
Zeitschrift: bulletin.ch / Electrosuisse

Herausgeber: Electrosuisse

Band: 94 (2003)

Heft: 1

Artikel: .NET von Microsoft : alle Probleme gelöst?

Autor: Willers, Michael

DOI: https://doi.org/10.5169/seals-857510

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-857510
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

I
Informatik

.NET von Microsoft - alle Probleme gelöst?

Im Juli 2000 hat Microsoft auf der Professional Developers
Conference in Orlando einem breiten Entwicklerpublikum seine

Vision und Strategien für die nächsten Jahre vorgestellt: Microsoft

.NET. Mit der Freigabe von Visual Studio .NET im Februar

2002 nimmt diese Vision immer konkretere Formen an. Dabei

wird nicht nur in der Entwicklergemeinde heiss diskutiert. Die

Spannweite reicht dabei von «hellauf begeistert» bis «was soll

das?». Neben rein technischen Aspekten wird immer öfter und

lauter die Frage gestellt: «Was genau ist eigentlich .NET?» Und:

«Wie passt es zu bisherigen Technologien von Microsoft?».
Dieser Artikel versucht, eine Antwort auf diese und ähnliche

Fragen zu geben; er spannt den Bogen von COM über COM+

und Windows DNA bis hin zu .NET.

Blicken wir ein wenig zurück. Anfang
der 90er-Jahre begann die Komponentenidee

sich neben der reinen
Objektorientierung mehr und mehr durchzuset-

Michael Willers

zen: Ein Programm besteht nicht aus
einem einzelnen grossen Block, sondern
wird aus Komponenten zusammengesetzt.

Diese Idee hat sich auch deshalb
durchgesetzt, weil im Falle eines Fehlers
die Suche deutlich systematischer erfolgt:
Man kann sämtliche Komponenten
nacheinander durchleuchten und muss nicht
nach der Stecknadel im Heuhaufen
suchen. Wer schon mal eine intensive
Fehlersuche hat durchmachen müssen, der
weiss, wovon die Rede ist: Das Bauchgefühl

ist entscheidend - an der falschen
Stelle angefangen - und schon sind ein

paar Stunden dahin und die Überstunden

vorprogrammiert.
Microsoft hat diese Idee für die

Windows-Plattform aufgegriffen und
weitergeführt: Ein Programm sollte nicht nur
aus Komponenten aufgebaut sein,
vielmehr sollten sämtliche Komponenten auf
ein und dieselbe Weise miteinander
kommunizieren - und zwar unabhängig von
der verwendeten Programmiersprache.

Lokale und verteilte Komponenten

- COM und DCOM

Das Component Object Model (COM)
beschreibt, wie diese Kommunikation
aussieht. Jedes Windows-System enthält
eine Implementation dieser Spezifikation
- die COM-Runtime. Sie besteht im
Wesentlichen aus der Datei OLE32.DLL.
Der Vorteil: Komponenten werden stets
auf die gleiche Art und Weise angesprochen

und können als Blackbox eingesetzt
werden. Dieses Konzept (Bild 1) hat sich

durchgesetzt. Das belegen die zahlreichen

Lösungen, die am Markt vorhanden
sind. Mittlerweile existiert für nahezu

jede Problemstellung eine Komponente.
Parallel zur Komponentenorientierung

hat sich die Vernetzung von PCs durch¬

Bild 1 Das Component Object Model (COM) -
Komponenten sprechen die gleiche Sprache

gesetzt und zu einem neuen Typ von
Anwendungen geführt: Programme laufen
nicht mehr isoliert auf einem PC, sondern
bedienen sich Komponenten, die über
mehrere Rechner im Netz verteilt sein
können. Damit gewinnt das Thema
Sicherheit an Bedeutung. Microsoft hat
COM für Fernaufrufe über das Netz
erweitert und das Konzept der deklarativen
Sicherheit eingeführt: Rechte sind nicht
innerhalb einer Komponente «hart»
kodiert, sondern werden administrativ
festgelegt und beim Aufruf der Komponente
überprüft (Bild 2).

Diese Erweiterungen und Neuerungen
werden unter der Bezeichnung Distributed

COM (DCOM) zusammengefasst.
Der entscheidende Punkt dabei: Aus der
Sicht des Programmierers ist es völlig
egal, ob sich eine Komponente auf dem
lokalen oder auf einem anderen Rechner
befindet. Sie wird vom Programm aus
immer auf die gleiche Art und Weise

angesprochen - die COM-Runtime führt die
Sicherheitsüberprüfungen aus und sorgt
für einen Fernaufruf über das Netz, wenn
sich die Komponente auf einem anderen
Rechner befindet (Bild 3).

Dienste für verteilte Anwendungen

- MTS und COM+
Der Trend zu verteilten Anwendungen

hat sich seit Mitte der 90er-Jahre eher
noch verstärkt und die Komplexität bei
der Softwareentwicklung weiter ansteigen

lassen. Man denke beispielsweise an
das Buchungssystem eines Reisebüros:
Das Hotel muss gebucht werden, Flüge
müssen bestätigt werden, eventuell wird
ein Mietwagen reserviert und schliesslich
muss vermerkt werden, wie und wann der
Urlaub bezahlt wird. Auf weitere Einzelheiten

soll an dieser Stelle verzichtet werden;

das Problem dürfte klar geworden
sein. Nicht selten besteht der Löwenanteil

bei der Entwicklung verteilter
Anwendungen aus der Lösung von
Infrastrukturproblemen. Im Kern zählen dazu

folgende Dienste:

- ein Sicherheitsmodell (wer darf worauf

zugreifen);

- die Koordination gleichzeitiger
Zugriffe durch mehrere Benutzer;

- eine Ressourcenverwaltung (Connection-

und Thread-Pooling);

- verteilte Transaktionen.
Unter COM bzw. DCOM sind diese

Dienste nicht automatisch vorhanden.

30 Bulletin SEV/AES 1/03

I
.NET

PPfflJfP

General | Location Security | Identity | Endpoints |

(* Use default access permissions

C Use custom access permissions

You may edit who can access this application.

-U2Û

(•Use default launch permissions

C Use custom launch permissions

You may edit who can launch this application.

Registry Key Permissions

Registry Key: Windows Management Instrumentation

Owner: Administrators

Name:

C Use default configuration permissions

- (* Use custom configuration permissions

You may edit who can change the configurator
application.

dt Administrators Full Control

CREATOR OWNER Full Control

Everyone Special Access

Jag Power Users Special Access
SYSTEM Full Control

jag Users Read

Type of Access: Full Control ~3
Help

OK | Cancel j Apply | |

Bild 2 Distributed COM (DCOM)

Rechte für Komponentenaufrufe werden mit dem Programm DCOMCNFG.EXE definiert und in der Registry
abgelegt

COM bietet zwar ein umfassendes Threa-
ding-Modell und ein Security-API - nur
muss die anwendungsspezifische Logik
komplett von Hand programmiert werden.

(Für verteilte Transaktionen bietet
der Microsoft Distributed Transaction

Coordinator MSDTC entsprechende
Schnittstellen.) Und wer schon mal vor
dem Dilemma gestanden hat, seinem
Chef zu erklären, warum ein Projekt vier
statt der geplanten zwei Wochen dauert,
der weiss, wo das eigentliche Problem

liegt - mehr Zeit und somit zusätzliche
Kosten.

Um diesem Problem zu begegnen, hat
Microsoft bereits 1996 mit dem Microsoft

Transaction Server (MTS) eine
Laufzeitumgebung für Komponenten vorgestellt,

die genau diese Dienste bietet. Der
MTS beruht auf dem Prinzip der
attributbasierten Programmierung.

- Jede Klasse einer Komponente definiert

über Attribute, welche Dienste sie

benötigt.

- Beim Erstellen einer Instanz dieser
Klasse (Objekt) wird eine auf deren
Attributen basierende Laufzeitumgebung

erstellt, die ihr die gewünschten
Systemdienste bereitstellt.

- Diese Laufzeitumgebung wird Kontext
genannt.
Das ist die zweite wesentliche Neuerung:

Jedes Objekt verfügt über einen
Kontext (Bild 4), über den es zusätzlich
Informationen erfragen kann. Zu diesen
Informationen zählen unter anderem:

- der Benutzer, der das Objekt erstellt
hat (Direct Caller);

- der Benutzer, der die Aufrufkette ange-
stossen hat (Original Caller);

- welche Dienste das Objekt benutzen
kann (Transaktionen, Sicherheit).
Darüber hinaus ist das Konzept der

deklarativen Sicherheit verfeinert und
vereinfacht worden: Die Vergabe von Rechten

erfolgt auf der Basis von Rollen. Der
Vorteil: Die Zuordnung von Benutzern zu
einer Komponente muss während der
Entwicklungszeit nicht bekannt sein.
Benutzer können einer Rolle bei der Installation

dynamisch zugeordnet werden
(Bild 5).

Der wichtigste Punkt auch hier: Für
den Programmierer ist völlig transparent,
ob eine Komponente unter der Regie des

MTS läuft oder nicht. Sie wird vom
Programm aus immer auf die gleiche Art und
Weise angesprochen. Damit das funktioniert,

sind unter der Haube zwei
unterschiedliche Laufzeitsysteme notwendig -
die COM-Runtime und die MTS-Run-
time (Letztere besteht im Wesentlichen
aus den Daten MTXEX.DLL und MTX.
EXE). Unter Windows 2000 sind beide

Umgebungen zu einer einheitlichen
Laufzeitumgebung zusammengefasst worden:
COM+.

Neben vielen Detail- und
Performanceverbesserungen sind in COM+ auch

neue Dienste integriert worden. Dazu
gehören ein Event-Service und die
Möglichkeit, Komponentenaufrufe über Message

Queues zu verarbeiten (Queued
Components). Die häufig gestellte Frage
«Was ist COM+?» kann nun einfach
beantwortet werden: «COM+ ist die
Weiterentwicklung von COM und integriert

Bild 3 Distributed COM

Distributed COM ermöglicht einheitliche Kommunikation auch über Rechnergrenzen hinweg

Bild 4 Der Kontext - ein Objekt erkennt jederzeit seinen Aufrufer und welche Dienste es nutzen kann

COM + Umgebung unter Win2000

Kontext BKontext A

Interceptor'

Objekt
Kontext

Objekt

Win9x
WinNT 4.x
Win2000

Client

Bulletin SEV/VSE 1/03 31

I
Informatik

Client 2
Sandra

Definition der Rollen

Rolle 1 Michael
Rolle 2 Sandra

Zuordnung der Rollen

Rolle 1 A
Rolle 2 A, B

Bild 5 Deklarative
Sicherheit auf der Basis

von Rollen

Der Entwickler einer

Anwendung muss die Benutzer

einer Anwendung
nicht kennen. Die Zuordnung

der Benutzer

erfolgt bei der Installation
der Anwendung.

Zugriff erlaubt
Zugriff verboten

Dienste für die Entwicklung verteilter
Anwendungen.»

Ein Modell für verteilte
Anwendungen - Windows DNA

Soweit zu den Technologien. Verteilte
Anwendungen baut man aber nicht nur
mit Technologien allein. Dazu bedarf es

auch einer geeigneten Architektur und
entsprechender Produkte, auf denen die

Anwendung aufsetzt. Diesen ganzheitlichen

Ansatz hat Microsoft unter dem

Begriff Windows DNA (Distributed
Internet Architecture) zusammengefasst.

Fangen wir mit den Produkten an:
Dazu zählen Windows 2000 mit COM+
als Application Server, Visual Studio als

Entwicklungsumgebung sowie die heutigen

Serverprodukte von Microsoft mit
SQL Server und Exchange als Basis.

DNA-Anwendungen sind grundsätzlich

mehrschichtig aufgebaut und folgen
dem Gesetz der Trennung von Logik und

Darstellung innerhalb einer Anwendung.
Die meisten Anwendungen bestehen im
Wesentlichen aus drei Schichten:

- einer Schicht mit Komponenten, die
interne Dienste implementiert (auch
eine SQL-Abfrage an eine Datenbank
ist ein Dienst);

- einer Schicht mit Komponenten, die
einen Prozess abbildet (Geschäftslogik)

und dabei Plattformdienste nutzt
(eine COM+-Transaktion ist ein
Plattformdienst);

- einer Schicht, welche die
Benutzeroberfläche implementiert.
Die Kommunikation zwischen allen

Schichten beruht auf einem einzigen Modell

- dem Component Object Model -
und ist somit über alle Schichten hinweg
einheitlich. Das Gleiche gilt für den

Zugriff auf Systemdienste (das Anlegen
einer Benutzergruppe ist zum Beispiel
ein Systemdienst) und Datenquellen.
Hier gibt es mit den Active Directory
Service Interfaces (ADSI) und OLE DB (pri¬

märe Datenbankschnittstelle von Microsoft)

ebenfalls einheitliche Schnittstellen
auf der Basis von COM. Der Vorteil: Die
Programmierung wird konsistenter. Man
benutzt nicht mehr zig API-Funktionen,
sondern programmiert durchgehend auf
der Basis eines einzigen Komponentenmodells

(Bild 6).

User Interface
Clients

fAbbilden von
(Unternehmens-)
Prozessen

App.
Code '

Datenhaltung

OS und
lokale

Services

Bild 6 Components for Windows - Architekturmodell

einer Windows DNA-Anwendung

Betrachtet man diesen Anwendungstyp
genauer, könnte sich folgender Punkt als

kritisch erweisen: Eine Internetanbindung

ist nur über die Darstellungsschicht
möglich. Hier kann alternativ zu einer
Windows-Anwendung ein Browser als
Benutzeroberfläche zum Einsatz kommen.

Die Geschäftslogik kann hingegen
nicht über das Internet angesprochen
werden, der Zugriff ist nur intern im
Firmennetz möglich. Selbst wenn es über
die COM Internet Services (CIS) klappt,
bleibt die Port-Diskussion ein Thema.
Sofern dies für Ihre Projekte kein Problem

darstellt, ist Windows DNA auch
weiterhin die richtige Wahl.

Andererseits spielt das Internet eine
immer grössere Rolle und stellt viele
Systemintegratoren und Programmierer vor
völlig neue Anforderungen. Bestehende

Anwendungen müssen nicht nur über
verschiedene Systemplattformen inte¬

griert, sondern auch fit fürs Internet
gemacht werden. Auf Neudeutsch: «Make it
an easy to use Web Application». Die

Lösung für diese Aufgaben sieht Microsoft
(wie auch ihre Konkurrenten) in den Web
Services.

Was sind Web Services?
Ein Web Service ist ein Dienst, der von

einem Client über das Internet mit einen
Uniform Resource Locator URL
angesprochen werden kann. Ein einfaches
Beispiel für einen solchen Dienst wäre
die Addition zweier Zahlen. Ein entscheidender

Punkt dabei ist, dass die
Implementation des Dienstes für den Client
vollkommen transparent ist. Ein Web
Service ist vergleichbar mit einer
Komponente: Er repräsentiert eine Blackbox
mit einer bestimmten Funktionalität, die
man flexibel einsetzen kann, ohne deren

Implementationsdetails zu kennen.
Nehmen wir das Beispiel Reisebüro:

Im Idealfall spricht ein Buchungssystem
per URL einen Service für Flugbuchungen

an, der Flugpläne verschiedener
Airlines abfragt und als einzelnes Dokument
zur Verfügung stellt. Eine weitere URL
liefert einen Dienst, mit dem ein
bestimmter Flug gebucht werden kann.
Zuletzt wird dann - ebenfalls mittels eines
Web Services - die Hotelbuchung
durchgeführt. Bild 7 zeigt modellhaft, wie Web
Services miteinander zu einer verteilten
Web-Applikation kombiniert werden
können.

Im Gegensatz zu derzeit aktuellen
Komponententechnologien benutzen
Web Services kein objektspezifisches
Protokoll wie DCOM oder IIOP, da diese
für den reibungslosen Einsatz in der
Regel eine homogene Infrastruktur auf
Client und Server voraussetzen. Diese
kann im Web nicht vorausgesetzt werden.
Web Services folgen deshalb einem anderen

Ansatz. Sie bauen auf Internetstandards

auf und benutzen - als kleinsten ge-

Browser

App.
Code

OS und
lokale

Services

SOAP

WebService

WebService

Bild 7 Components for the Web - Web Services

werden zu einer Anwendung kombiniert

32 Bulletin SEV/AES 1/03

I
.NET

meinsamen Nenner - HTTP und XML.
Das heisst: Jedes System, das HTTP und

XML unterstützt, kann Web Services
integrieren und nutzen.

Ein Client schickt mittels HTTP eine

per XML verpackte Nachricht an einen
Server und dieser antwortet auf die

Anfrage ebenfalls mit einer XML-Nachricht.

Somit sind Web Services völlig
unabhängig von bestimmten
Programmiersprachen und Systemplattformen.
Solange sich beide Seiten auf ein einheitliches

Nachrichtenformat einigen und
sich an eine gemeinsam definierte
Aufrufabfolge halten, ist die Art der
Implementation des Dienstes (Web Service)
völlig egal; er und damit auch der Client
kann sämtliche Möglichkeiten der
Plattform, auf der ersterer läuft, ausschöpfen.

Die Verallgemeinerung dieses Prinzips
ist SOAP (Simple Object Access Protokoll).

Dieses definiert, wie die XML-
Nachrichten aufgebaut sein müssen und
wie die Aufruffolge auszusehen hat.
Damit können unterschiedlichste Anwendungen,

die auf verschiedenen Plattformen

laufen, über das Internet miteinander
kombiniert und in bestehende Lösungen
integriert werden. Einzige Voraussetzung
ist, dass die Anwendungen über SOAP
miteinander kommunizieren.

Die Microsoft „NET-Plattform
Es entsteht ein völlig neuer

Anwendungstyp: Verschiedene Dienste werden
über das Internet abgerufen und zu einer

Lösung integriert. Solche Anwendungen
bringen eine Reihe neuer Anforderungen
mit sich, die mit den bisherigen Werkzeugen

und Programmiermodellen nur
schwer bewerkstelligt werden können.
Dazu zählen u.a. folgende Fragestellungen:

- Wie programmiert man einen Web
Service?

- Wie kann man einen Web Service de-

buggen?

- Wie installiert man einen Web
Service?

Aus der Sicht des Programmierers ist
es allerdings noch viel wichtiger, solche

Web-Anwendungen auf einfache Weise

zu entwickeln. Dazu benötigt man eine

entsprechende Entwicklungsumgebung
und eine moderne Klassenbibliothek für
die Programmierung. Diese Gründe
haben zu Microsofts Entschluss geführt,
neue Werkzeuge und ein Framework zu

entwickeln, das diesen Anforderungen
gerecht wird. Fassen wir beides zunächst

unter dem Begriff Framework und Tools

zusammen.
Darüber hinaus gibt es bereits heute

vorgefertigte Web Services, die man di¬

rekt als Komponente in seine Programme
einbinden kann, wie zum Beispiel den
Microsoft Terraserver (Infos unter http://
terraserver.microsoft.net/terraservice.
htm). Natürlich kann man einen Web
Service auch selbst entwickeln und anderen

zur Verfügung stellen. Diese Komponenten

bekommen die Bezeichnung MySer-
vices.

Ausserdem benötigt man für den
Betrieb von Web Services eine entsprechende

Infrastruktur. Diese Infrastruktur
bildet die heutige 2000-Produktfamilie
von Microsoft mit den Basiskomponenten

Windows 2000, SQL Server 2000 und

Exchange 2000. Sie werden als Enterprise

Server bezeichnet.
Hinzu kommt ein weiterer Bereich, der

neben dem Internet immer stärker an
Bedeutung gewinnt: Die Mobile Devices.
Man denke etwa an den Palm oder den

Compaq IPAQ. Solche Geräte haben sich
neben dem klassischen PC als Alternative
etabliert. Auch auf diesen Geräten sollen

zukünftig Anwendungen laufen, die mit
dem Framework programmiert werden.
Somit bilden die folgenden vier Bestandteile

die Microsoft .NET-Plattform:

- Framework und Tools, welche die
Common Language Runtime (CLR),
eine einheitliche Klassenbibliothek
und Studio.NET beinhalten;

- MyServices, welche die ständig
verfügbaren Internet-Dienste (Code-Updates,

Suchdienste, Messengers)
enthalten;

- Enterprise Servers, welche heute die
2000-Produktfamilie, in Zukunft die
.NET-Enterprise Servers bezeichnen;

- Devices, mobile Geräte, auf denen

.NET-Anwendungen laufen (Handy,
Handheld).

vb c# c++

Compiler Compiler Compiler ASM Code
gjglg^l Umm

IL Code IL Code IL Code

nrqzzr
Common Language Runtime

Bild 8 Sprachintegration erfolgt zukünftig auf
Code-Ebene

Nur Visual C++ kann weiterhin native Code erzeugen,

damit auch in Zukunft noch performante (auf
den Zweck zugeschnittene, schnelle) Treibersoftware
entwickelt werden kann.

Die .NET-Plattform wird nicht über
Nacht da sein. .NET stellt Microsofts
Strategie der nächsten Jahre dar. Einige
Bereiche davon sind schon sehr weit
fortgeschritten, während in anderen
Bereichen wie den MyServices die
Aufbauarbeit gerade erst abgeschlossen
wird.

Wir werden also noch auf lange Sicht
hin zwei Typen von Anwendungen
haben: Einerseits Windows-DNA-An-
wendungen, bei denen die Internet-
Anbindung über den Browser völlig
ausreichend ist, und andererseits
Anwendungen, die intensiven Gebrauch vom
Internet machen, um Web Services zu
integrieren. Das mag sich alles nach zuviel
Zukunftsmusik anhören. Aber wer hätte
Mitte der 80er-Jahre jemandem geglaubt,
der den heutigen Stellenwert des Internets

vorausgesagt hätte?

Das „NET-Framework
Zum Abschluss soll der Bereich

Framework und Tools noch ein wenig
unter die Lupe genommen werden. Das
.NET-Framework ist die neue
Entwicklungsplattform für Anwendungen. Das
Fundament bildet die Common Language
Runtime. Code, der unter der Regie der
Runtime ausgeführt wird, wird als Managed

Code bezeichnet. Das bedeutet, dass

Aktionen wie das Anlegen eines Objekts
oder das Ausführen eines Methodenaufrufs

nicht direkt ausgeführt, sondern an
die Runtime delegiert werden. Sie kann
dann zusätzliche Dienste, wie beispielsweise

Versions- und Sicherheitsüberprüfungen,

durchführen. Die Runtime ist
also quasi ein Manager für den Code, der
ausgeführt werden soll.

Die Compiler des Frameworks (derzeit
Visual Basic.NET, Visual C++ und C#)
erzeugen daher keinen native Code mehr.
Vielmehr wird aus dem Quelltext eine

Zwischensprache erzeugt, die dann unter
Aufsicht der Runtime bei Bedarf zu
native Code kompiliert und ausgeführt wird
(Just in time Compiler).

Diese Zwischensprache wird mit Common

Intermediate Language (CIL)
bezeichnet und ist von der europäischen
Standardisierungsbehörde ECMA im
Dezember 2001 als Standard verabschiedet
worden (weitere Informationen findet
man unter http://msdn.microsoft.com/
net/ecma). Somit kann jeder Compiler,
der CIL erzeugt, Code unter Aufsicht der
Runtime ausführen lassen. Oder anders

gesagt: Dreh- und Angelpunkt der Runtime

ist Sprachintegration. Ob man nun
Cobol, Pascal, C# oder Visual Basic
benutzt ist egal - solange der Compiler
CIL-Code erzeugt (Bild 8).

Bulletin SEV/VSE 1/03 33

I
Informatik

System.Web

Services

Description

Discovery

Protocols

Caching

Configuration

Ul
HtmlControls

WebControls

Security

SessionState

System.Data
OleDb SqICIient

Common SqlTypes

Collections

Configuration

Diagnostics

Globalization

10

Net

Reflection

Resources

System.Windows.Forms
Design ComponentModel

System.Drawing
Drawing2D Printing

Imaging Text

System.Xm I

Serialization

Schema

XSLT

XPath

System
Security

ServiceProcess

Text

Threading

Runtime

InteropServices

Remoting

Serialization

Bild 9 Die Klassenbibliothek im .NET-Framework - Klassen für fast jede Lebenslage

Da jeder .NET Compiler CIL-Code
erzeugt, findet die Sprachintegration auf
Codeebene und nicht wie bei COM auf
binärer Ebene statt. Es kann nun
beispielsweise eine Klasse in einer Sprache
erstellt und mittels einer anderen Sprache
eine weitere Klasse davon abgeleitet werden.

Die Bedeutung, welche Sprache man

zur Entwicklung von Anwendungen
benutzt, rückt damit in den Hintergrund.
Man arbeitet einfach mit der Sprache, die
einem am ehesten liegt.

So braucht man beispielsweise eine
Klassenbibliothek nur noch ein einziges
Mal zu programmieren. Mithilfe der
Runtime kann sie von jeder Sprache aus

benutzt werden. Dieses Prinzip macht
sich natürlich auch die Klassenbibliothek
des Frameworks zunutze (Bild 9). Positiver

Nebeneffekt: Die Programmierung
wird konsistenter. Man benutzt eben
nicht mehr zig API-Funktionen oder
diverse Klassenbibliotheken, sondern

genau eine Einzige - diejenige, die man
für die Runtime erstellt hat.

Das .NET-Framework basiert nicht auf
COM. Komponenten, die mit der Runtime

programmiert sind, beschreiben sich

selbst. Entsprechende Metadaten werden
beim Kompilieren in die Komponente
geschrieben. Die Registry wird nicht mehr

benötigt. Der Vorteil: Das Installieren
einer Komponente beschränkt sich auf
einfaches Kopieren der Komponente;
zusätzliche Dateien zur Beschreibung wie
Header-Dateien oder Typenbibliotheken
sind nicht mehr erforderlich. Somit wird
die Installation deutlich vereinfacht. Aber
auch wenn COM nicht mehr benötigt
wird, arbeitet das Framework nahtlos mit
COM-Komponenten zusammen. Es ist
von vornherein auf Interoperabilität
ausgelegt worden. Man kann COM-Komponenten

aus .NET-Komponenten heraus
benutzen und umgekehrt. Die Runtime
generiert entsprechende Wrapperklassen
«behind the scenes». Das Gleiche gilt im
Übrigen auch für COM+-Dienste; sie

können ebenfalls innerhalb von .NET-
Komponenten genutzt werden.

Fazit
Das Internet und die stark zunehmende

Zahl von Breitbandzugängen führt zu
einem Paradigmenwechsel in der Soft¬

wareentwicklung: An die Stelle des

Komplettpakets auf CD treten immer öfter
auch Dienste, die bei Bedarf über das

Internet abgerufen und zu einer Anwendung

kombiniert werden. Wie dies
vonstatten gehen kann, hat uns Napster kürzlich

eindrucksvoll gezeigt.
Das alles passiert natürlich nicht über

Nacht, denn neben einer geeigneten
Infrastruktur sind Werkzeuge notwendig,
die das Entwickeln von Internet-Anwendungen

so einfach machen wie die
Entwicklung von Desktop-Anwendungen.
Diese Werkzeuge sind heute noch dünn

gesät und oftmals ist das Lösen von
Infrastruktur-Problemen nach wie vor der
Löwenanteil bei Internet-Projekten.

Microsoft bietet mit der .NET-Platt-
form eine vielversprechende Lösung, und
seit dem Erscheinen von Visual Studio
.NET im Februar 2002 wird die Vision
Programming the Web langsam aber
sicher Realität. Sieht man einmal vom
Thema Internet ab, bringt die .NET-Platt-
form auch für reine Windows-Anwendungen

Verbesserungen mit sich. Es gibt
ein einheitliches Integrationsmodell; die

Runtime-Systeme verschiedener Spra-

34 Bulletin SEV/AES 1/03

I
.NET

chen fallen weg und werden durch eine

einzige Runtime ersetzt. Die Installation
von Anwendungen wird ebenfalls einfacher,

da diese Runtime nicht auf der
Registry aufsetzt. Und nicht zuletzt gibt es

endlich eine einheitliche Klassenbibliothek,

die mit den Inkonsistenzen des

Win32-API aufräumt.

Angaben zum Autor
Michael Willers, Initiator und Gründer des

Entwicklerforums msdn TechTalk von Microsoft, war
lange Jahre als Entwickler und Projektleiter tätig.
Heute liegt der Schwerpunkt seiner Arbeit in der

Vermittlung und Anwendung moderner Softwaretechnologien

und -architekturen, insbesondere dem .NET-

Framework. Er ist Mitglied in verschiedenen Fachbeiräten

und Lehrbeauftragter an Universitäten und
Fachhochschulen in Deutschland. Kontakt: michael.

wiilers@devcoach.de, www.devcoach.de

.NET de Microsoft - tous les
problèmes sont-ils résolus?

En juillet 2000, Microsoft a présenté à l'occasion de la Professional Developers
Conference à Orlando, à un vaste public de concepteurs, sa vision et ses stratégies

pour les prochaines années: Microsoft .NET. Après l'homologation à la vente de

Visual Studio .NET en février 2002, cette vision prend corps peu à peu. Et la
discussion animée n'a pas lieu que parmi les développeurs. La gamme des réactions
va de «l'enthousiasme effréné» au «ça sert à quoi?». Outre les aspects purement
techniques, on pose de plus en plus souvent et avec de plus en plus d'insistance la
question: «Qu'est-ce que c'est, au fond, .NET?» Et encore: «Dans quelle mesure
cela cadre-t-il avec les technologies Microsoft actuelles?». L'article tente de

répondre à ces questions et à d'autres du même genre; il présente toute la gamme
de COM à .NET en passant par COM+ et Windows DNA.

Kabel-Binder
aus ISO 9001
zertifizierter Produktion
transparent und schwarz
in 23 Grössen ab Lager
15% Karton-Rabatt

P. 0'Flynn Trading
8049 Zürich Tel. 01/342 3513 Fax 01/342 3515

Bulletin SEV/VSE 1/03 35

	.NET von Microsoft : alle Probleme gelöst?

