
Zeitschrift: bulletin.ch / Electrosuisse

Herausgeber: Electrosuisse

Band: 94 (2003)

Heft: 1

Artikel: Die .NET Common Language Runtime : Überblick und technischer
Einstieg

Autor: Willers, Michael

DOI: https://doi.org/10.5169/seals-857511

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-857511
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

I
Informatik

Die .NET Common Language Runtime -
Überblick und technischer Einstieg

Das .NET Framework ist der für Entwickler wichtigste Bestandteil
der neuen .NET-Plattform von Microsoft. Herzstück des Frameworks

ist die Common Language Runtime. Grund genug also, ein

wenig hinter die Kulissen zu schauen und die Konzepte dieser

Laufzeitumgebung näher zu beleuchten. Dieser Artikel gibt
einen Überblick und liefert einen Einstieg in die Thematik.

muss durch zusätzliche Programmierung
seine Spache an COM anpassen

Hier setzt die Common Language
Runtime (CLR) an und bietet ein einheitliches

Integrationsmodell (Bild 1). Die
eingangs gestellte Frage nach dem
Warum kann also wie folgt beantwortet
werden: Die Common Language Runtime

bietet ein einheitliches Integrations-
modell, und dieses Modell sorgt dafür,
dass die Anwendungsentwicklung
konsistenter und einfacher wird.

Die meist gestellte Frage bei der
Einführung neuer Technologien ist die nach
dem Warum. Warum also eine gemeinsame

Laufzeitumgebung? Blicken wir
dazu ein wenig zurück. Das Anfang der
90er-Jahre von Microsoft eingeführte
Component Object Model (COM) sollte
dazu dienen, die Kommunikation und In-

Michael Willers

tegration zwischen Softwarekomponenten

zu vereinheitlichen. Dieses Modell
hat sich am Markt durchgesetzt. Das
belegen die zahlreichen Lösungen, die
heute verfügbar sind - von einfachen
visuellen Komponenten (Controls) bis hin
zur kompletten Anbindung an SAP-Systeme

(SAP/R3).
Die Idee dahinter: Die Integration sollte

binär und somit unabhängig von
Programmiersprachen erfolgen. Um diese

Integration zu ermöglichen, bringt COM
ein eigenes Typsystem mit. Kurz gesagt:
Jede Sprache muss neben dem eigenen
Typsystem zusätzlich das Typsystem von
COM implementieren, um interoperabel

Typsystem

Dienste
für verteilte

Anwendungen

Loader
Remoting

Sprachenlayer Sprachenlayer

Microsoft
Transaction

Server
COM+ Runtime

COM Runtime

Bild 1 Die Common Language Runtime bietet ein einheitliches
Integrationsmodell

zu sein. Diese Vorgehensweise bringt im
Wesentlichen drei Probleme mit sich:

- Die Sprache benötigt einen Layer, der
das Typsystem von COM implementiert.

- Der Entwickler muss über diesen

Layer die Konvertierungen von
Sprachtypen in COM-Typen und
umgekehrt von Hand programmieren.

- Der Entwickler muss neben der
Konvertierung zusätzlichen Infrastrukturcode

für den Layer programmieren,
um den Aufrufkonventionen von COM
zu genügen.
Diese zusätzliche Programmierung

macht den Code komplex und extrem
fehleranfällig. Wer als C++-Programmie-
rer häufig mit Feldern oder Zeichenketten
(COM-Typ SAFEARRAY bzw. BSTR)
arbeitet, der weiss, wovon hier die Rede
ist.

Int Laufe der Jahre ist dieses Modell
weiterentwickelt und um Dienste für
verteilte Anwendungen sowie die Möglichkeit

für Fernaufrufe (Microsoft Transaction

Server, MTS bzw. Distributed COM,
DCOM) erweitert worden. Diese
Weiterentwicklungen sind mit Windows 2000

zu einem einheitlichen

Modell
zusammengeflossen,
das unter der
Bezeichnung COM+
weitläufig bekannt
ist. Aber auch
COM+ konnte die

Basisprobleme
nicht lösen: Jede

Sprache benötigt
weiterhin einen

Layer, der das

Typsystem von COM
implementiert, und
der Entwickler

Common
Language
Runtime

Codemanager
Im .NET Framework spielt der Begriff

Managed eine zentrale Rolle. So wird
Code, der unter der Regie der Runtime
ausgeführt wird, mit Managed Code
bezeichnet. Das bedeutet, dass Aktionen
wie das Anlegen eines Objekts oder der
Aufruf einer Methode nicht direkt erfolgen,

sondern an die Runtime delegiert
werden. Diese kann dann zusätzliche
Dienste wie beispielsweise Versionsüberprüfungen

ausführen.
Aus diesem Grund erzeugen die Compiler

des Frameworks keinen native Code
mehr. Vielmehr wird aus dem Quelltext
eine prozessorunabhängige Zwischensprache

erzeugt (Bild 2), die dann unter
Aufsicht der Runtime bei Bedarf zu
native Code kompiliert und ausgeführt wird
(Just in time Compiler, JIT). Diese
Zwischensprache wird mit Common Intermediate

Language, CIL, kurz IL. bezeichnet.
IL-Code wird vor der Ausführung
grundsätzlich in echten Maschinencode übersetzt.

Somit ist gewährleistet, dass immer
die schnellstmöglichste Ausführungsgeschwindigkeit

gegeben ist. Zudem
erlaubt dieses Verfahren eine Entkopplung
der Runtime von der zugrunde liegenden
Hardware. Ein Vorläufer ist bereits unter
Windows CE im Einsatz. Dort erzeugen
die Compiler der Entwicklungumgebung
auch eine Zwischensprache; erst beim
Download auf das CE-Gerät wird die
Anwendung in native Code übersetzt und
damit hardwareabhängig.

Einzige Ausnahme: Der Visual-C++-
Compiler. Er auch kann weiterhin native
Code erzeugen. Hier ist der Grund
allerdings einleuchtend. Nur ein Bruchteil
aller Entwickler kommt mit der rauhen
Wirklichkeit der Programmierung in
Berührung: Die Kernel- und Treiberent-

36 Bulletin SEV/AES 3/03

I
.Net CLR

VB C# C++

Compiler Compiler Compiler—

IL Code IL Code IL Code

Common Language Runtime

JIT Compiler

Betriebssystem

Bild 2 Sprachintegration erfolgt zukünftig auf
Codeebene

Visual Ct+ kann allerdings weiterhin native Code

erzeugen, damit es auch zukünftig noch performante
Treibersoftware gibt.

Wickler. Für diese Einsatzgebiete ist eine
Runtime denkbar ungeeignet, da in der

Regel eine Plattformabhängigkeit
vorliegt und maximale Performance zwingend

erforderlich ist.
Wenn die Methode 1 (IL) der Klasse A

aufgerufen wird, sucht diese in der
Klasse B die Methode 1 (ASM). Falls
diese vorhanden ist, wird sie aktiviert,
wenn nicht, wird die IL-Methode vom
JIT-Compilers in eine ASM-Methode
übersetzt und dann ausgeführt. Die Common

Intermediate Language ist komplett
offen gelegt; sie wurde im Dezember
2001 von der europäischen
Standardisierungsbehörde ECMA als Standard
verabschiedet. Weitere Informationen findet

man unter http://msdn.microsoft.com/
net/ecma.

Somit kann jeder Compiler, der IL-
Code erzeugt, diesen unter Aufsicht der
Runtime ausführen lassen. Oder anders

1 Die Basisklasse in VB.NET formuliert
* Datei BASICDOG.VB

Option Strict Off
Namespace DogClone
Public Class BasicDog

Public Sub Bark(ByVal strName as System.String)
System.Console.WriteLine("Hello, {0}!",strName)

End Sub
Public Sub Ouch

Dim x as integer 0

Dim y as integer 42 / x
System.Console.WriteLine("Ouch")

End Sub
End Class
End Namespace

Eine abgeleitete Klasse in C# formuliert
Datei EXTDOG.CS

//
//
//
//
namespace DogClone {

public class ExtendedDog : BasicDog {
public void Growl(string strName) {

System.Console.WriteLine("Hello,
}

}
}

{0}. I will bite you!",strName);

Und noch ein Testprogramm in C#
Datei DOGDEMO.CS

{

//
//
//
//
using DogClone;

namespace DogApp {
class EntryPoint {

static void Main()
try {

ExtendedDog myDog new ExtendedDog();
myDog.Bark("Michael");
myDog.Ouch();
myDog.Growl("Simon");

}
catch (System.Exception e) {

System.Console.WriteLine(e);
>

System.Console.ReadLine();
>

}

Listing 1 Vererbung und einheitliche Fehlerbehandlung über Sprachgrenzen hinweg

Klasse A

Methode 1 (IL)

Methode 2 (IL)

Methode 3 (IL)

Methode 4 (IL)

(1) Methodenaufruf

JIT Compiler

Bild 3 IL-Code wird durch den JIT-Compiler der Common Language Runtime bei

Bedarf in native Code übersetzt und ausgeführt.

Der Compiler wird zur Laufzeit erst dann benötigt, wenn der Methodenaufruf
erfolgt - und nicht vorher. IL: Intermediate Language; JIT: Just In Time; ASM: Assembler

Language

gesagt: Dreh- und Angelpunkt der Runtime

ist die Integration auf Codeebene.
Ob man nun Cobol, Pascal, C# oder
Visual Basic benutzt, ist egal, solange der

Compiler IL-Code erzeugt. Man kann
nun beispielsweise eine Klasse in einer

Sprache erstellen
und mittels einer
anderen Sprache
eine weitere Klasse
davon ableiten
(Bild 3). Die
Bedeutung, welche
Sprache man zur
Entwicklung von
Anwendungen
benutzt, rückt damit
in den Hintergrund.
Man arbeitet mit
der Sprache, die
einem am besten

liegt (Listing 1).

Allen .NET-
Compilern ist übrigens

gemeinsam,

Klasse B

Methode 1 (ASM)

Methode 2 (IL)

(2) IL-Code J

durch native i
Code ersetzen

dass sie die umfangreiche Klassenbibliothek

der Runtime benutzen. Diese
vereinheitlicht die bisherigen Programmierschnittstellen

zu einem gemeinsamen
Modell und bietet Klassen für nahezu

jede Lebenslage - von Basisklassen für
die Bearbeitung von Zeichenketten bis
hin zu Klassen für die Thread-Program-
mierung. Zugriffe auf das Betriebssystem
und das Win32-API erfolgen also nicht
mehr direkt, sondern werden über Klassen

abstrahiert.
Ein weiterer Bereich der Bibliothek

befasst sich mit Fehlerbehandlung - sie

erfolgt über alle Sprachen einheitlich in
Form von Exceptions.

Das Common Type System
Die Idee der Integration auf Codeebene

geht allerdings noch einen Schritt
weiter. Die Common Language Runtime
stellt allen .NET-Sprachen ein umfassendes

Typsystem zur Verfügung (Bild 4).
Kurz gesagt: Das Typsystem wandert

Bulletin SEV/VSE 3/03 37

I
Informatik

System.Web
Services

Description

Discovery

Protocols
JM

Caching

Configuration

Ul

HtmlControls

WebControls

Security

SessionState

System.Windows.Forms
Design ComponentModel

System.Drawing
Drawing2D Printing

Imaging Text

System.Data
OleDb SqICIient

Common SqlTypes

XSLT

XPath

System.Xml
Serialization

Schema

System
Collections 10 Security Runtime

Configuration Net ServiceProcess InteropServices

Diagnostics Reflection Text Remoting

Serialization
Globalization Resources Threading

£1
r-—— •*** '«"WW

Bild 4 Die Klassenbibiiothek im .NET Framework - ein einheitliches Programmiermodell

vom Compiler in die Runtime. Es ist
nicht mehr Bestandteil einer Sprache.
Vielmehr setzen alle Sprachen auf dem
Common Type System (CTS) der Runtime

auf. Das bedeutet: Typen werden
eindeutig, da es nicht mehr verschiedene
Repräsentationen ein und desselben Typs
gibt - so ist beispielsweise eine Zeichenkette

unter Visual Basic.NET identisch
mit einer Zeichenkette unter C#.

Typkonvertierungen und Anpassungen
an COM-Aufrufkonventionen (Bild 5a)
sind somit nicht mehr erforderlich, wenn
Komponenten unterschiedlicher Sprachen

miteinander kommunizieren. Sprachen

sind per Definition interoperabel
(Bild 5b), da sie das gleiche Typsystem
benutzen.

Für Anwendungsentwickler und
Compilerbauer wird es einfacher. Der
Anwendungsentwickler wird von fehleranfälligem

Konvertierungscode entlastet und
der Compilerbauer muss weder Typsystem

noch eine Klassenbibliothek
implementieren, da beides fester Bestandteil
der CLR ist. Andererseits muss Letzterer
dafür sorgen, das bei der Portierung einer
bereits bestehenden Sprache auf die CLR

ein Mapping von Sprachtypen auf die

Typen des Common Type Systems
erfolgt. Aus der Sicht des Anwendungsentwicklers

ist dies transparent, er benutzt
wie gewohnt seine Sprache. Das Mapping

erfolgt «behind the scenes»; beim
Übersetzen durch den Compiler wird der

entsprechende IL-Code erzeugt (Visual
C++.NET ist ein Beispiel für eine solche

Portierung).

Alles ist Objekt?
Sämtliche Typen, die über das CTS

definiert sind, werden mit Managed Types
bezeichnet. Sie werden grundsätzlich von
Typ System.Object abgeleitet. Kurz
gesagt: Alles ist ein Objekt (Bild 6).

Dabei stellt sich automatisch die Frage
nach der Performance, denn Objekte werden

normalerweise stets auf einem eigenen

Speicherbereich, dem Heap (Halde)
abgelegt. Betrachen wir diesen Umstand
ein wenig genauer. Grundsätzlich wird
zwischen zwei Arten von Typen
unterschieden: VahieType und ReferenceType.

ValueTypes zeichnen sich durch
folgende Eigenschaften aus:

- sie werden auf dem Stack angelegt;

- sie enthalten Daten;

- sie können nicht dem Wert Null annehmen;

- sie repräsentieren im Wesentlichen fol¬

gende Typen: Primitive Datentypen
wie int, Aufzählungen und Strukturen.

Im Gegensatz dazu gilt für Reference-
Types:

- sie werden auf dem Heap angelegt;

- sie enthalten Referenzen auf Objekte;

- sie können den Wert Null annehmen;

- sie repräsentieren im Wesentlichen fol¬

gende Typen: Zeichenketten, Klassen
und Felder.

Für C++-Programmierer ist das ein alter
Hut. Allerdings mit einer Ausnahme:
Wenn eine Struktur mit new erzeugt wird,
landet diese auf dem Stack und nicht auf
dem Heap. Man behalte diese Tatsache
im Hinterkopf. Primitive Datentypen sind
also als ValueTypes definiert und werden
somit auf dem Stack abgelegt. Wie aber
kann dann ein ValueType eine Objektmethode

aufrufen, wenn doch alle Typen
von System.Object abgeleitet werden?

38 Bulletin SEV/AES 3/03

I
.Net CLR

h».
\ N~M

>r~r /
§§ I #

L.-''

X\/
v1 ILM "IJ

Bild 5 Programmieren
unter COM und Common

Language Runtime

a: Unter COM wird jeder
Sprache ein eigener Layer

übergestülpt, um
interoperabel zu sein. Der
Entwickler muss Typkonvertierungen

erledigen und

sich an die Aufrufkonventionen

von COM halten.
Die Folge: Komplexer
Code und Fehler sind

vorprogrammiert,

b: Die Common Language
Runtime sorgt dafür, dass

Sprachen per Definitionen!

interoperabel sind

und stellt eine entsprechende

Infrastruktur
bereit. Typkonvertierungen
und das Einhalten von
COM-Aufrufkonventio-

nen sind nicht mehr

notwendig.

Objekt

ValueType

Boolean Enum
I

Byte Struct
m

Char

Int32

Double

?in9,e Typen
im Namespace

System

Bild 6 Das Common Type System - alles ist ein

Objekt

Sobald ein ValueType eine Objektmethode

aufruft, legt die Runtime automatisch

ein temporäres Objekt auf dem

Heap an und kopiert den Wert des Value-

Types dort hinein. Dann erfolgt der
Methodenaufruf. Nach der Ausführung des

Methodenaufrufs wird das Objekt wieder
entfernt und man arbeitet mit dem ValueType

weiter. Diese Techniken wurden mit
den Begriffen Boxing und Unboxing
getauft. Mit Boxing wird das Konvertieren
eines ReferenceType in einen ValueType
bezeichnet, mit Unboxing der umgekehrte

Vorgang. Man kann Boxing und

Unboxing allerdings auch explizit einset¬

zen, um das Arbeiten mit temporären
Objekten zu vermeiden (Bild 7).

Im Hinblick auf die Performance ist
diese Vorgehensweise ein guter Kompro-
miss. Es ist nur dann ein echtes Objekt
auf dem Heap vorhanden, wenn es wirklich

gebraucht wird. Für den Entwickler
ist dies vollkommen transparent. Aus seiner

Sicht sind alle Typen Objekte und die
Runtime erledigt den Rest hinter den
Kulissen.

Diese Tatsache ist dann von Bedeutung,

wenn man eigene Typen implementiert,

um auf einfache Art und Weise
«leichtgewichtige» Objekte zu erzeugen.
Man definiert den eigenen Typ einfach
als Struktur; Strukturen werden ja - wie
oben festgehalten - auf dem Stack abgelegt.

Metadaten und Reflection
Komponenten, die mit der Runtime

programmiert wurden, beschreiben sich
selbst. Entsprechende Metadaten werden
beim Übersetzen durch den Compiler in
die Komponente geschrieben. Diese
Metadaten können zur Laufzeit ausgelesen

und verarbeitet werden. Man
bezeichnet diesen Vorgang mit Reflection -
ein für JAVA-Anhänger bereits bekanntes
Verfahren. Der Vorteil: Der Installationsvorgang

beschränkt sich auf einfaches
Kopieren; zusätzliche Dateien zur Be¬

schreibung - wie Headerdateien oder
Typenbibliotheken in der COM-Welt -
sind nicht mehr erforderlich.

Die Metadaten enthalten die Beschreibungen

sämtlicher Typen, die in einer
Komponente definiert sind (Bild 8). Dazu
zählen Schnittstellen, Klassen und deren
Membervariablen usw. Die Membervari-
ablen werden übrigens Felder genannt.
Wie aber lassen sich die Metadaten auslesen?

Sobald die Common Language Runtime

einen Typ erzeugt (z.B. eine Klasse),
wird gleichzeitig ein Objekt vom Typ
System.Type angelegt und der soeben

erzeugten Typinstanz zugeordnet. Über die
Methoden dieses Typobjekts können
dann die Metadaten ausgelesen werden

(Bild 9).
Auf eine Betrachtung der Methoden

des Reflection-API wird verzichtet und
auf die SDK-Dokumentation verwiesen.
Nur soviel: Man findet diese Methoden
unter System.Rejlection.

Attribute
Richtig interessant wird Reflection erst

im Zusammenhang mit den sogenannten
Custom Attributes. Das Common Type
System bietet die Möglichkeit, jeden
einzelnen Typ zur Entwicklungszeit mit
eigenen Metadaten zu versehen. Diese
Metadaten werden Attribute genannt und
können zur Laufzeit ausgelesen werden.
Neben der Verwendung vordefinierter
Attribute besteht die Möglichkeit, eigene
Attribute zu definieren. Attribute werden
stets über Klassen implementiert, die sich

von der Basisklasse System.Attribute
ableiten. Schauen wir uns dazu ein Beispiel
an. Listing 2 zeigt anhand von C#-Code,
wie man einen generischen Mechanismus
implementieren kann, der Klassen in
einer Datenbank ablegt.

Mittels Reflection wird zunächst aus
einer Klasse die dazugehörige
Tabellendefinition erzeugt. Das erledigt die
Methode CreateSchema. Dabei wird das

Mapping zwischen Datenbanktypen und
den Typ der einzelnen Klassenmembers
über das Attribut DBFieldType realisiert.

i 123

// implizites Boxing
string s
7.GetType() .ToStringO

// explizites Boxing
int i 123;
object o i;
int j (int)o;

- System.Int32

j 123
123

Bild 7 Boxing und Unboxing - aus der Sicht des

Entwicklers sind auch ValueTypes Objekte

Bulletin SEV/VSE 3/03 39

I
Informatik

[AttributeUsage(AttributeTargets.Field, AllowMultiple false)]
public class DBTypeAttribute : Attribute {

public readonly string val;
public DBTypeAttribute(string val) { this.val val; }

}

public interface IBuilder {
string CreateSchema(Type t);
string Insert(object o);

>

public class SQLBuilder : IBuilder {
// Hilfsfunktion zum Auslesen des Attributwertes
private string GetDBTypeAttribute(Fieldlnfo f) {

DBTypeAttribute a (DBTypeAttribute)Attribute.GetCustomAttribute(
f, typeof(DBTypeAttribute)

;if (null a) return f.FieldType.ToString() ;
return a.val;

>

public string CreateSchema(Type t) {
Fieldlnfo[] fields t.GetFields();
int len fields.Length;
string sql "create table (";
Fieldlnfo f;
for (int i 0; i < len; i + +) {

f fields[i];
sql += f. Name + " " + GetDBTypeAttribute (f) ;if (i < len-1) sql += ",";

}
sql += ");";
return sql;

}

public string Insert(object o) {
Type t o.GetType();
Fieldlnfo[] fields t.GetFields();
int len fields.Length;
string sql "insert into " + t.Name + " (";
Fieldlnfo f;
// Zuerst die Feldnamen ausgeben
for (int i 0; i < len; i++) {

f fields[i];
sql += f.Name;
if (i < len-1) sql +=

}
sql += ") values (";
// Dann die Feldinhalte ausgeben
for (int i 0; i < len; i++) {

f fields[i];
// Strings gehören in Quotes
bool b ((f.FieldType) typeof(string));if (b) sql += " ' " ;
sql += f.GetValue(o).ToString();if (b) sql +=
if (i < len-1) sql +=

>

sql += "); " ;
return sql;

}
}

}

Listing 2 Generisches Speichern von Klassen - Reflection machts möglich

using System;
using System.Reflection;

namespace devcoach.de.BuiIderDemo {

So wird der Code völlig unabhängig von
der zugrunde liegenden Datenbank, und

man legt den zu verwendenden Typ
deklarativ fest. Zum Auslesen der Attributwerte

dient die Hilfsfunktion GetAttrVa-
lue, die als Übergabeparameter den Typ
des Attributs erhält. Dieser Typ dient als

Filter, der dafür sorgt, dass man nur die
Attribute zurückgeliefert bekommt, für
die wir uns interessieren. Das eigentliche
Speichern einer Instanz übernimmt dann
die Methode Insert, welche die Klasseninstanz

als Parameter übergeben
bekommt. Um die Anwendung zu
vereinfachen, verpackt man beide Funktionen
in eine Klasse SQL-Builder (Listing 2

und 3).

Spinnt man diesen Faden weiter,
könnte man beispielsweise auf die gleiche

Art und Weise einen XML-Builder
implementieren und eine Anwendung
bauen, die zur Laufzeit entscheidet, wie
eine Klasse abgespeichert werden soll.

Entsprechende Klassen für das Arbeiten
mit XML finden sich in der Klassenbibliothek

unter System.Xml und System.
Xml.Xsl. Über die Schnittstelle IBuilder
wäre die Realisierung einer ClassFactory
denkbar, die dann die eine geeignete
Instanz des Builders zurückgibt.

Der Fantasie sind fast keine Grenzen

gesetzt, und die Kombination von Reflection

mit Attributen bietet viele,
spannende Möglichkeiten. Ein Hinweis noch

am Rand: Eine Attributklasse wird erst
dann angelegt, wenn der erste Zugriff auf
diese Klasse erfolgt, also zum Beispiel
beim Aufruf der Methode GetCustomAt-
tributes.

Assemblies und Versionierung
Der grösste Problembereich in der COM-
Welt ist die Versionierung von Komponenten.

Es ist unmöglich, unterschiedliche

Versionen einer Komponente parallel
zu installieren und zu nutzen. Eine nicht
durchdachte Änderung kann weitreichende

Folgen haben, da die Änderung
sich auf alle Anwendungen auswirkt, die
die Komponente benutzen. Dieses Problem

ist unter der Bezeichnung DLL-Hölle
wohlbekannt.

Um diesem Problem zu begegnen, hat
Microsoft den Begriff Assembly eingeführt.

Unter einem Assembly versteht
man - vereinfacht gesagt - alle Komponenten,

die eine Anwendung referenziert.
Jedes Assembly verfügt über Metadaten,
die die Abhängigkeiten der Komponenten
beschreiben. Diese Metadaten werden
Manifest genannt. Die einfachste Form
ist ein Private Assembly. Dabei werden
alle Komponenten in das Verzeichnis der
Anwendung oder in ein Unterverzeichnis
kopiert. Auf diese Art und Weise können
verschiedene Anwendungen gleichzeitig
mit verschiedenen Versionen einer
Komponente arbeiten, ohne sich gegenseitig
zu beeinflussen.

Sofern sich die Komponenten der
Anwendung in einem oder mehreren
Unterverzeichnissen befinden, kann man diese
über eine Konfigurationsdatei im XML-
Format spezifizieren. Der Name dieser
Datei muss dem Namen der Anwendung
entsprechen und die Endung CFG
aufweisen (wenn eine Anwendung also
beispielsweise TEST.EXE heisst, muss die
Datei den Namen TEST.CFG haben).
Ausserdem müssen sich Konfigurationsdatei

und Anwendung im gleichen
Verzeichnis befinden (Listing 4).

Wenn allerdings Komponenten von
mehreren Anwendungen benutzt werden
sollen, werden diese zu einem Shared
Assembly zusammengefasst. Es ist dann

möglich, das verschiedene Anwendungen
gleichzeitig mit verschiedenen Versionen
einer globalen Komponente arbeiten,
ohne sich gegenseitig zu beeinflussen.

Ein Beispiel: Zwei Komponenten
bilden ein Assembly und befinden sich im
Verzeichnis V 1.0.0.1. Dieses Assembly
wird von drei unterschiedlichen Anwendungen

benutzt. Nun wird eine neuere
Version des Assemblies mit neuen
Komponenten im Verzeichnis VI. 1.0.1 installiert.

Die Anwendungen können dann

40 Bulletin SEV/AES 3/03

I
.Net CLR

using System;

namespace devcoach.de.BuilderDemo {
class Person {

[DBType("integer")] public int age;
[DBType("varchar(50)")] public string name;
public Person (int age# string name) { this.age age; this.name name;

}
}

class App {

static void Main(){
IBuilder builder new SQLBuilder();
Console.WriteLine(builder.CreateSchema(typeof(Person)));
Console.WriteLine(builder.Insert(new Person(32,"Michael Willers")));

}
}

}

Listing 3 Generisches Speichern zum Zweiten - ein kleines Testprogramm

<?xml version="l.0"?>
cconfiguration>
<runtime>

<assemblyBinding xmlns "urn:schemas-microsoft-com:asm.vi">
<probing privatePath="Stringer;Bin\Test" />

</assemblyBinding>

</runtime>
</configuration>

Listing 4 Dateipfade werden über XML-Datei spezifiziert - Administratoren wirds freuen

<?xml version="l.0"?>
<configuration>

<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.vl">

<dependentAssembly>
<assemblyldentity name="Revers" publicKeyToken="003 8acc8beadfle5"

/>
<bindingRedirect oldVersion="2.0.0.0" newVersion="2.1.0.0" />

</dependentAssembly>

</assemblyBinding>
</runtime>

</configuration>

Listing 5 Anwendungen können gleichzeitig mit verschiedenen Versionen globaler Komponenten arbeiten

ebenfalls über eine Konfigurationsdatei
bestimmen, mit welcher Assembly-Version

sie arbeiten möchten (Listing 5).

Allerdings ist dabei zu beachten, dass

dann natürlich wieder bestimmte
Abhängigkeiten gelten und man sehr gut überlegen

muss, wann und wie man eine

Komponente verändert, wenn man nicht wie¬

der geradewegs in die DLL-Hölle laufen
will. Grundsätzlich bleibt aber festzuhalten,

dass verschiedene Versionen ein und
derselben Komponente mit Hilfe von
Assemblies parallel installiert und ausgeführt

werden können. Komponenteninformationen

sind im Gegensatz zur
COM-Welt nicht mehr nur systemweit

gültig; sie können anwendungsspezifisch
definiert werden.

Fazit
Die Common Language Runtime

ermöglicht unabhängig von Programmiersprachen

eine durchgängig objekt- und

komponentenorientierte Programmierung.

Es gibt ein einheitliches
Integrationsmodell, und die Laufzeitumgebungen

verschiedener Sprachen werden
durch eine einzige Umgebung ersetzt.

Compiler setzen auf dem Common Type
System auf und erzeugen IL-Code. Die

Integration erfolgt also im Gegensatz zu
COM nicht auf binärer Ebene, sondern
auf Codeebene - Sprachen sind per
Definition interoperabel. Die Bedeutung, welche

Sprache man zur Entwicklung von
Anwendungen benutzt, rückt damit in
den Hintergrund. Man arbeitet mit der

Sprache, die einem am besten liegt. Oder
anders formuliert: Sprachen werden

gleichwertig und gewinnen an Bedeutung.

Die CLR und die dazugehörige Klas-
senbibiliothek abstrahieren die Entwicklung

von einer konkreten Plattform.
Weder COM noch das Win32-API sind

zukünftig für den Entwickler sichtbar. Er
programmiert mit der Klassenbibliothek,
und die Compiler erzeugen
prozessorunabhängigen IL-Code als Output.

Ein weiterer wichtiger Punkt: Das
.NET Framework basiert nicht auf COM.
Aber auch wenn COM nicht mehr benötigt

wird, arbeitet das Framework nahtlos
mit COM-Komponenten zusammen. Es

ist von vorneherein auf Interoperabilität
ausgelegt worden. Sie können COM-
Komponenten aus .NET-Komponenten
heraus benutzen und umgekehrt. Und
nicht zuletzt wird die Installation von
Anwendungen stark vereinfacht, da die Runtime

nicht mehr auf der Registry aufsetzt.
Verschiedene Versionen der gleichen
Komponente können parallel eingesetzt

Source Code
(appl.vb)
TypA{...}

Typ ß {•}
Typ c {...}

Der Compiler erzeugt Metadaten und
Assembly beim Übersetzen des Moduls

Compiler
(C#, VB.NET, usw.)

Assembly (app1.dll)

Manifest

Modul

MSIL-Code
für Typ A

MSIL-Code
für Typ B

MSIL-Code
für Typ C

Metadaten für die Typen A, B und C

System.Type -
public class Person
{

Felder

• Methoden -

}

public string firstName;
public string lastName;

public bool Save() {
System.Type t this.
foreach(Fieldlnfo f in t.GetFields
{-}

} *
l

Person p new Person ("Michael","Willers")

p *——
JVjichael
Willers

Bild 8 Typen werden immer durch Metadaten beschrieben, die vom Compiler er- Bild 9 Der einzige Weg zu Informationen führt über das Typobjekt

zeugt werden.

Bulletin SEV/VSE 3/03 41

I
Informatik .Net CLR

werden. Die jedem Anwender und
Entwickler wohlbekannte DLL-Hölle dürfte
damit hoffentlich bald der Vergangenheit
angehören.

Michael Willers, Initiator und Gründer des

Entwicklerforums msdn TechTalk von Microsoft, war
lange Jahre als Entwickler und Projektleiter tätig.
Heute liegt der Schwerpunkt seiner Arbeit in der

Vermittlung und Anwendung moderner Softwaretechnologien

und -architekturen, insbesondere dem .NET

Framework. Er ist Mitglied in verschiedenen Fachbeiräten

und Lehrbeauftragter an Universitäten und
Fachhochschulen in Deutschland. Kontakt: michael.

willers@devcoach.de, www.devcoach.de

Le .NET Common Language Runtime
- aperçu et initiation technique

Le .NET Framework est pour les développeurs l'élément le plus important de

la nouvelle plate-forme .NET de Microsoft. La partie essentielle du Framework
est le Common Language Runtime. Il vaut donc la peine de jeter un coup d'œil
derrière les coulisses pour mieux saisir les concepts de cet environnement à base

durée. L'article donne une vue d'ensemble et permet de se familiariser avec le

sujet.

SCHWEIZER
QUAUTÄTS-FACHZEfTSCHRFr

AUSGEZEICHNET VON

Das Bulletin SEV/VSE gefällt mir
und ich bestelle:

2 Gratis-Probeexemplare
(unverbindlich)
ein Jahresabonnement

ab sofort ab

Fr. 205.- in der Schweiz

electrosuisse^ BULLETIN ^VSE
^AES

Publikationsorgan des SEV Verband für Elektro-, Energie- und Informationstechnik
und des Verbandes Schweizerischer Elektrizitätsunternehmen VSE

Ich wünsche Unterlagen über folgende Tätigkeiten und
Angebote der Electrosuisse:

Ich wünsche Unterlagen über

Electrosuisse

den Verband Schweiz. Elektrizitätsunternehmen (VSE)

Inseratebedingungen

Ich interessiere mich für die Mitgliedschaft bei Electrosuisse
als Kollektivmitglied
als Einzelmitglied

Total Security Management TSM®

TSM Success Manuals

Qualitätsmanagement Umweltmanagement

Risikomanagement Normung, Bildung

Sicherheitsberatung Innovationsberatung

Prüfungen, Qualifizierung Starkstrominspektorat

Name

Firma Abteiluna

Strasse PLZ/Ort

Telefon Fax

Datum Unterschrift

Ausfüllen, ausschneiden (oder kopieren) und einsenden an:

Electrosuisse, IBN MD, Postfach, 8320 Fehraitorf, Fax 01 956 11 22

Bestellungen auch über http://www.sev.ch

42 Bulletin SEV/AES 3/03

	Die .NET Common Language Runtime : Überblick und technischer Einstieg

