrung des
Methodenaufrufs wird das Objekt wieder
entfernt und man arbeitet mit dem Value-
Type weiter. Diese Techniken wurden mit
den Begriffen Boxing und Unboxing ge-
tauft. Mit Boxing wird das Konvertieren
eines ReferenceType in einen ValueType
bezeichnet, mit Unboxing der umge-
kehrte Vorgang. Man kann Boxing und
Unboxing allerdings auch explizit einset-

Bulletin SEV/VSE 3/03

zen, um das Arbeiten mit temporiren Ob-
jekten zu vermeiden (Bild 7).

Im Hinblick auf die Performance ist
diese Vorgehensweise ein guter Kompro-
miss. Es ist nur dann ein echtes Objekt
auf dem Heap vorhanden, wenn es wirk-
lich gebraucht wird. Fiir den Entwickler
ist dies vollkommen transparent. Aus sei-
ner Sicht sind alle Typen Objekte und die
Runtime erledigt den Rest hinter den Ku-
lissen.

Diese Tatsache ist dann von Bedeu-
tung, wenn man eigene Typen implemen-
tiert, um auf einfache Art und Weise
«leichtgewichtige» Objekte zu erzeugen.
Man definiert den eigenen Typ einfach
als Struktur; Strukturen werden ja — wie
oben festgehalten — auf dem Stack abge-
legt.

Metadaten und Reflection

Komponenten, die mit der Runtime
programmiert wurden, beschreiben sich
selbst. Entsprechende Metadaten werden
beim Ubersetzen durch den Compiler in
die Komponente geschrieben. Diese
Metadaten konnen zur Laufzeit ausgele-
sen und verarbeitet werden. Man be-
zeichnet diesen Vorgang mit Reflection —
ein fiir JAVA-Anhinger bereits bekanntes
Verfahren. Der Vorteil: Der Installations-
vorgang beschrinkt sich auf einfaches
Kopieren; zusitzliche Dateien zur Be-

.Net CLR

schreibung — wie Headerdateien oder
Typenbibliotheken in der COM-Welt —
sind nicht mehr erforderlich.

Die Metadaten enthalten die Beschrei-
bungen sdmtlicher Typen, die in einer
Komponente definiert sind (Bild 8). Dazu
zdahlen Schnittstellen, Klassen und deren
Membervariablen usw. Die Membervari-
ablen werden iibrigens Felder genannt.
Wie aber lassen sich die Metadaten ausle-
sen? Sobald die Common Language Run-
time einen Typ erzeugt (z.B. eine Klasse),
wird gleichzeitig ein Objekt vom Typ
System.Type angelegt und der soeben er-
zeugten Typinstanz zugeordnet. Uber die
Methoden dieses Typobjekts konnen
dann die Metadaten ausgelesen werden
(Bild 9).

Auf eine Betrachtung der Methoden
des Reflection-API wird verzichtet und
auf die SDK-Dokumentation verwiesen.
Nur soviel: Man findet diese Methoden
unter System.Reflection.

Attribute

Richtig interessant wird Reflection erst
im Zusammenhang mit den sogenannten
Custom Attributes. Das Common Type
System bietet die Moglichkeit, jeden ein-
zelnen Typ zur Entwicklungszeit mit ei-
genen Metadaten zu versehen. Diese
Metadaten werden Attribute genannt und
konnen zur Laufzeit ausgelesen werden.
Neben der Verwendung vordefinierter At-
tribute besteht die Moglichkeit, eigene
Attribute zu definieren. Attribute werden
stets iiber Klassen implementiert, die sich
von der Basisklasse System.Attribute ab-
leiten. Schauen wir uns dazu ein Beispiel
an. Listing 2 zeigt anhand von C#-Code,
wie man einen generischen Mechanismus
implementieren kann, der Klassen in
einer Datenbank ablegt.

Mittels Reflection wird zunéchst aus
einer Klasse die dazugehdrige Tabellen-
definition erzeugt. Das erledigt die Me-
thode CreateSchema. Dabei wird das
Mapping zwischen Datenbanktypen und
den Typ der einzelnen Klassenmembers
iiber das Attribut DBFieldType realisiert.

// implizites Boxing
string s =
7.GetType() .ToString()

// explizites Boxing
inti=123;

object o = i;

int j = (int)o;

123

i 123

Bild 7 Boxing und Unboxing - aus der Sicht des
Entwicklers sind auch ValueTypes Objekte

39

Informatik

using System;
using System.Reflection;

namespace devcoach.de.BuilderDemo {
public class DBTypeAttribute
public readonly string val;
}
public interface IBuilder {
string CreateSchema(Type t);
string Insert (object o);

}

public class SQLBuilder :

DBTypeAttribute a =

return a.val;

}

int len = fields.Length;
FieldInfo £;
for (int i = 0; i < 1len;

f = fields[i];
sql += f.Name + "

sql += ");";
return sql;
}

public string Insert(object o)
Type t = o.GetType();

int len = fields.Length;
FieldInfo f£;
for (int i = 0; i < 1len;
£ = fields[i];
sq@l += f.Name;
sql += ") values (";

for (int i = 0; i < len;
f = fields[i];

bool b = ((f.FieldType)
if (b) sq@l += "'";

if (b) sql += "'n;

sql += ");";
return sql;

[AttributeUsage (AttributeTargets.Field, AllowMultiple = false)]
: Attribute {

public DBTypeAttribute(string val) { this.val = val; }

IBuilder {

// Hilfsfunktion zum Auslesen des Attributwertes

private string GetDBTypeAttribute(FieldInfo £) {
(DBTypeAttribute)Attribute.GetCustomAttribute (
£, typeof (DBTypeAttribute)

)i
if (null == a) return f.FieldType.ToString():;

public string CreateSchema(Type t) {
FieldInfo[] fields = t.GetFields();

string sql = "create table (";
i++) {

" + GetDBTypeAttribute(f);
if (i < len-1) sqgl += ",";

FieldInfo[] fields = t.GetFields();
string sql = "insert into " + t.Name + " (";
// Zuerst die Feldnamen ausgeben
i++) {
if (i < len-1) sqgl += ",";
// Dann die Feldinhalte ausgeben
i++)

// Strings gehdren in Quotes
== typeof(string));

sql += f.GetValue(o).ToString();

if (i < len-1) s@l += ",";

{

Listing 2 Generisches Speichern von Klassen - Reflection machts mdglich

So wird der Code vollig unabhingig von
der zugrunde liegenden Datenbank, und
man legt den zu verwendenden Typ de-
klarativ fest. Zum Auslesen der Attribut-
werte dient die Hilfsfunktion GetAttrVa-
lue, die als Ubergabeparameter den Typ
des Attributs erhilt. Dieser Typ dient als
Filter, der dafiir sorgt, dass man nur die
Attribute zuriickgeliefert bekommt, fiir
die wir uns interessieren. Das eigentliche
Speichern einer Instanz tibernimmt dann
die Methode Insert, welche die Klassen-
instanz als Parameter {ibergeben be-
kommt. Um die Anwendung zu verein-
fachen, verpackt man beide Funktionen
in eine Klasse SQL-Builder (Listing 2
und 3).

40

Spinnt man diesen Faden weiter,
konnte man beispielsweise auf die glei-
che Art und Weise einen XML-Builder
implementieren und eine Anwendung
bauen, die zur Laufzeit entscheidet, wie
eine Klasse abgespeichert werden soll.
Entsprechende Klassen fiir das Arbeiten
mit XML finden sich in der Klassenbi-
bliothek unter System.Xml und System.
Xml.Xsl. Uber die Schnittstelle IBuilder
wire die Realisierung einer ClassFactory
denkbar, die dann die eine geeignete In-
stanz des Builders zuriickgibt.

Der Fantasie sind fast keine Grenzen
gesetzt, und die Kombination von Reflec-
tion mit Attributen bietet viele, span-
nende Moglichkeiten. Ein Hinweis noch

am Rand: Eine Attributklasse wird erst
dann angelegt, wenn der erste Zugriff auf
diese Klasse erfolgt, also zum Beispiel
beim Aufruf der Methode GetCustomAt-
tributes.

Assemblies und Versionierung

Der grosste Problembereich in der COM-
Welt ist die Versionierung von Kompo-
nenten. Es ist unmdoglich, unterschiedli-
che Versionen einer Komponente parallel
zu installieren und zu nutzen. Eine nicht
durchdachte Anderung kann weitrei-
chende Folgen haben, da die Anderung
sich auf alle Anwendungen auswirkt, die
die Komponente benutzen. Dieses Prob-
lem ist unter der Bezeichnung DLL-Holle
wohlbekannt.

Um diesem Problem zu begegnen, hat
Microsoft den Begriff Assembly einge-
fihrt. Unter einem Assembly versteht
man — vereinfacht gesagt — alle Kompo-
nenten, die eine Anwendung referenziert.
Jedes Assembly verfiigt iiber Metadaten,
die die Abhingigkeiten der Komponenten
beschreiben. Diese Metadaten werden
Manifest genannt. Die einfachste Form
ist ein Private Assembly. Dabei werden
alle Komponenten in das Verzeichnis der
Anwendung oder in ein Unterverzeichnis
kopiert. Auf diese Art und Weise konnen
verschiedene Anwendungen gleichzeitig
mit verschiedenen Versionen einer Kom-
ponente arbeiten, ohne sich gegenseitig
zu beeinflussen.

Sofern sich die Komponenten der An-
wendung in einem oder mehreren Unter-
verzeichnissen befinden, kann man diese
tiber eine Konfigurationsdatei im XML-
Format spezifizieren. Der Name dieser
Datei muss dem Namen der Anwendung
entsprechen und die Endung CFG auf-
weisen (wenn eine Anwendung also bei-
spielsweise TEST.EXE heisst, muss die
Datei den Namen TEST.CFG haben).
Ausserdem miissen sich Konfigurations-
datei und Anwendung im gleichen Ver-
zeichnis befinden (Listing 4).

Wenn allerdings Komponenten von
mehreren Anwendungen benutzt werden
sollen, werden diese zu einem Shared As-
sembly zusammengefasst. Es ist dann
moglich, das verschiedene Anwendungen
gleichzeitig mit verschiedenen Versionen
einer globalen Komponente arbeiten,
ohne sich gegenseitig zu beeinflussen.

Ein Beispiel: Zwei Komponenten bil-
den ein Assembly und befinden sich im
Verzeichnis V1.0.0.1. Dieses Assembly
wird von drei unterschiedlichen Anwen-
dungen benutzt. Nun wird eine neuere
Version des Assemblies mit neuen Kom-
ponenten im Verzeichnis V1.1.0.1 instal-
liert. Die Anwendungen konnen dann

Bulletin SEV/AES 3/03

using System;

namespace devcoach.de.BuilderDemo {
class Person {

public Person (int age,
}
}

class App {
static void Main(){

}
}
}

[DBType("integer")] public int age;
[DBType ("varchar(50)")] public string name;
string name)

IBuilder builder = new SQLBuilder();
Console.WriteLine (builder.CreateSchema (typeof (Person)));
Console.WriteLine(builder.Insert (new Person(32,"Michael Willers")));

{ this.age = age; this.name = name;

Listing 3 Generisches Speichern zum Zweiten - ein kleines Testprogramm

<?xml version="1.0"?>
<configuration>
<runtime>

</assemblyBinding>
</runtime>
</configuration>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<probing privatePath="Stringer;Bin\Test" />

Listing 4 Dateipfade werden iiber XML-Datei spezifiziert - Administratoren wirds freuen

<?xml version="1.0"?>
<configuration>
<runtime>
<dependentAssembly>
/>
</dependentAssembly>
</assemblyBinding>

</runtime>
</configuration>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<assemblyIdentity name="Revers" publicKeyToken="0038acc8beadfle5"

<bindingRedirect oldVersion="2.0.0.0" newVersion="2.1.0.0" />

Listing 5 Anwendungen kdnnen gleichzeitig mit verschiedenen Versionen globaler Komponenten arbeiten

ebenfalls iiber eine Konfigurationsdatei
bestimmen, mit welcher Assembly-Ver-
sion sie arbeiten mochten (Listing 5).
Allerdings ist dabei zu beachten, dass
dann natiirlich wieder bestimmte Abhiin-
gigkeiten gelten und man sehr gut iiberle-
gen muss, wann und wie man eine Kom-
ponente verdandert, wenn man nicht wie-

der geradewegs in die DLL-Hdlle laufen
will. Grundsitzlich bleibt aber festzuhal-
ten, dass verschiedene Versionen ein und
derselben Komponente mit Hilfe von As-
semblies parallel installiert und ausge-
fiihrt werden konnen. Komponentenin-
formationen sind im Gegensatz zur
COM-Welt nicht mehr nur systemweit

.Net CLR

giiltig; sie konnen anwendungsspezifisch
definiert werden.

Fazit

Die Common Language Runtime er-
moglicht unabhingig von Programmier-
sprachen eine durchgingig objekt- und
komponentenorientierte Programmie-
rung. Es gibt ein einheitliches Integra-
tionsmodell, und die Laufzeitumgebun-
gen verschiedener Sprachen werden
durch eine einzige Umgebung ersetzt.
Compiler setzen auf dem Common Type
System auf und erzeugen IL-Code. Die
Integration erfolgt also im Gegensatz zu
COM nicht auf bindrer Ebene, sondern
auf Codeebene — Sprachen sind per Defi-
nition interoperabel. Die Bedeutung, wel-
che Sprache man zur Entwicklung von
Anwendungen benutzt, riickt damit in
den Hintergrund. Man arbeitet mit der
Sprache, die einem am besten liegt. Oder
anders formuliert: Sprachen werden
gleichwertig und gewinnen an Bedeu-
tung.

Die CLR und die dazugehorige Klas-
senbibiliothek abstrahieren die Entwick-
lung von einer konkreten Plattform.
Weder COM noch das Win32-API sind
zukiinftig fiir den Entwickler sichtbar. Er
programmiert mit der Klassenbibliothek,
und die Compiler erzeugen prozessor-
unabhiingigen IL-Code als Output.

Ein weiterer wichtiger Punkt: Das
.NET Framework basiert nicht auf COM.
Aber auch wenn COM nicht mehr beno-
tigt wird, arbeitet das Framework nahtlos
mit COM-Komponenten zusammen. Es
ist von vorneherein auf Interoperabilitiit
ausgelegt worden. Sie konnen COM-
Komponenten aus .NET-Komponenten
heraus benutzen und umgekehrt. Und
nicht zuletzt wird die Installation von An-
wendungen stark vereinfacht, da die Run-
time nicht mehr auf der Registry aufsetzt.
Verschiedene Versionen der gleichen
Komponente konnen parallel eingesetzt

System.Type ————>@ {

public class Person

public string firstName;

Source Code Der Compiler erzeugt Metadaten und
(app1.vb) Assembly beim Ubersetzen des Moduls
TypAL # Compiler
E—— " (C#, VB.NET, usw.
Typ B{...} (e ik) i
Typ C{...} v
ORI o e o e e g I P T T T ~1
1 Assembly (app1.dil) J, i
1 1
1 Modul 1
1 M G y 1
: i MSIL-Code MSIL-Code MSIL-Code :
| Manifest fir Typ A fiir Typ B fir Typ C i
1 1
: Edeiiaiiig Metadaten fiir die Typen A, Bund C :
P - |

=P aubeldores=====-@

public string lastName;

public bool Save() {

> Methoden - -~~~ @ System.Type t = this i i~
foreach(FieldInfo f in t.GetFields ()) M
Ly {1
}
}

Person p = new Person (“Michael”,“Willers”)

- - > i Y

Michael
Willers

Bild 8 Typen werden immer durch Metadaten beschrieben, die vom Compiler er-
zeugt werden.

Bulletin SEV/VSE 3/03

Bild 9 Der einzige Weg zu Informationen fiihrt iiber das Typobjekt

41

Informatik

.Net CLR

werden. Die jedem Anwender und Ent-
wickler wohlbekannte DLL-Holle diirfte
damit hoffentlich bald der Vergangenheit
angehoren.

Michael Willers, Initiator und Griinder des Ent-
wicklerforums msdn TechTalk von Microsoft, war
lange Jahre als Entwickler und Projektleiter tatig.
Heute liegt der Schwerpunkt seiner Arbeit in der Ver-
mittlung und Anwendung moderner Softwaretech-
nologien und -architekturen, insbesondere dem .NET
Framework. Er ist Mitglied in verschiedenen Fachbei-
réten und Lehrbeauftragter an Universitaten und
Fachhochschulen in Deutschland. Kontakt: michael.
willers@devcoach.de, www.devcoach.de

sujet.

Le .NET Common Language Runtime
- apercu et initiation technique

Le .NET Framework est pour les développeurs 1’élément le plus important de
la nouvelle plate-forme .NET de Microsoft. La partie essentielle du Framework
est le Common Language Runtime. Il vaut donc la peine de jeter un coup d’ceil
derriére les coulisses pour mieux saisir les concepts de cet environnement a base
durée. L’article donne une vue d’ensemble et permet de se familiariser avec le

Das Bulletin SEV/VSE geféllt mir
und ich bestelle:
O 2 Gratis-Probeexemplare
(unverbindlich)
O ein Jahresabonnement
Q ab sofort A ab

Fr. 205.— in der Schweiz

SCHWEZER
‘QUALITATS-FACHZEITSCHRIFT
AUSGEZEICHNET VON

Y

weroy BULLETIN g

Publikationsorgan des SEV Verband fiir Elektro-, Energie- und Informationstechnik
und des Verbandes Schweizerischer Elektrizitdtsunternehmen VSE

Ich wiinsche Unterlagen Uber folgende Tatigkeiten und
Angebote der Electrosuisse:

Ich wiinsche Unterlagen tber Q0 Total Security Management TSM®
O Electrosuisse 0 TSM Success Manuals
O den Verband Schweiz. Elektrizitatsunternehmen (VSE) O Qualitatsmanagement O Umweltmanagement
a i tebedi

nseratebe '”9“”99” e)) 0 Risikomanagement Q Normung, Bildung
Ich interessiere mich fur die Mitgliedschaft bei Electrosuisse i .)
Q als Kollektivmitglied Q Sicherheitsberatung Q Innovationsberatung
Q als Einzelmitglied Q Prifungen, Qualifizierung Q Starkstrominspektorat
Name
Firma Abteilung
Strasse PLZ/Ort
Telefon Fax
Datum Unterschrift

Bestellungen auch Uber http://www.sev.ch

42

Ausflllen, ausschneiden (oder kopieren) und einsenden an:
Electrosuisse, IBN MD, Postfach, 8320 Fehraltorf, Fax 01 956 11 22

Bulletin SEV/AES 3/03

	Die .NET Common Language Runtime : Überblick und technischer Einstieg

