Zeitschrift: bulletin.ch / Electrosuisse
Herausgeber: Electrosuisse

Band: 94 (2003)

Heft: 1

Artikel: .NET von Microsoft : alle Probleme geltst?
Autor: Willers, Michael

DOl: https://doi.org/10.5169/seals-857510

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-857510
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Informatik

.NET von Microsoft - alle Probleme geldst?

Im Juli 2000 hat Microsoft auf der Professional Developers Con-
ference in Orlando einem breiten Entwicklerpublikum seine
Vision und Strategien fr die nachsten Jahre vorgestellt: Micro-
soft .NET. Mit der Freigabe von Visual Studio .NET im Februar
2002 nimmt diese Vision immer konkretere Formen an. Dabei
wird nicht nur in der Entwicklergemeinde heiss diskutiert. Die
Spannweite reicht dabei von «hellauf begeistert» bis «was soll
das?». Neben rein technischen Aspekten wird immer &fter und
lauter die Frage gestellt: «Was genau ist eigentlich .NET?» Und:
«Wie passt es zu bisherigen Technologien von Microsoft?».
Dieser Artikel versucht, eine Antwort auf diese und ahnliche
Fragen zu geben; er spannt den Bogen von COM Uber COM+
und Windows DNA bis hin zu .NET.

Blicken wir ein wenig zuriick. Anfang
der 90er-Jahre begann die Komponen-
tenidee sich neben der reinen Objekt-
orientierung mehr und mehr durchzuset-

Michael Willers

zen: Ein Programm besteht nicht aus
einem einzelnen grossen Block, sondern
wird aus Komponenten zusammenge-
setzt.

Diese Idee hat sich auch deshalb
durchgesetzt, weil im Falle eines Fehlers
die Suche deutlich systematischer erfolgt:
Man kann sdmtliche Komponenten nach-
einander durchleuchten und muss nicht
nach der Stecknadel im Heuhaufen su-
chen. Wer schon mal eine intensive Feh-
lersuche hat durchmachen miissen, der
weiss, wovon die Rede ist: Das Bauchge-
fiihl ist entscheidend — an der falschen
Stelle angefangen — und schon sind ein
paar Stunden dahin und die Uberstunden
vorprogrammiert.

Microsoft hat diese Idee fiir die Win-
dows-Plattform aufgegriffen und weiter-
gefiihrt: Ein Programm sollte nicht nur
aus Komponenten aufgebaut sein, viel-
mehr sollten simtliche Komponenten auf
ein und dieselbe Weise miteinander kom-
munizieren — und zwar unabhingig von
der verwendeten Programmiersprache.

30

Lokale und verteilte Kompo-
nenten - COM und DCOM

Das Component Object Model (COM)
beschreibt, wie diese Kommunikation
aussieht. Jedes Windows-System enthilt
eine Implementation dieser Spezifikation
— die COM-Runtime. Sie besteht im We-
sentlichen aus der Datei OLE32.DLL.
Der Vorteil: Komponenten werden stets
auf die gleiche Art und Weise angespro-
chen und konnen als Blackbox eingesetzt
werden. Dieses Konzept (Bild 1) hat sich
durchgesetzt. Das belegen die zahlrei-
chen Losungen, die am Markt vorhanden
sind. Mittlerweile existiert fiir nahezu
jede Problemstellung eine Komponente.

Parallel zur Komponentenorientierung
hat sich die Vernetzung von PCs durch-

Bild 1 Das Component Object Model (COM) -
Komponenten sprechen die gleiche Sprache

gesetzt und zu einem neuen Typ von An-
wendungen gefiihrt: Programme laufen
nicht mehr isoliert auf einem PC, sondern
bedienen sich Komponenten, die iiber
mehrere Rechner im Netz verteilt sein
konnen. Damit gewinnt das Thema Si-
cherheit an Bedeutung. Microsoft hat
COM fiir Fernaufrufe tiber das Netz er-
weitert und das Konzept der deklarativen
Sicherheit eingefiihrt: Rechte sind nicht
innerhalb einer Komponente «hart» ko-
diert, sondern werden administrativ fest-
gelegt und beim Aufruf der Komponente
tiberpriift (Bild 2).

Diese Erweiterungen und Neuerungen
werden unter der Bezeichnung Distribu-
ted COM (DCOM) zusammengefasst.
Der entscheidende Punkt dabei: Aus der
Sicht des Programmierers ist es vollig
egal, ob sich eine Komponente auf dem
lokalen oder auf einem anderen Rechner
befindet. Sie wird vom Programm aus
immer auf die gleiche Art und Weise an-
gesprochen — die COM-Runtime fiihrt die
Sicherheitsiiberpriifungen aus und sorgt
fiir einen Fernaufruf iiber das Netz, wenn
sich die Komponente auf einem anderen
Rechner befindet (Bild 3).

Dienste fir verteilte Anwen-
dungen - MTS und COM+

Der Trend zu verteilten Anwendungen
hat sich seit Mitte der 90er-Jahre eher
noch verstirkt und die Komplexitit bei
der Softwareentwicklung weiter anstei-
gen lassen. Man denke beispielsweise an
das Buchungssystem eines Reisebiiros:
Das Hotel muss gebucht werden, Fliige
miissen bestitigt werden, eventuell wird
ein Mietwagen reserviert und schliesslich
muss vermerkt werden, wie und wann der
Urlaub bezahlt wird. Auf weitere Einzel-
heiten soll an dieser Stelle verzichtet wer-
den; das Problem diirfte klar geworden
sein. Nicht selten besteht der Lowenan-
teil bei der Entwicklung verteilter An-
wendungen aus der Losung von Infra-
strukturproblemen. Im Kern zihlen dazu
folgende Dienste:

— ein Sicherheitsmodell (wer darf wor-
auf zugreifen);

- die Koordination gleichzeitiger Zu-
griffe durch mehrere Benutzer;

— eine Ressourcenverwaltung (Connec-
tion- und Thread-Pooling);

— verteilte Transaktionen.

Unter COM bzw. DCOM sind diese
Dienste nicht automatisch vorhanden.

Bulletin SEV/AES 1/03

Windows Management Instrumentation

Generall Location Security lldenlilyl Endpoinlsl

% Use default access peimissions

" Use custom access pemissions

‘You may edit who can access this application.

Name:
% Use default launch permissions

" Use custom launch permissions

Registry Key Permissions

Registy Key: Windows Management Instrumentation
Owner: Administrators

& Administrators
®\ CREATOR OWNER

Full Control
Full Control

‘You may edit who can launch this application. Everyone Special Access
Power Users Special Access
SYSTEM Full Control
i : Users Read
¢ Use default configuration permissions
€ Use custom configuration permissions ——
‘You may edit who can change the configuratior Type of Access: IF ull Contrel =
application. i
0K l Cancel | Add... I Remove I Help !
0K ! Cancel | Apply I |

Bild2 Distributed COM (DCOM)

Rechte fiir Komponentenaufrufe werden mit dem Programm DCOMCNFG.EXE definiert und in der Registry ab-

gelegt

COM bietet zwar ein umfassendes Threa-
ding-Modell und ein Security-API — nur
muss die anwendungsspezifische Logik
komplett von Hand programmiert wer-
den. (Fiir verteilte Transaktionen bietet
der Microsoft Distributed Transaction

Coordinator MSDTC entsprechende
Schnittstellen.) Und wer schon mal vor
dem Dilemma gestanden hat, seinem
Chef zu erkldren, warum ein Projekt vier
statt der geplanten zwei Wochen dauert,
der weiss, wo das eigentliche Problem

COM

Bild3 Distributed COM

Distributed COM erméglicht einheitliche Kommunikation auch (iber Rechnergrenzen hinweg

Kontext B

Bild4 Der Kontext - ein Objekt erkennt jederzeit seinen

Bulletin SEV/VSE 1/03

Aufrufer und welche Dienste es nutzen kann

NET

liegt — mehr Zeit und somit zusiitzliche

Kosten.

Um diesem Problem zu begegnen, hat
Microsoft bereits 1996 mit dem Micro-
soft Transaction Server (MTS) eine Lauf-
zeitumgebung fiir Komponenten vorge-
stellt, die genau diese Dienste bietet. Der
MTS beruht auf dem Prinzip der attribut-
basierten Programmierung.

— Jede Klasse einer Komponente defi-
niert iiber Attribute, welche Dienste sie
benotigt.

— Beim Erstellen einer Instanz dieser
Klasse (Objekt) wird eine auf deren
Attributen basierende Laufzeitumge-
bung erstellt, die ihr die gewiinschten
Systemdienste bereitstellt.

— Diese Laufzeitumgebung wird Kontext
genannt.

Das ist die zweite wesentliche Neue-
rung: Jedes Objekt verfiigt tiber einen
Kontext (Bild 4), iiber den es zusitzlich
Informationen erfragen kann. Zu diesen
Informationen zihlen unter anderem:

— der Benutzer, der das Objekt erstellt
hat (Direct Caller);

— der Benutzer, der die Aufrufkette ange-
stossen hat (Original Caller);

— welche Dienste das Objekt benutzen
kann (Transaktionen, Sicherheit).
Dariiber hinaus ist das Konzept der de-

klarativen Sicherheit verfeinert und ver-

einfacht worden: Die Vergabe von Rech-
ten erfolgt auf der Basis von Rollen. Der

Vorteil: Die Zuordnung von Benutzern zu

einer Komponente muss wihrend der

Entwicklungszeit nicht bekannt sein. Be-

nutzer konnen einer Rolle bei der Instal-

lation dynamisch zugeordnet werden

(Bild 5).

Der wichtigste Punkt auch hier: Fiir
den Programmierer ist vollig transparent,
ob eine Komponente unter der Regie des
MTS lduft oder nicht. Sie wird vom Pro-
gramm aus immer auf die gleiche Art und
Weise angesprochen. Damit das funktio-
niert, sind unter der Haube zwei unter-
schiedliche Laufzeitsysteme notwendig —
die COM-Runtime und die MTS-Run-
time (Letztere besteht im Wesentlichen
aus den Daten MTXEX.DLL und MTX.
EXE). Unter Windows 2000 sind beide
Umgebungen zu einer einheitlichen Lauf-
zeitumgebung zusammengefasst worden:
COM+.

Neben vielen Detail- und Performan-
ceverbesserungen sind in COM+ auch
neue Dienste integriert worden. Dazu ge-
horen ein Event-Service und die Mog-
lichkeit, Komponentenaufrufe iiber Mes-
sage Queues zu verarbeiten (Queued
Components). Die hiufig gestellte Frage
«Was ist COM+?» kann nun einfach be-
antwortet werden: «COM+ ist die Weiter-
entwicklung von COM und integriert

31

Informatik

Client1 -
Mich ;

Client 2

Zugriff edaubt —— |
Zug

Definition der Rollen

Rolle 1 Michael
Rolle 2 Sandra

Zuordnung der Rollen E

Rolle1 A
' Rolle2 AB

Bild5 Deklarative
Sicherheit auf der Basis
von Rollen

Der Entwickler einer An-
wendung muss die Benut-
zer einer Anwendung
nicht kennen. Die Zuord-
nung der Benutzer er-
folgt bei der Installation
der Anwendung.

Dienste fiir die Entwicklung verteilter
Anwendungen.»

Ein Modell fiir verteilte An-
wendungen - Windows DNA

Soweit zu den Technologien. Verteilte
Anwendungen baut man aber nicht nur
mit Technologien allein. Dazu bedarf es
auch einer geeigneten Architektur und
entsprechender Produkte, auf denen die
Anwendung aufsetzt. Diesen ganzheit-
lichen Ansatz hat Microsoft unter dem
Begriff Windows DNA (Distributed
Internet Architecture) zusammengefasst.

Fangen wir mit den Produkten an:
Dazu zihlen Windows 2000 mit COM+
als Application Server, Visual Studio als
Entwicklungsumgebung sowie die heuti-
gen Serverprodukte von Microsoft mit
SQL Server und Exchange als Basis.

DNA-Anwendungen sind grundsitz-
lich mehrschichtig aufgebaut und folgen
dem Gesetz der Trennung von Logik und
Darstellung innerhalb einer Anwendung.
Die meisten Anwendungen bestehen im
Wesentlichen aus drei Schichten:

— einer Schicht mit Komponenten, die
interne Dienste implementiert (auch
eine SQL-Abfrage an eine Datenbank
ist ein Dienst);

— einer Schicht mit Komponenten, die
einen Prozess abbildet (Geschiftslo-
gik) und dabei Plattformdienste nutzt
(eine COM+-Transaktion ist ein Platt-
formdienst);

— einer Schicht, welche die Benutzer-
oberfliche implementiert.

Die Kommunikation zwischen allen
Schichten beruht auf einem einzigen Mo-
dell — dem Component Object Model —
und ist somit iiber alle Schichten hinweg
einheitlich. Das Gleiche gilt fiir den Zu-
griff auf Systemdienste (das Anlegen
einer Benutzergruppe ist zum Beispiel
ein Systemdienst) und Datenquellen.
Hier gibt es mit den Active Directory Ser-
vice Interfaces (ADSI) und OLE DB (pri-

32

mire Datenbankschnittstelle von Micro-
soft) ebenfalls einheitliche Schnittstellen
auf der Basis von COM. Der Vorteil: Die
Programmierung wird konsistenter. Man
benutzt nicht mehr zig API-Funktionen,
sondern programmiert durchgehend auf
der Basis eines einzigen Komponenten-
modells (Bild 6).

Win32
User Interface | Cllents

_Internet

Abbilden von A /
(Unternehmens-) Cgp‘

Prc 1 d

HTML

A Browser

lokale

Bild 6 Components for Windows - Architektur-
modell einer Windows DNA-Anwendung

Betrachtet man diesen Anwendungstyp
genauer, konnte sich folgender Punkt als
kritisch erweisen: Eine Internetanbin-
dung ist nur iiber die Darstellungsschicht
moglich. Hier kann alternativ zu einer
Windows-Anwendung ein Browser als
Benutzeroberfliche zum Einsatz kom-
men. Die Geschiftslogik kann hingegen
nicht iiber das Internet angesprochen
werden, der Zugriff ist nur intern im Fir-
mennetz moglich. Selbst wenn es iiber
die COM Internet Services (CIS) klappt,
bleibt die Port-Diskussion ein Thema.
Sofern dies fiir Ihre Projekte kein Prob-
lem darstellt, ist Windows DNA auch
weiterhin die richtige Wahl.

Andererseits spielt das Internet eine
immer grossere Rolle und stellt viele Sys-
temintegratoren und Programmierer vor
vollig neue Anforderungen. Bestehende
Anwendungen miissen nicht nur iiber
verschiedene Systemplattformen inte-

griert, sondern auch fit fiirs Internet ge-
macht werden. Auf Neudeutsch: «Make it
an easy to use Web Application». Die Lo-
sung fiir diese Aufgaben sieht Microsoft
(wie auch ihre Konkurrenten) in den Web
Services.

Was sind Web Services?

Ein Web Service ist ein Dienst, der von
einem Client iiber das Internet mit einen
Uniform Resource Locator URL ange-
sprochen werden kann. Ein einfaches
Beispiel fiir einen solchen Dienst wire
die Addition zweier Zahlen. Ein entschei-
dender Punkt dabei ist, dass die Imple-
mentation des Dienstes fiir den Client
vollkommen transparent ist. Ein Web
Service ist vergleichbar mit einer Kom-
ponente: Er reprisentiert eine Blackbox
mit einer bestimmten Funktionalitit, die
man flexibel einsetzen kann, ohne deren
Implementationsdetails zu kennen.

Nehmen wir das Beispiel Reisebiiro:
Im Idealfall spricht ein Buchungssystem
per URL einen Service fiir Flugbuchun-
gen an, der Flugpldne verschiedener Air-
lines abfragt und als einzelnes Dokument
zur Verfiigung stellt. Eine weitere URL
liefert einen Dienst, mit dem ein be-
stimmter Flug gebucht werden kann. Zu-
letzt wird dann — ebenfalls mittels eines
Web Services — die Hotelbuchung durch-
gefiihrt. Bild 7 zeigt modellhaft, wie Web
Services miteinander zu einer verteilten
Web-Applikation kombiniert werden
konnen.

Im Gegensatz zu derzeit aktuellen
Komponententechnologien benutzen
Web Services kein objektspezifisches
Protokoll wie DCOM oder IIOP, da diese
fiir den reibungslosen Einsatz in der
Regel eine homogene Infrastruktur auf
Client und Server voraussetzen. Diese
kann im Web nicht vorausgesetzt werden.
Web Services folgen deshalb einem ande-
ren Ansatz. Sie bauen auf Internetstan-
dards auf und benutzen — als kleinsten ge-

Browser Devices

WebService

App. Internet siiiaia
Co‘de‘ b DA

WebService

» WebService |

Bild 7 Components for the Web - Web Services
werden zu einer Anwendung kombiniert

Bulletin SEV/AES 1/03

meinsamen Nenner — HTTP und XML.
Das heisst: Jedes System, das HTTP und
XML unterstiitzt, kann Web Services in-
tegrieren und nutzen.

Ein Client schickt mittels HTTP eine
per XML verpackte Nachricht an einen
Server und dieser antwortet auf die
Anfrage ebenfalls mit einer XML-Nach-
richt. Somit sind Web Services vollig
unabhingig von bestimmten Program-
miersprachen und Systemplattformen.
Solange sich beide Seiten auf ein einheit-
liches Nachrichtenformat einigen und
sich an eine gemeinsam definierte Auf-
rufabfolge halten, ist die Art der Imple-
mentation des Dienstes (Web Service)
vollig egal; er und damit auch der Client
kann simtliche Moglichkeiten der Platt-
form, auf der ersterer lduft, ausschopfen.

Die Verallgemeinerung dieses Prinzips
ist SOAP (Simple Object Access Proto-
koll). Dieses definiert, wie die XML-
Nachrichten aufgebaut sein miissen und
wie die Aufruffolge auszusehen hat.
Damit konnen unterschiedlichste Anwen-
dungen, die auf verschiedenen Plattfor-
men laufen, iiber das Internet miteinander
kombiniert und in bestehende Losungen
integriert werden. Einzige Voraussetzung
ist, dass die Anwendungen iiber SOAP
miteinander kommunizieren.

Die Microsoft .NET-Plattform

Es entsteht ein vollig neuer Anwen-
dungstyp: Verschiedene Dienste werden
tiber das Internet abgerufen und zu einer
Losung integriert. Solche Anwendungen
bringen eine Reihe neuer Anforderungen
mit sich, die mit den bisherigen Werkzeu-
gen und Programmiermodellen nur
schwer bewerkstelligt werden konnen.
Dazu zihlen u.a. folgende Fragestellun-
gen:

— Wie programmiert man einen Web

Service?

— Wie kann man einen Web Service de-
buggen?

— Wie installiert man einen Web Ser-
vice?

Aus der Sicht des Programmierers ist
es allerdings noch viel wichtiger, solche
Web-Anwendungen auf einfache Weise
zu entwickeln. Dazu benétigt man eine
entsprechende Entwicklungsumgebung
und eine moderne Klassenbibliothek fiir
die Programmierung. Diese Griinde
haben zu Microsofts Entschluss gefiihrt,
neue Werkzeuge und ein Framework zu
entwickeln, das diesen Anforderungen
gerecht wird. Fassen wir beides zunéchst
unter dem Begriff Framework und Tools
zusammen.

Dariiber hinaus gibt es bereits heute
vorgefertigte Web Services, die man di-

Bulletin SEV/VSE 1/03

rekt als Komponente in seine Programme
einbinden kann, wie zum Beispiel den
Microsoft Terraserver (Infos unter http:/
terraserver.microsoft.net/terraservice.
htm). Natiirlich kann man einen Web Ser-
vice auch selbst entwickeln und anderen
zur Verfiigung stellen. Diese Komponen-
ten bekommen die Bezeichnung MySer-
vices.

Ausserdem benotigt man fiir den Be-
triecb von Web Services eine entspre-
chende Infrastruktur. Diese Infrastruktur
bildet die heutige 2000-Produktfamilie
von Microsoft mit den Basiskomponen-
ten Windows 2000, SQL Server 2000 und
Exchange 2000. Sie werden als Enter-
prise Server bezeichnet.

Hinzu kommt ein weiterer Bereich, der
neben dem Internet immer stiarker an Be-
deutung gewinnt: Die Mobile Devices.
Man denke etwa an den Palm oder den
Compaq IPAQ. Solche Geriite haben sich
neben dem klassischen PC als Alternative
etabliert. Auch auf diesen Geriten sollen
zukiinftig Anwendungen laufen, die mit
dem Framework programmiert werden.
Somit bilden die folgenden vier Bestand-
teile die Microsoft .NET-Plattform:

— Framework und Tools, welche die
Common Language Runtime (CLR),
eine einheitliche Klassenbibliothek
und Studio.NET beinhalten;

— MyServices, welche die stindig ver-
fiigbaren Internet-Dienste (Code-Up-
dates, Suchdienste, Messengers) ent-
halten;

— Enterprise Servers, welche heute die
2000-Produktfamilie, in Zukunft die
.NET-Enterprise Servers bezeichnen;

— Devices, mobile Gerite, auf denen
NET-Anwendungen laufen (Handy,
Handheld).

VB C# Ct+

el

Compiler Compiler Compiler—— ASM Code

Vi Jae e il

ILCode ILCode ILCode.

e o e v |

\ /4
Common Language Runtime

Bild 8 Sprachintegration erfolgt zukiinftig auf
Code-Ebene

Nur Visual C++ kann weiterhin native Code erzeu-
gen, damit auch in Zukunft noch performante (auf
den Zweck zugeschnittene, schnelle) Treibersoftware
entwickelt werden kann.

NET

Die .NET-Plattform wird nicht iiber
Nacht da sein. .NET stellt Microsofts
Strategie der nichsten Jahre dar. Einige
Bereiche davon sind schon sehr weit
fortgeschritten, wihrend in anderen Be-
reichen wie den MyServices die Auf-
bauarbeit gerade erst abgeschlossen
wird.

Wir werden also noch auf lange Sicht
hin zwei Typen von Anwendungen
haben: Einerseits Windows-DNA-An-
wendungen, bei denen die Internet-
Anbindung iiber den Browser vollig
ausreichend ist, und andererseits Anwen-
dungen, die intensiven Gebrauch vom
Internet machen, um Web Services zu in-
tegrieren. Das mag sich alles nach zuviel
Zukunftsmusik anhoren. Aber wer hitte
Mitte der 80er-Jahre jemandem geglaubt,
der den heutigen Stellenwert des Inter-
nets vorausgesagt hiitte?

Das .NET-Framework

Zum Abschluss soll der Bereich
Framework und Tools noch ein wenig
unter die Lupe genommen werden. Das
NET-Framework ist die neue Entwick-
lungsplattform fiir Anwendungen. Das
Fundament bildet die Common Language
Runtime. Code, der unter der Regie der
Runtime ausgefiihrt wird, wird als Mana-
ged Code bezeichnet. Das bedeutet, dass
Aktionen wie das Anlegen eines Objekts
oder das Ausfiihren eines Methodenauf-
rufs nicht direkt ausgefiihrt, sondern an
die Runtime delegiert werden. Sie kann
dann zusitzliche Dienste, wie beispiels-
weise Versions- und Sicherheitsiiberprii-
fungen, durchfiihren. Die Runtime ist
also quasi ein Manager fiir den Code, der
ausgefiihrt werden soll.

Die Compiler des Frameworks (derzeit
Visual Basic.NET, Visual C++ und C#)
erzeugen daher keinen native Code mehr.
Vielmehr wird aus dem Quelltext eine
Zwischensprache erzeugt, die dann unter
Aufsicht der Runtime bei Bedarf zu na-
tive Code kompiliert und ausgefiihrt wird
(Just in time Compiler).

Diese Zwischensprache wird mit Com-
mon Intermediate Language (CIL) be-
zeichnet und ist von der europiischen
Standardisierungsbehérde ECMA im De-
zember 2001 als Standard verabschiedet
worden (weitere Informationen findet
man unter http://msdn.microsoft.com/
net/ecma). Somit kann jeder Compiler,
der CIL erzeugt, Code unter Aufsicht der
Runtime ausfiihren lassen. Oder anders
gesagt: Dreh- und Angelpunkt der Run-
time ist Sprachintegration. Ob man nun
Cobol, Pascal, C# oder Visual Basic be-
nutzt ist egal — solange der Compiler
CIL-Code erzeugt (Bild 8).

33

Informatik

Services

Description

f CompontModel

Bild 9 Die Klassenbibliothek im .NET-Framework - Klassen fiir fast jede Lebenslage

Da jeder .NET Compiler CIL-Code er-
zeugt, findet die Sprachintegration auf
Codeebene und nicht wie bei COM auf
bindrer Ebene statt. Es kann nun bei-
spielsweise eine Klasse in einer Sprache
erstellt und mittels einer anderen Sprache
eine weitere Klasse davon abgeleitet wer-
den. Die Bedeutung, welche Sprache man
zur Entwicklung von Anwendungen be-
nutzt, rickt damit in den Hintergrund.
Man arbeitet einfach mit der Sprache, die
einem am ehesten liegt.

So braucht man beispielsweise eine
Klassenbibliothek nur noch ein einziges
Mal zu programmieren. Mithilfe der
Runtime kann sie von jeder Sprache aus
benutzt werden. Dieses Prinzip macht
sich natiirlich auch die Klassenbibliothek
des Frameworks zunutze (Bild 9). Positi-
ver Nebeneffekt: Die Programmierung
wird konsistenter. Man benutzt eben
nicht mehr zig API-Funktionen oder di-
verse Klassenbibliotheken, sondern
genau eine Einzige — diejenige, die man
fiir die Runtime erstellt hat.

Das .NET-Framework basiert nicht auf
COM. Komponenten, die mit der Run-
time programmiert sind, beschreiben sich

34

selbst. Entsprechende Metadaten werden
beim Kompilieren in die Komponente ge-
schrieben. Die Registry wird nicht mehr
benotigt. Der Vorteil: Das Installieren
einer Komponente beschrinkt sich auf
einfaches Kopieren der Komponente; zu-
sitzliche Dateien zur Beschreibung wie
Header-Dateien oder Typenbibliotheken
sind nicht mehr erforderlich. Somit wird
die Installation deutlich vereinfacht. Aber
auch wenn COM nicht mehr benétigt
wird, arbeitet das Framework nahtlos mit
COM-Komponenten zusammen. Es ist
von vornherein auf Interoperabilitit aus-
gelegt worden. Man kann COM-Kompo-
nenten aus .NET-Komponenten heraus
benutzen und umgekehrt. Die Runtime
generiert entsprechende Wrapperklassen
«behind the scenes». Das Gleiche gilt im
Ubrigen auch fiir COM+-Dienste; sie
konnen ebenfalls innerhalb von .NET-
Komponenten genutzt werden.

Fazit

Das Internet und die stark zunehmende
Zahl von Breitbandzugingen fiihrt zu
einem Paradigmenwechsel in der Soft-

wareentwicklung: An die Stelle des Kom-
plettpakets auf CD treten immer ofter
auch Dienste, die bei Bedarf iiber das
Internet abgerufen und zu einer Anwen-
dung kombiniert werden. Wie dies von-
statten gehen kann, hat uns Napster kiirz-
lich eindrucksvoll gezeigt.

Das alles passiert natiirlich nicht tiber
Nacht, denn neben einer geeigneten In-
frastruktur sind Werkzeuge notwendig,
die das Entwickeln von Internet-Anwen-
dungen so einfach machen wie die Ent-
wicklung von Desktop-Anwendungen.
Diese Werkzeuge sind heute noch diinn
gesit und oftmals ist das Losen von In-
frastruktur-Problemen nach wie vor der
Lowenanteil bei Internet-Projekten.

Microsoft bietet mit der .NET-Platt-
form eine vielversprechende Losung, und
seit dem Erscheinen von Visual Studio
.NET im Februar 2002 wird die Vision
Programming the Web langsam aber si-
cher Realitit. Sieht man einmal vom
Thema Internet ab, bringt die .NET-Platt-
form auch fiir reine Windows-Anwen-
dungen Verbesserungen mit sich. Es gibt
ein einheitliches Integrationsmodell; die
Runtime-Systeme verschiedener Spra-

Bulletin SEV/AES 1/03

chen fallen weg und werden durch eine
einzige Runtime ersetzt. Die Installation
von Anwendungen wird ebenfalls einfa-
cher, da diese Runtime nicht auf der Re-
gistry aufsetzt. Und nicht zuletzt gibt es
endlich eine einheitliche Klassenbiblio-
thek, die mit den Inkonsistenzen des
Win32-API aufriumt.

Angaben zum Autor

Michael Willers, Initiator und Griinder des Ent-
wicklerforums msdn TechTalk von Microsoft, war
lange Jahre als Entwickler und Projektleiter tatig.
Heute liegt der Schwerpunkt seiner Arbeit in der Ver-
mittlung und Anwendung moderner Softwaretech-
nologien und -architekturen, insbesondere dem .NET-
Framework. Er ist Mitglied in verschiedenen Fachbei-
réten und Lehrbeauftragter an Universitaten und
Fachhochschulen in Deutschland. Kontakt: michael.
willers@devcoach.de, www.devcoach.de

NET

.NET de Microsoft - tous les
problémes sont-ils résolus?

En juillet 2000, Microsoft a présenté a I’occasion de la Professional Developers
Conference a Orlando, a un vaste public de concepteurs, sa vision et ses stratégies
pour les prochaines années: Microsoft .NET. Aprés I’homologation a la vente de
Visual Studio .NET en février 2002, cette vision prend corps peu a peu. Et la dis-
cussion animée n’a pas lieu que parmi les développeurs. La gamme des réactions
va de «I’enthousiasme effréné» au «ca sert a quoi?». Outre les aspects purement
techniques, on pose de plus en plus souvent et avec de plus en plus d’insistance la
question: «Qu’est-ce que c’est, au fond, .NET?» Et encore: «Dans quelle mesure
cela cadre-t-il avec les technologies Microsoft actuelles?». L’article tente de
répondre a ces questions et a d’autres du méme genre; il présente toute la gamme
de COM a .NET en passant par COM+ et Windows DNA.

Kabel-Binder

aus I1ISO 9001
zertifizierter Produktion

transparent und schwarz
in 23 Gréssen ab Lager
15% Karton-Rabatt

P. OFlynn Trading
8049 Ziirich Tel. 01/3423513 Fax 01/342 3515

Bulletin SEV/VSE 1/03

35

	.NET von Microsoft : alle Probleme gelöst?

