Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des

Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de l'Association suisse des électriciens, de l'Association des entreprises

électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer

Elektrizitätsunternehmen

Band: 92 (2001)

Heft: 3

Artikel: Bestimmungsgrössen des Stromverbrauchs in Bürogebäuden

Autor: Weber, Lukas

DOI: https://doi.org/10.5169/seals-855667

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Bestimmungsgrössen des Stromverbrauchs in Bürogebäuden

Eine ETH-Studie erforschte die Bestimmungsgrössen des Stromverbrauchs in Bürogebäuden. Das ernüchternde Ergebnis: Der Verbrauch ist durch die technische Ausstattung praktisch festgelegt. Die Gebäudenutzer beeinflussen den Verbrauch wenig; auch effizienzfördernde Massnahmen zeigen kaum Wirkung. Einen grossen Einfluss haben technische Komfortmerkmale. Diese werden bereits bei der Gebäudeplanung festgelegt.

Spätestens seit der Lancierung des Aktionsprogramms Energie 2000 im Jahr 1990 bemühen sich öffentliche Hand und Privatwirtschaft in der Schweiz systematisch um eine sparsame und effiziente Energienutzung. Der frühere Energieminister Adolf Ogi hat dieses Programm kürzlich als Erfolg gewertet [1]. Dasselbe Glück ist auch dem Nachfolgeprogramm Energie Schweiz zu wünschen.

Neben dem Glück, das ein Energiesparprogramm braucht, ist auch ein Wissen darüber nötig, wo und wozu wie viel Energie verbraucht wird und welche Sparmassnahmen die günstigste Aussicht

Adresse des Autors

Lukas Weber, Centre for Energy Policy and Economics (CEPE), ETH Zentrum 8092 Zürich lukas.weber@cepe.mavt.ethz.ch

auf Erfolg haben. So unzutreffend es auf den ersten Blick erscheinen mag, so gross sind die Wissenslücken auf dem Gebiet der Energieanalyse, wenn es um die Ursachen des Energieverbrauchs und die ihn auslösenden Entscheidungsprozesse geht. Teilweise fehlt es an Daten, teilweise an guten Forschungsfragen, und schliesslich fehlt es an der fruchtbaren Zusammenarbeit von Sozialwissenschaft und Praxis.

Repräsentative Verbrauchserhebung in Bürogebäuden

An der ETH wurde vor vier Jahren ein Forschungsprojekt ins Leben gerufen, in dem am Beispiel von zufällig ausgewählten Bürogebäuden der Energieverbrauch, der Anlagen- und Gerätebestand sowie

Beschaffungs- und Betriebsentscheidungen analysiert wurden. Die Arbeit steht kurz vor dem Abschluss und wird demnächst als Dissertation des Autors publiziert¹. Der folgende Text ist der Vorabdruck eines Dissertationskapitels und zeigt eine statistische Analyse der Energiekennzahl Elektrizität² in Bürogebäuden. Ziel der Untersuchung ist die Bestimmung der wichtigsten Einflussgrössen auf den Elektrizitätsverbrauch. Besondere Aufmerksamkeit gilt der Wirkung von Fördermassnahmen für eine rationelle Energienutzung.

Der Elektrizitätsverbrauch wurde für eine repräsentative Stichprobe von Schweizer Bürogebäuden im Detail untersucht. Hundert Gebäude aus der deutschen und der französischen Schweiz wurden zufällig ausgewählt und entsprechend der SIA-Empfehlung 380/4 [4] analysiert, d.h. der jährliche Gesamtverbrauch und der individuelle Verbrauch von Anlagen und Geräten wurden systematisch erfasst. Ausserdem wurden allgemeine und energiespezifische Merkmale der Gebäude und der darin ansässigen Organisationen³ erfasst sowie verbrauchsrelevante Entscheidungen in den Organisationen analysiert. Die Verbrauchszahlen gelten für das Jahr 1997.

Statistische Analyse des Elektrizitätsverbrauchs

Die Varianz des Elektrizitätsverbrauchs in Bürogebäuden ist gross und auf den ersten Blick schwer zu deuten. Sie wird im Folgenden einer statistischen Analyse, einer so genannten multiplen Regressionsanalyse, unterzogen. Da der Elektrizitätsverbrauch mit der Nutzfläche

schwankt, wird nicht der Verbrauch, sondern die Energiekennzahl analysiert. Zielgrösse in der Regressionsanalyse ist also die Energiekennzahl Elektrizität, erklärende Variablen sind die Gebäudeund die Organisationsmerkmale.

Untersuchungseinheit ist die Organisation. Von der Analyse ausgeschlossen sind Organisationen, die ein Gebäude nicht ganz ausfüllen, da es für sie keine vollständigen Verbrauchsdatensätze gab. Organisationen mit bedeutendem Nichtbüroverbrauch (Produktion und Werkstätten) sind ebenfalls von der Analyse ausgeschlossen. Die Stichprobe enthält schliesslich 47 Organisationen.

Der Mittelwert der Energiekennzahl Elektrizität liegt bei 198 MJ/m²a, die Standardabweichung beträgt 111 MJ/m²a. Die Daten verteilen sich asymmetrisch in Richtung hoher Werte (Bild 1).

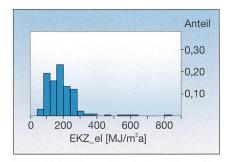


Bild 1 Häufigkeitsverteilung der Energiekennzahl Elektrizität

Die erklärenden Variablen setzen sich aus Gebäude- und Organisationsmerkmalen zusammen.

- Gebäudemerkmale beschreiben die allgemeinen Eigenschaften des Gebäudes und die Ausstattung mit Anlagen und Geräten. Die Variablen werden deshalb als «technisch» bezeichnet (Tabelle Ia).
- Die Variablen zu den Organisationsmerkmalen werden als «sozial» be-
- ¹ Erste Ergebnisse aus der Datenerhebung wurden bereits vor zwei Jahren in dieser Zeitschrift publiziert [2]. Die Datenerhebung entstand in Zusammenarbeit mit dem Ingenieurunternehmen Amstein+Walthert AG. Die Dissertation ist vom Projekt- und Studienfonds der Elektrizitätswirtschaft (Psel) finanziert.
- ² Die Energiekennzahl Elektrizität ist der flächenbezogene Elektrizitätsverbrauch, d.h. der jährliche Elektrizitätsverbrauch (abzüglich Elektrowärme) dividiert durch die Energiebezugsfläche [3].
- ³ Als Organisationen werden private Unternehmen und öffentliche Verwaltungen oder Teile davon bezeichnet.

Energiekennzahlen

Variable	Dimension/Werte
Energiebezugsfläche	[m ²]
Baujahr	[1]
Küche/Restaurant	{ja, nein}
Elektroheizung	{ja, nein}
EDV-Zentrale	{ja, nein}
Lüftung	{nicht-, teil-, vollbelüftet}
Klimatisierung	{nicht-, teil-, vollklimatisiert}
Installierte spezifische Leistung für Arbeitshilfen in Büros (abgekürzt: Leistg_ArbeitshilfBüro)	[W/m ²]
Installierte spezifische Leistung für Beleuchtung in Büros (abgekürzt: Leistg_BeleuchtgBüro)	[W/m ²]
Installierte spezifische Leistung für Beleuchtung in Verkehrszonen (abgekürzt: Leistg_BeleuchtgVerk)	[W/m ²]

Tabelle la Technische Variablen

Variable	Dimension/Werte
Standortkanton	(SG, GL, LU, ZH, BS, BE, FR, NE, VD)
Branche	Branchendefinition nach Noga 95 [5]*
Rechtsform	{öffentlich-rechtlich, AG, andere}
Marktausdehnung	{regional, national, international}
Arbeitsplätze	[1]
Aussendienstanteil	[%]
Antwort eines Managementvertreters auf die Behauptung: «Die Energiekosten im Bürogebäude sind vernachlässigbar» (abgekürzt: These_Energiekosten)	{einverstanden, nicht einverstanden}
Antwort eines Managementvertreters auf die Behauptung: «Energiesparen führt zu Komforteinbussen» (abgekürzt: These_Komfort)	{einverstanden, nicht einverstanden}
Antwort eines Managementvertreters auf die Behauptung: «Die Einflussmöglichkeit der Nutzer auf den Energieverbrauch ist vernachlässigbar» (abgekürzt: These_Nutzereinfluss)	{einverstanden, nicht einverstanden}
Jahresausgaben_Elektrizität	[CHF]
Anteil der Energiekosten an den Gesamtausgaben (abgekürzt: EnKostenanteil_real)	[%]
Von einem Managementvertreter geschätzter Anteil der Energiekosten an den Gesamtausgaben (abgekürzt: EnKostenanteil_schätz)	[%]
E: Energie- und Wasserversorgung Sozialver	ne Verwaltung, Landesverteidigung, rsicherungen

- Handel, Reparatur
- Kredit und Versicherungen
- Immobilien, Vermietung, Informatik, Forschung & Entwicklung, Dienstleistungen für Unternehmen
- Gesundheits-, Sozialwesen Sonstige öffentliche und private Dienstleistungen Externe Organisationen

Tabelle Ib Exogen soziale Variablen

Variable	Werte
Energiebeauftragter	{keiner, am Hauptsitz, vor Ort}
Stelle für Umweltschutz (abgekürzt: Umweltschutz)	{ja, nein}
Verbrauchskontrolle durch Managementvertreter (abgekürzt: Verbrauchskontrolle)	{ja, nein}
Energiebezug bei energierelevanten Entscheidungen (abgekürzt: Energiebezug)	{02}*

Der Variablenwert ist der durchschnittliche Energiebezug bei der Entscheidung von verbrauchsrelevanten Veränderungen bei folgender Kodierung: Energiesparereignis = 2; Ereignis mit Rücksicht auf die Energiefolgen entschieden, aber keir Energiesparereignis = 1; Ereignis ohne Rücksicht auf die Energiefolgen entschieden = 0.

Tabelle Ic Endogen soziale Variablen

zeichnet und in zwei Gruppen unter-

- Exogen soziale Variablen charakterisieren die wirtschaftliche Organisation und die persönliche Einstellung der Organisationsleitung in Energiefragen (Tabelle Ib).
- Endogen soziale Variablen beschreiben von der Organisation beeinflussbare Organisationsmerkmale sowie Fördereinrichtungen der Organisation für eine rationelle Energienutzung und sind die eigentlichen Verhaltensvariablen der Organisation (Tabelle Ic).

Zwischen der Energiebezugsfläche und der Arbeitsplatzzahl einerseits sowie den jährlichen Elektrizitätsausgaben andrerseits gibt es einen trivialen Sachzusammenhang. Entsprechend hoch sind die Variablen korreliert (Korrelationskoeffizient R = 0.94 bzw. R = 0.87). Um extreme Einzelkorrelationen zu vermeiden, wurden die Variablen «Arbeitsplätze» und «Jahresausgaben Elektrizität» von der Regressionsanalyse ausgeschlossen.

Individuelle Korrelation

Vor der Konstruktion eines Regressionsmodells wurde die individuelle Korrelation der erklärenden Variablen mit der Energiekennzahl Elektrizität analysiert (Tabelle II).

Die sozialen Variablen sind allgemein tief korreliert; hoch korreliert sind dagegen die technischen Variablen. Die höchste Korrelation überhaupt erreicht der Klimatisierungsgrad: 66% der Varianz der Energiekennzahl werden durch ihn erklärt (Tabelle II). Ebenfalls hoch korreliert ist der Lüftungsgrad, was allerdings wegen des technischen Zusammenhangs von Lüftung und Klimatisierung nicht erstaunt. Erstaunlich hingegen ist die hohe Korrelation der Energiebezugsfläche, da nicht der absolute Verbrauch, sondern die Energiekennzahl untersucht wurde. Es zeigt sich, dass flächenintensive Organisationen bzw. grosse Gebäude generell höher technisiert sind als kleine: Sie sind häufiger belüftet, häufiger klimatisiert und betreiben häufiger eine Betriebskantine («Küche/Restaurant»). Hoch liegt die Korrelation auch für die installierte Leistung von Arbeitshilfen: 29% der Varianz der Energiekennzahl Elektrizität werden durch sie erklärt. Die Arbeitshilfen sind mit 12% Verbrauchsanteil zwar keine bedeutenden Verbraucher, doch offenbar ein guter Indikator für das Verbrauchsniveau der Organisation insgesamt.

Die soziale Variable mit der höchsten Korrelation ist die Branche: Sie erklärt 33% der Varianz der Energiekennzahl (Tabelle II). Auffällig ist die durchweg tiefe Energiekennzahl in öffentlichen Verwaltungen (durchschnittlich 173 MJ/m²a) und die deutlich höhere und stärker streuende Energiekennzahl in Banken und Versicherungen sowie im Handel (289 MJ/m²a bzw. 248 MJ/m²a). Der hohe Verbrauch in der Finanzbranche geht auf einen überdurchschnittlichen

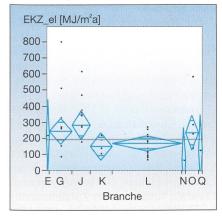


Bild 2 Streuung der mittleren Energiekennzahl Elektrizität nach Branche. G = Handel, Reparatur; J = Kredit und Versicherungen; L = öffentliche Verwaltung, Landesverteidigung, Sozialversicherungen

Technisierungsgrad zurück. Dessen mächtigster Bestimmungsfaktor - die höhere Klimatisierung - erklärt sich kaum aus der Tätigkeit der Branche, sondern geht vielmehr auf die überdurchschnittliche Fläche und das junge Baujahr der Gebäude sowie die überdurchschnittlichen (tätigkeitsunabhängigen) Komfortansprüche in der Finanzbranche zurück. Die starke Streuung unter den energieintensiven Branchen zeigt, dass auch hier ein tiefer Verbrauch durchaus möglich ist (Bild 2).

Die Variablen zu den Fördermassnahmen für eine rationelle Energieverwendung zeigen ein merkwürdiges Verhalten: Sie korrelierten durchweg hoch und stark signifikant, allerdings mit kontraintuitivem (positivem) Vorzeichen, d. h. Fördermassnahmen gibt es vor allem in Organisationen mit hohem Verbrauch. Wie stark sie den Verbrauch dennoch senken, wird aus der individuellen Korrelation nicht ersichtlich.

Regressionsmodell

Dem Regressionsmodell für die Energiekennzahl Elektrizität wird ein linearer Ansatz mit der Energiekennzahl Elektrizität EKZ_el_i, den erklärenden Variablen x_{ii}, den Koeffizienten c_{ii} und dem zufälligen Fehler E_i zu Grunde gelegt (1).

$$EKZ_el_i = c_{i0} + c_{i1}x_{i1} + c_{i2}x_{i2} + \cdots + c_{in}x_{in} + E_i$$

mit $i = 1 \cdots 47$

Die Berechnung der Koeffizienten basiert auf der Methode der minimalen Ouadrate. Das Modell wird schrittweise vorwärts konstruiert, d.h. dem Modell werden so lange Variablen hinzugefügt, bis keine Variable ausserhalb des Modells mehr ein Signifikanzmass von unter 5% erreicht. Mit jedem Schritt wird jeweils die Variable ins Modell gewählt, die zum bestehenden Modell den grössten zusätzlichen Erklärungsbeitrag liefert. Korreliert eine Variable im Regressionsmodell nicht mehr signifikant, wird sie wieder aus dem Modell entfernt. Dank dieser Entwicklungsregel untergraben die Modellvariablen einander nicht wechselseitig an Aussagekraft, sondern ergänzen sich und führen gemeinsam zu einem hoch korrelierten, stark signifikanten Modell mit wenigen aussagestarken Variablen⁴. Damit nur interpretierbare Variablen im Regressionsmodell erscheinen, wurden nur individuell signifikant korrelierte Variablen bei der Modellentwicklung berücksichtigt⁵.

Stehen alle individuell signifikant korrelierten Variablen zur Auswahl, ergibt sich ein Regressionsmodell mit einem hervorragenden Bestimmtheitsmass (R²) von 0,82 und nur drei Variablen (Tabelle III). Ein R² von 0,82 bedeutet, dass das Modell 82% der Varianz der Energiekennzahl Elektrizität erklärt. Der Erklärungsbeitrag einer Variablen gibt jeweils an, zu wie viel Prozent die Modellaussage auf sie zurückgeht⁶.

Der grösste Erklärungsbeitrag liegt, kaum überraschend, im Klimatisierungsgrad, genauer im Unterschied zwischen Vollklimatisierung und Nicht- oder Teilklimatisierung («Klimatisierung {2 -0&1}»). Die Variable trägt 55% der Modellaussage und erklärt 45% der Varianz

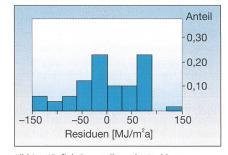


Bild 3 Häufigkeitsverteilung der Residuen

Energiekennzahl. Die übrigen Modellvariablen beschreiben ebenfalls technische Merkmale: die installierte spezifische Leistung für Arbeitshilfen («Leistg_ArbeitshilfBüro») und Energiebezugsfläche. Alle drei Variablen korrelieren im Modell stark signifikant. Das bedeutet, dass sie unterschiedliche Varianzanteile der Zielgrösse erklären und einander im Regressionsmodell gut

Technische Variablen		Soziale Variablen			
		Exogen		Endogen	
Energiebezugsfläche	0,35 ***	Standortkanton	0,14 (n.s.)	Energiebeauftragter	0,22 ** ¥
Baujahr	0,15 **	Branche	0,33 *	Umweltschutz	0,20 ** ¥
Küche/Restaurant	0,30 ***	Rechtsform	0,14 *	Verbrauchskontrolle	0,12 * ¥
Elektroheizung	0,04 (n.s.)	Marktausdehnung	0,15 *	Energiebezug	0,25 *** ¥
EDV-Zentrale	0,04 (n.s.)	Aussendienstanteil	0,00 (n.s.)		
Lüftung	0,49 ***	These_Energiekosten	0,11 *		
Klimatisierung	0,66 ***	These_Komfort	0,00 (n.s.)		
Leistg_ArbeitshilfBüro	0,29 ***	These_Nutzereinfluss	0,00 (n.s.)		
Leistg_BeleuchtgBürd	0,12 *	EnKostenanteil_real	0,02 (n.s.)		
Leistg_BeleuchtgVerk	0,13 *	EnKostenanteil_schätz	0,02 (n.s.)		

Signifikanzklassen mit «Sternchen-Konvention»: P ist das Signifikanzmass (je kleiner P, desto sicherer der vermutete

- Zusammenhang) (n.s.) P > 0.05 nicht signifikant * $0.05 \ge P > 0.01$ schwach signifikant
- 0,01 ≥ P > 0,001 stark signifikant
- 0.001 ≥ P sehr stark signifikant

Tabelle II Individuelle Korrelation der erklärenden Variablen mit der Energiekennzahl Elektrizität (R² und Signifikanz auf 5%-Niveau; ¥ steht für ein unerwartetes Korrelationsvorzeichen.)

⁴ Ein Regressionsmodell, das statt aussagestarker Variablen alle verfügbaren enthält, birgt die Gefahr, dass aussagestarke, doch untereinander korrelierte Variablen im Regressionsmodell nicht mehr signifikant korrelieren und sich bei der Interpretation des Modells von real aussageschwachen Variablen nicht mehr abheben.

Ein weiterer Grund für die Beschränkung sind die kleinen Stichproben bestimmter individuell nicht signifikan-

⁶ Die Zahl ist eher qualitativ zu verstehen, da sie streng genommen nur für orthogonale, d.h. linear unabhängige Variablen stimmt. Die starken Signifikanzen der Modellyariablen sprechen zwar für eine hohe, aber nicht für eine vollkommene lineare Unabhängigkeit.

Variable	Koeffizient	t-Ratio	Prob > t	Erklärungsanteil
Intercept	52,5	5,18	< 0,0001	
Klimatisierung {2 – 0&1}	116	7,61	< 0,0001	55%
Leistg_ArbeitshilfBüro	11,5	5,66	< 0,0001	31%
Energiebezugsfläche	0,00852	3,76	0,0005	14%

Tabelle III Regressionsmodell für die Energiekennzahl Elektrizität

Hauptachse I «Klimatisierung {2 – 0&1}»		Hauptachse II «Leistg_ArbeitshilfBüro»	Hauptachse III «Energiebezugsfläche»		
Energiebezugsfläche	0,23 ***		Küche/Restaurant	0,43 ***	
Küche/Restaurant	0,13 **		Lüftung	0,36 ***	
Lüftung	0,33 ***		Klimatisierung	0,40 ***	
Leistg_BeleuchtgVerk	0,08 *		These_Energiekosten	0,12 *	
Branche	0,10 *		Umweltschutz	0,17 **	
Energiebeauftragter	0,14 ***		Verbrauchskontrolle	0,18 **	
Umweltschutz	0,13 **		Energiebezug	0,09 *	
Verbrauchskontrolle	0,19 **				
Energiebezug	0,43 ***				

Verbleibende Variablen: Baujahr, Leistg_BeleuchtgBüro, Rechtsform, Marktausdehnung

Tabelle IV Aufteilung für die erklärenden Variablen nach Hauptachsen im Regressionsmodell (R² und Signifikanz auf 5%-Niveau)

Variable	Koeffizient	t-Ratio	Prob > t	Erklärungsanteil
Intercept	56,0	8,09	< 0,0001	
Klimatisierung {2 – 0&1}	120	8,08	< 0,0001	57%
Leistg_ArbeitshilfBüro	11,4	5,49	< 0,0001	31%
Energiebezugsfläche	41,4	3,50	0,0011	12%

Tabelle V Alternatives Regressionsmodell der Energiekennzahl Elektrizität

ergänzen. Die Residuen der Modellwerte sind annähernd normal verteilt (Bild 3).

Die Verfügbarkeit bestimmter Variablen spielt bei der schrittweisen Modellbildung eine wichtige Rolle. Existieren wenige erklärungsstarke und voneinander linear unabhängige Variablen, dominieren sie das Modell und verdrängen die übrigen Variablen. Fehlen solche erklärungsstarken Variablen, liegt die Erklärungskraft des Modells tiefer und die Wahl der Modellvariablen erfolgt eher zufällig. Sind einzelne erklärungsstarke Variablen voneinander linear abhängig, ist es wahrscheinlich, dass nur eine davon im Modell erscheint, doch die übrigen Variablen helfen, sie zu interpretieren. Wird dagegen eine erklärungsstarke Variable bei der Modellbildung willkürlich ausgeschlossen, rücken andere Variablen gewissermassen an ihre Stelle und können zu einem völlig anderen Modell führen.

Würden zum Beispiel die Variablen im Regressionsmodell (Tabelle III) ausgeschlossen, entstünde ein anderes Modell,

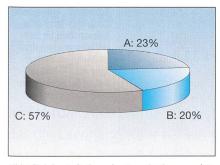
das nur noch 67% der Varianz der Zielgrösse erklärt. Die neuen Modellvariablen wären dann «Lüftung $\{2 - 0\&1\}$ », «Leistg_BeleuchtgBüro» und «Branche $\{O\&J\&G - N\&Q\&K\&L\&E\}$ »⁷. Den grössten Erklärungsanteil lieferte neu die Lüftungsvariable. Da der Lüftungsgrad mit dem Klimatisierungsgrad technisch zusammenhängt, dürfen wir annehmen, dass die Lüftungsvariable gewissermassen an dessen Stelle rückt, d.h. dessen statistische Aussage teilweise übernimmt. wessen Platz die Variable «Leistg_BeleuchtgBüro» rücken würde, lässt sich nicht ohne weiteres sagen. Sie rückte möglicherweise nicht an die Stelle einer alten Variablen, sondern erklärte einen völlig anderen Varianzanteil der Energiekennzahl.

Um die Modellvariablen (Tabelle III) und das Modell selbst zu interpretieren, wird der statistische Zusammenhang der Modellvariablen mit den übrigen Variablen untersucht. Entsprechend den Modellvariablen werden drei so genannte

Hauptachsen definiert, auf denen die jeweils signifikant korrelierten Variablen abgebildet werden (Tabelle IV). Variablen, die auf keiner Hauptachse liegen, sind gesondert aufgeführt («verbleibende Variablen»). Sie bieten sich weniger als Substitut denn als Komplement zu den Modellvariablen an. Sie würden das Bestimmtheitsmass des Regressionsmodells leicht verbessern (um maximal zwei Prozentpunkte), korrelierten im Modell aber deutlich weniger signifikant als die übrigen Modellvariablen und werden deshalb nicht verwendet.

Die Hauptachse der Modellvariablen «Leistg_ArbeitshilfBüro» bleibt leer (Tabelle IV). Das heisst, die statistische Aussage dieser Variable ist einzigartig und kann im Regressionsmodell durch keine andere Variable ersetzt werden.

Anders verhält es sich mit der modifizierten Klimavariablen «Klimatisierung $\{2-0\&1\}$ »; ihre statistische Aussage steckt auch in zahlreichen anderen Variablen. Der Zusammenhang mit der Lüftungsvariablen ist bereits bekannt. Ebenfalls bekannt ist der Zusammenhang mit der Energiebezugsfläche: Organisationen mit grossem Flächenbedarf bzw. grosse Gebäude sind häufiger klimatisiert als kleine. Auffallend hoch ist die Korrelation mit den Verhaltensvariablen. Auch diese Beobachtung bestätigt eine frühere Erkenntnis: Klimatisierte, d.h. energieintensive Organisationen kennen eher Fördermassnahmen für eine rationelle Energienutzung als nicht- oder teilklimatisierte.


Der starke Zusammenhang der Energiebezugsfläche mit dem Klimatisierungs- und Lüftungsgrad ist bereits bekannt (Tabelle IV). Auch der Zusammenhang mit dem Vorhandensein einer Betriebskantine ist nicht neu. Erstaunlich ist höchstens, wie hoch die Variablen korreliert sind: «Küche/Restaurant» erklärt 43% der Varianz der Energiebezugsfläche und bietet sich als Substitut für die aufwändig zu bestimmende Energiebezugsfläche an. Dies führt uns zu einem handlicheren Alternativmodell (Tabelle V). Das Bestimmtheitsmass verschlechtert sich darin geringfügig um einen Prozentpunkt, und die Ersatzvariable korreliert im Modell immer noch stark signifikant.

Fördermassnahmen für eine rationelle Energienutzung

Das bisherige Regressionsmodell enthält ausschliesslich technische Variablen.

30 Bulletin ASE/AES 3/01

⁷ Dass das Modell wieder aus drei Variablen besteht, ist Zufall.

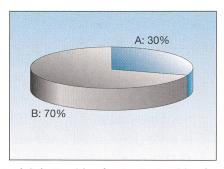
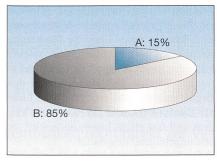



Bild 4 (links) Aufteilung der Organisationen nach Anwesenheit des Energiebeauftragten: A = Energiebeauftragter vor Ort; B = Energiebeauftragter am Hauptsitz; C = kein Energiebeauftragter

Bild 5 (rechts) Aufteilung der Organisationen nach betrieblichem Umweltschutz: A = mit Umweltschutz; B = ohne Umweltschutz

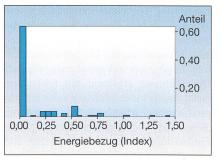


Bild 6 (links) Aufteilung der Organisationen nach Verbrauchskontrolle: A = mit Verbrauchskontrolle; B = ohne Verbrauchskontrolle

Bild 7 (rechts) Häufigkeitsverteilung der Organisationen nach durchschnittlichem Energiebezug

Dies geschah nicht mit Absicht, sondern ergab sich aus den statistischen Eigenschaften der Variablen und den Anforderungen an sie für eine Wahl ins Regressionsmodell. Technische Variablen erklären die Varianz der Energiekennzahl Elektrizität offensichtlich besser als soziale Variablen.

Allerdings beschreiben technische Variablen ausgerechnet Merkmale, die vom Betrieb wenig oder gar nicht beeinflusst sind. Deshalb wurde die Wirkung der Verhaltensvariablen detaillierter untersucht. Vier recht unterschiedliche Variablen stehen zur Wahl:

- Energiebeauftragter: Vorhandensein eines formellen Energiebeauftragten (Bild 4)
- Umweltschutz: Vorhandensein einer Stelle für betrieblichen Umweltschutz (Bild 5)

- Verbrauchskontrolle: Periodische Kontrolle der Verbrauchsentwicklung durch einen Vertreter der Organisationsleitung (Bild 6)
- Energiebezug: Durchschnittliche Beachtung des Energieverbrauchs bei energierelevanten Entscheidungen (Bild 7)

Aus der individuellen Korrelation (Tabelle II) wurde bereits ersichtlich, dass die Verhaltensvariablen zwar hoch und stark signifikant, aber mit kontraintuitivem (positivem) Vorzeichen mit der Energiekennzahl korreliert sind. Vielleicht wurde die verbrauchssenkende Wirkung nicht sichtbar, weil sie von der verbrauchssteigernden Wirkung der mit den Fördermassnahmen statistisch verwandten Technisierungsmerkmale verdeckt war. Zur Bestimmung eines vermuteten verbrauchssenkenden Effekts wur-

Variable	F-Ratio	Prob > F	Erklärungsanteil	∆R ² adj-Modell
Energiebeauftragter	1,56	0,222	3,5%	0,00
Umweltschutz	1,78	0,189¥	1,9%	0,00
Verbrauchskontrolle	0,0989	0,755 ¥	0,12%	+0,02
Energiebezug	0,0241	0,877¥	0,32%	-0,01

Tabelle VI Individuelle marginale Wirkung der Verhaltensvariablen im Regressionsmodell

den die Verhaltensvariablen individuell dem bereits hoch korrelierten, aber technischen Regressionsmodell hinzugefügt (Tabelle VI).

Keine der Verhaltensvariablen korreliert im Modell signifikant. Die höchste Korrelation erreicht der Energiebeauftragte, doch auch diese liegt deutlich unter Signifikanzniveau. Die Energiekennzahl Elektrizität zeigt keinen systematischen Zusammenhang mit Fördermassnahmen für eine effiziente Energienutzung.

Alternativ zur marginalen Wirkung in einem hoch korrelierten technischen Modell wurde die Wirkung der Verhaltensvariablen für eine reduzierte, technisch homogene Stichprobe untersucht. Die Definition für technische Homogenität folgte der Aussage der Variablen im technischen Regressionsmodell. Entlang den Medianen wurde die Stichprobe in acht Teile geteilt. Die Mediane liegen bei «Leistg_ArbeitshilfBüro» = 9 W/m², «Energiebezugsfläche» = 2900 m² und zwischen voll- und nicht- oder teilklimatisierten Gebäuden. Mit Rücksicht auf eine hinreichend grosse Stichprobe konnten nur nicht- und teilklimatisierte Organisationen mit maximal 2900 m² Energiebezugsfläche betrachtet werden (Tabelle VII).

Einmal mehr korreliert keine der Verhaltensvariablen signifikant. Am besten schneidet erneut der Energiebeauftragte ab; einmal korreliert er sogar mit intuitätskonformem Vorzeichen, doch eben nicht signifikant. Die Energiekennzahl Elektrizität zeigt wieder keinen systematischen Zusammenhang mit Fördermassnahmen für eine effiziente Energienutzung.

Schlussfolgerungen

Aus der Sicht des Energiesparens sind die Ergebnisse der Regressionsanalyse ernüchternd: Keine der organisatorischen Fördermassnahmen zur Eindämmung des Energieverbrauchs führt zu einem systematisch tieferen Verbrauch. Das heisst zwar nicht, dass konkrete Energiesparmassnahmen keine Wirkung zeigen oder dass Energiebeauftragte keine Anstrengungen zum Energiesparen unternehmen, doch schlagen sich diese Aktivitäten nicht systematisch im Verbrauch nieder. Die Wirkung der Massnahmen geht im Chor der statistisch nicht erklärbaren Verbrauchsschwankungen unter.

Der flächenbezogene Elektrizitätsverbrauch in Bürogebäuden wird hauptsächlich durch technische Infrastrukturmerkmale bestimmt. Die wichtigsten Faktoren sind der Klimatisierungsgrad und die in-

[Leistg_ArbeitshilfBüro] ≤ 9 W/m² (n = 14 Organisationen) Mittlere Energiekennzahl Elektrizität: 142 MJ/m²a		[Leistg_ArbeitshilfBüro] > 9 W/m² (n = 10 Organisationen) Mittlere Energiekennzahl Elektrizität: 203 MJ/m²a		
Energiebeauftragter	0,14 (n.s.) ¥	Energiebeauftragter	0,04 (n.s.)	
Umweltschutz	0,27 (n.s.) ¥	Umweltschutz	0,06 (n.s.)	
Verbrauchskontrolle	0,01 (n.s.) ¥	Verbrauchskontrolle	0 [keine Variation]	
Energiebezug	0,08 (n.s.)	Energiebezug	0,08 (n.s.) ¥	

Tabelle VII Individuelle Korrelation der Verhaltensvariablen für technisch homogene Stichproben (R² und Signifikanz auf 5%-Niveau; ¥ steht für ein unerwartetes Korrelationsvorzeichen)

stallierte Leistung der Arbeitshilfen. Zwischen der Ausstattung mit Lüftungs- und Klimaanlagen, hohen Leistungen der Arbeitshilfen und der Beleuchtung und dem Vorhandensein einer Betriebskantine besteht ein innerer Zusammenhang, der Technisierungsgrad. Grosse und junge Gebäude sind tendenziell höher technisiert, ebenso Banken und Versicherungen sowie Handelsunternehmen. Ausschlaggebend ist nicht die branchenspezifische Tätigkeit, sondern der branchenspezifische Standard für Komfort und Luxus. Eine statistische Analyse der Energiekennzahl für Beleuchtung zeigt ebenfalls Höchstwerte für Banken und Versicherungen sowie Handelsunternehmen, obwohl die Ansprüche an die Beleuchtung überall etwa gleich sind.

Abgesehen von der Branche beeinflusst kaum ein soziales Merkmal systematisch den Elektrizitätsverbrauch. Der Standortkanton etwa oder die Einstellung des Managements zu Energiefragen beeinflussen den Verbrauch ebenso wenig wie Fördermassnahmen der Organisation für eine effiziente Energienutzung. Letz-

tere sind eher ein Indikator für einen hohen Verbrauch. Möglicherweise werden Fördermassnahmen wegen des hohen Verbrauchs eingeführt und haben dann wenig Einfluss. Wahrscheinlicher für die Einführung von Fördermassnahmen sind jedoch auch hier Branchenstandards: die grösste Verbreitung finden sie in Banken und Versicherungen. Ihr schwacher Erfolg liesse sich mit einer mangelhaften Durchführung erklären: mit fehlendem Geld, mangelnder Initiative oder kontraproduktiven Mitarbeitern. Argumente dieser Art überschätzen allerdings die Einflussmöglichkeit der Endnutzer und unterschätzen die Macht der technischen Infrastruktur. Die grössten Energieverbraucher in Bürogebäuden (Lüftung und Klimatisierung, zentrale EDV und der überwiegende Teil der Beleuchtung) sind ohnehin zentral gesteuert und entziehen sich der Einflussnahme der Nutzer.

Wo technische Faktoren den Verbrauch fast autonom festlegen, spielen die Planung, der Betrieb und der Unterhalt der technischen Infrastruktur eine zentrale Rolle. Die für den Verbrauch folgenschwersten Entscheidungen werden getroffen, bevor das Gebäude genutzt wird, nämlich bei der Planung. Im eigentlichen Betrieb lässt sich der Verbrauch fast nur noch beim Ausbau und Ersatz von Anlagen und Geräten beeinflussen. Adressaten für effizienzfördernde Massnahmen sind daher in erster Linie die Bauherren, Architekten und Fachplaner, in zweiter Linie die Beschaffungsabteilungen, technischen Dienste und Hauswarte in den Organisationen und erst in dritter Linie die Endnutzer. Diese Erkenntnis ist evident und fast etwas banal, doch wird sie erst ungenügend umgesetzt.

Die Energiekennzahl ist zweifellos ein strenges Kriterium für die Beurteilung effizienzfördernder Massnahmen. Andere Kriterien wären denkbar, etwa die Anzahl der Sparmassnahmen oder die durch sie eingesparte Energie. Für den Vorrang der Energiekennzahl spricht aber, dass diese eine quantitative Grösse ist und den Vergleich zwischen Organisationen derselben Art ermöglicht. Sie kommt der Überprüfung nationaler Sparziele (Energie, CO₂ o.Ä.) entgegen, da auch hier nicht die eingesparte Energie, sondern der Verbrauch zählt.

Determinantes de la consommation de l'électricité dans les bâtiments administratifs

Une étude de l'EPF a analysé les grandeurs fondamentales de la consommation de courant électrique dans les bâtiments administratifs. Le résultat est plutôt une désillusion: la consommation est pratiquement fixée par l'équipement technique. Les usagers du bâtiment n'ont que peu d'influence sur elle; même les mesures destinées à améliorer l'efficacité n'ont guère d'effet. Les caractéristiques techniques de confort ont une influence considérable; elles sont fixées dès la planification du bâtiment.

Referenzen

- Bundesamt für Energie (BFE): Energie extra. Nr. 6/2000. Periodikum des Bundesamtes für Energie, Bern.
- Lukas Weber, Ivan Keller: Stromverbrauch in Bürogebäuden: Gespart, ohne zu wollen. Bulletin SEV/VSE 90(1999)18: 19–23.
- [3] Schweizer Ingenieur- und Architekten-Verein (SIA): SIA-Empfehlung 180/4: Energiekennzahl. Zürich, 1982.
- [4] Schweizer Ingenieur- und Architekten-Verein (SIA): SIA-Empfehlung 380/4: Elektrische Energie im Hochbau. Zürich, 1995.
- [5] Bundesamt für Statistik (BFS): Noga: Allgemeine Systematik der Wirtschaftszweige, Teil 1: Detaillierte Gliederung. Bern, 1995.

Der SEV auf dem Internet / L'ASE sur l'Internet: http://www.sev.ch

