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Nichtlineare Regelungen

Verbesserungen der Regelgüte sind meist mit erhöhten Stellbewegungen verbunden.
Damit machen sich die stets vorhandenen Stellgrössenanschläge stärker bemerkbar.
Ebenso können betriebliche Grenzen von weiteren Variablen in der Anlage häufiger
tangiert werden. Dies bedeutet, dass die Regelaufgaben nichtlinear werden. Gelöst
werden diese einerseits durch Optimierung der Trajektorie im Sinne einer optimalen
Steuersequenz (Maximumprinzip bzw. Modellprädiktive Regelung) oder andererseits
durch Beibehalten der linearen Regelung für kleine Auslenkungen und Hinzufügen
weiterer Rückführungen, die bei grossen Auslenkungen aktiv werden. In der Praxis

wird der zweite Weg in der Form von Anti-Wind-up- bzw. Override-Reglern verbreitet

benutzt, wobei die Regelungen meist noch empirisch-intuitiv entworfen werden.
Im folgenden wird an einem Beispiel aus der Mechatronik gezeigt, wie sich solche

Regelungen systematisch entwerfen und analysieren lassen.

Regelungen mit Stellanschlägen
und Begrenzungen

Adolf Hermann Glattfelder
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Steigende Anforderungen an die
Regelgüte von Regelkreisen bedeuten unter
anderem, dass bei sonst gleichen
Bedingungen stärkere und schnellere
Stellbewegungen auftreten. Damit wird zum
einem das Stellorgan auch häufiger
vorübergehend «übersteuert», das heisst, es

werden die stets vorhandenen Sättigungen

häufiger fühlbar. Zum anderen werden

infolge der stärkeren Stellbewegungen

oft Ausgangsgrössen der
Regelstrecke ihre betrieblichen Grenzwerte
überschreiten. Typische Beispiele sind zu

grosse Temperaturdifferenzen beim
raschen Aufwärmen dickwandiger Bauteile,

Überhitzung der Wicklungen
hochdynamischer Servoantriebe, zu hohe

Geschwindigkeiten bzw. Drehzahlen bei

Positionsregelungen usw. Es treten also
bei der linearen Regelung, wie sie für
kleine Auslenkungen ausgelegt wurde.

im Betrieb bei grösseren Auslenkungen
Beschränkungen der Bewegung auf. Man
spricht bei der ersten obigen Gruppe von
Input Constraints, bei der zweiten von
Output Constraints (Bild 1).

Für den Entwurf solcher Regelungen
gibt es im wesentlichen zwei Gruppen
von Methoden. Die erste basiert auf der
Theorie optimaler Systeme mit Beschränkungen

und damit auf dem Maximumprinzip,

zum Beispiel [1,2]. Die klassische

Lösung führt auf eine optimale
Steuerfolge die dann in einem
zweiten Schritt aus dem momentanen
Bewegungszustand x(t) abzuleiten ist (sog.
Syntheseaufgabe). Bei schnelligkeitsoptimalen

Systemen entstehen so die Bang-
Bang-Regler mit ihren erzeugenden
Schaltkurven bzw. Schaltflächen im
Zustandsraum. Im letzten Jahrzehnt
wurden numerische Verfahren entwickelt,
die auf der Online-Optimierung der
Trajektorie unter Einbezug der Beschränkungen

beruhen. Sie haben mittlerweile
in der praktischen Anwendung unter der

Bezeichnung Model Predictive Control
eine breite Akzeptanz gefunden, zum
Beispiel [3].

Bei der zweiten Gruppe von Entwurfsverfahren

(z.B. [4] und dortige Referen-

Bulletin SEV/VSE 17/98 15



Regelungstechnik

a

G„(s)
yi

b z / y2/:
Gu(s)r /u

Gu(s) 7i

zen) legt man in einem ersten Schritt eine
lineare Regelung aus. Sie soll für kleine
Auslenkungen um den Auslegungs-Be-
triebszustand die geforderte Regelgüte
erbringen. Dann benützt man diese Regelung

einfach für grössere Auslenkungen
weiter, trotz transientem Berühren der

Anschläge. Dabei wird sich das
Regelverhalten verschlechtern, unter Umständen

bis zur Instabilität. Bei solch
ungenügendem Regelverhalten ergänzt man in
einem zweiten Schritt die lineare
Regelstruktur mit intuitiven Zusätzen derart,
dass man von Graceful Degradation sprechen

kann.
Damit stellt sich die Frage, ob die End-

Ruhelage der Regelung asymptotisch stabil

ist, wie gross der Anziehungsbereich
ist und auch wie gross der Verlust an Op-
timalität ausfällt. Im folgenden soll eine

Einführung in diese zweite Gruppe von
Verfahren gegeben werden. Zunächst
werden die Aufgabenstellung herausgearbeitet

und die Lösungskonzepte dargestellt.

Dann wird der Entwurfsgang an
einem Fallbeispiel aus der Mechatronik
über drei Etappen hinweg gezeigt. Besondere

Bedeutung wird dabei der
nichtlinearen Stabilitätsanalyse zukommen.

Die Aufgabenstellung
und die Lösungsansätze

Im Rahmen dieser Einführung
beschränken wir uns auf Eingrössen-Rege-
lungen. Wir gehen auf die Elemente
Regelstrecke, Regler, Nichtlinearität und

Auslenkungsmodell ein.

Die Regelstrecke
Wir gehen von einem linearen,

zeitinvarianten Modell des Stellverhaltens aus,
das für kleine Auslenkungen um den

Auslegungs-Betriebspunkt der Regelstrecke
gültig ist. Es kann demgemäss durch die
Übertragungsfunktion G„(s) dargestellt
werden. Dieses Modell wird im folgen-

Bild 1 Eingrössen-
Regelstrecken mit

a Stellanschlägen (Input
Constraints)

b Begrenzungen weiterer
Ausgangsgrössen
(Output Constraints)

den vereinfachend im ganzen ausgefahrenen

Betriebsbereich weiterverwendet,
auch wenn dieses gegen dessen Ränder
hin ungenau sein sollte. Die Regelstrecke
muss selbst nicht asymptotisch stabil
sein; sie darf also einen oder mehrere
Pole auf der Imaginärachse oder gar in
der rechten Halbebene haben. Alles
andere würde die praktische Anwendbarkeit
des Entwurfsganges unbrauchbar
einschränken.

Regler
Wie bereits erwähnt, wird ein linearer

Regler eingesetzt, der im Hinblick auf
den Schmalbereichsbetrieb um den

Auslegungspunkt entworfen wird. Die Wahl
der Entwurfsmethode ist frei; sie kann
sich also ganz nach der Spezifikation des

Schmalbereichsbetriebs richten. Dabei
soll jedoch das Regelgütepotential dieser

Schmalbereichsregelung voll in dem

Bild 2 Regelkonzepte

a Anti-Wind-up
Feedback (für Input
Constraints)

b Override Control (für

Output Constraints)

Sinne ausgeschöpft werden, dass zur
Erzielung eines akzeptablen Weitbereichsverhaltens

keine Apriori-Abstriche an der
Regelgüte gemacht werden. Das Ergebnis
dieses Entwurfs ist eine Regler-Übertragungsfunktion

GRt(s). Dabei muss GR\(s)
selbst nicht asymptotisch stabil sein und
darf damit insbesondere auch Integralanteile

aufweisen.

Das Auslenkungsmodell
Im Sinne der klassischen Regelungstechnik

und der Anwendungsnähe gehen
wir von Soll-Wert-Sprüngen aus. Im
Gegensatz zu linearen Regelungen wird hier
die Sprunghöhe rf(t) wichtig. Sie sei
«klein», wenn U\(t) die Anschläge gerade
nicht berührt, und «gross» entspreche
dem im Betrieb maximal vorkommenden
Wert. Damit ist auch gleich der erforderliche

Anziehungsbereich festgelegt. Er ist
also stets beschränkt, und ein Stabilitätsnachweis

«im Ganzen» ist nicht zwingend

nötig.
Bei der nichtlinearen Stabilitätstheorie

(vgl. z.B. [5]) steht das Eigenverhalten
hin zur Ruhelage im Nullpunkt im
Vordergrund. Wir stellen diesen Zusammenhang

her, indem wir mittels einer
Koordinatentransformation die Endruhelage in
den Nullpunkt schieben. Dann betrachten
wir die Sprungantwort als von einer
entsprechend verschobenen Anfangsruhelage

ausgehend. Und diese Anfangsruhelage

können wir uns erreicht denken
durch das Aufbringen der entsprechenden
Anfangsbedingungen im Zeitpunkt des

Soll-Wert-Sprunges bei t=0. Somit wird
anstelle der Führungssprungantwort das

äquivalente Eigenverhalten betrachtet.
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Bild 3 Die Positionsregelung (als Simulink-Modell)

Die Nichtlinearität
Für den Fall der Stellanschläge

(Input Constraints) sind eine Reihe
präzisierender Annahmen zu treffen
(Bild la), die aus der Sicht der praktischen

Anwendung wiederum möglichst
wenig einschränkend sein dürfen. Wir
gehen davon aus, dass Anschläge nur
im Stellorgan auftreten und dass sonst
nirgends weitere Nichtlinearitäten
vorkommen. Weiter sind nur Hubanschläge
und keine zusätzlichen
Geschwindigkeitsanschläge vorhanden, so wie dies
Bild la vorwegnimmt. Die Hubanschläge

sind zeitinvariant. Die Steigung
der Kennlinie dazwischen ist konstant
gleich eins.

Weiter setzen wir voraus, dass das

Stellsignal ux(t) in der Anfangs-Ruhelage
(gemäss Abschnitt «Das Auslenkungsmodell»)

wie in der End-Ruhelage im
Inneren des Arbeitsbereiches des Stellorga-
nes liegt, und zwar in einem endlichen
Abstand von den Anschlägen, derail dass

eine Schmalbereichsregelung um diese
beiden Betriebspunkte möglich ist. Mit
anderen Worten sollen die Anschläge nur
für grössere Auslenkungen und transient
fühlbar werden.

Im Falle der Begrenzung (Output
Constraints) beschränken wir uns auf den Fall
einer Ausgangsgrösse (Bild lb)

y2io - 3*2(0 - y2 hi

mit den Betriebsgrenzwerten y2i0; y2hi-
Diese sind zeitinvariant und so gelegt,
dass y2 sowohl für die Anfangs- wie für
die End-Ruhelage im Inneren dieses
Intervalles liegt und in endlichem Abstand
von den Grenzwerten. Damit soll
wiederum eine lineare Schmalbereichsregelung

für hinreichend kleine Auslenkungen

möglich sein. Weiter ist die
Übertragung n->y2 linear und zeitinvariant,
das heisst beschreibbar durch Gtl2(s).
Schliesslich sind keine weiteren
Nichtlinearitäten (Hysterese, Anschläge usw.)
fühlbar.

der eine Beschleunigungsfähigkeit bis
50 m/s2 bereitstellt. Diese soll durch die

Regelung auch wirklich «ausgefahren»
werden. Gefordert wird eine
dimensionslose Reglerverstärkung ^>500 und
eine überschwingfreie Führungssprung-
antwort für ein dimensionsbefreites

rt <0.10.

Die Regelstrecke
Bild 3 zeigt das lineare Modell der

Regelstrecke in dimensionsbefreiter
Form

Gis)'- -sT,

Lösungsansätze
Für den Fall der Stellanschläge hat

sich der sogenannte Anti-Wind-up-An-
satz (Bild 2a) durchgesetzt. Er ist eine

Verallgemeinerung des Anti-Reset-Wind-
up(ARW)-Zusatzes für den PI-Regler,
der das Weglaufen des Integralanteiles
bei Berühren des Stellanschlages
verhindert und ihn zudem auf einen
günstigen Anfangswert beim Übergang in
den Schmalbereich setzt. Auf diesem
Gebiet ist eine rege internationale
Forschungstätigkeit zu beobachten (z.B.
[4, 6, 7, 8, 9]).""

In gleicher Weise stammt der Lösungsansatz

für den Fall der Begrenzung (Bild
2b) ebenfalls aus der Praxis [10, 11, 12].
Man spricht von Begrenzungsregelung
oder Override Control. Dabei wird in
einem zweiten linearen Regler GR2(s)
eine Stellgrösse u2(t) derart erzeugt, dass

y2(t) dem «bedrohten» Grenzwert y2hi

entlangläuft. Weiter erfolgt das
«Umschalten» zwischen ux(t) und u2(t) «stoss-
frei» über einen Minimalwertauswähler
oder (äquivalent) durch Positionierung
des oberen Anschlages entsprechend
u2(t). Begrenzungen nach unten y2to
(in Bild 2b nicht gezeichnet) werden
gleichermassen implementiert und laufen

dann über einen Maximalwertauswähler

[12].
Interessanterweise werden solche

Schaltungen in der Praxis gerne benützt;
die Forschung hat sich hingegen erst
wenig damit beschäftigt.

Ein Fallbeispiel
Es geht um die Positionsregelung einer

reibungsfrei gelagerten Punktmasse, bei
der die Stellkraft sehr verzögerungsarm
erzeugt werden soll und bei der schnelle,
präzise Sensoren den Ort und die
Geschwindigkeit erfassen. Zugrunde liegt
eine Werkzeugmaschinenachse für die
Hochgeschwindigkeitszerspanung [13,
14], Als Antrieb dient ein Linearmotor,

s2TXT2" (la)

mit den Daten:

i=aio=50 I0.,s
1

vp 2.0 m/s (lb)

und

mRvR _
200 kg 2mis

_
8 kN

sowie

7)= 0.5 • 10"

50-10 V
(lc)

(ld)

Mit T, sind die restlichen Verzögerungen

von Stellantrieb, Regelalgorithmus
und Sensoren nach oben abgeschätzt.

Für hinreichend tiefe Frequenzen kann
die Stellübertragungsfunktion der
Regelstrecke rational gebrochen approximiert
werden durch:

1

G.is)'
S2TJ2 (2a)

Weiter gilt für den Arbeitsbereich bzw.
die Anschläge des Stellorgans:

-100% <«(*)<+100%
-8 kN< F„(t) < +8ÜV (2b)

Der Regler
Bild 3 zeigt die gewählte Reglerstruktur;

es handelt sich um einen klassischen

P-Regler für die Position (auf einen I-An-
teil wurde bewusst verzichtet, wie es bei
solchen Antrieben gängige Praxis ist) mit
einer P-Aufschaltung der Geschwindigkeit.

Die Reglereinstellwerte werden
mittels Polfestlegung bestimmt. Dazu
wird die Approximation G„(ü nach
Gleichung (2) verwendet.

Die charakteristische Gleichung des

geschlossenen Kreises lautet

l+Goffen (s)^\ + Gu 'GÄ1

k2sTx +kx (3a)
1 + -

s TJi
- 0

oder

0=s2TxT2+sTl k2+kx

was zu vergleichen ist mit

(3b)
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Bild 4 Führungssprungantworten

des

Regelkreises mit
Stellanschlägen

mit r, 0.001 (a),

r, 0.01 (b),

r,= 0.1(c)

,s2+.s2Q+Q2=0 (3c)
mit £2 als Bandbreite des geschlossenen
Kreises.

Durch Koeffizientenvergleich ergibt
sich

k,=ÜrTxT2 (4a)
k2=2£lT2 (4b)

Dabei ist £2 in genügendem Abstand
von der kritischen Kreisfrequenz û>T|

infolge der Totzeit Tt zu wählen. Aus

T 71

coT T — —' 2

das heisst

coT T. -100—
T' 2 2 (5b)

ergibt sich bei einem Abstand Faktor 5:

(5c)£27) 20-

eingesetzt in die Bestimmungsgleichungen
für die Reglereinstellwerte

M

HHHHHHHIHHHL

Bild 5 Zur Stabilitätsuntersuchung des Regelkreises
mit Stellanschlägen

a die direkt entstehende kanonische Form (nicht
geeignet)

b die Umformung der Nichtlinearität
c die neue, nunmehr geeignete kanonische Form

Acj 107t)2= 1000

und
£'2= 2(107t)=62.8 (5d)

Mit anderen Worten bleibt die Sprungantwort

linear bis rx =0.001, das heisst bis
auf 1 % der spezifizierten Sprunghöhe.

Die Führungssprungantworten
Bild 4 zeigt das transiente Verhalten

für drei Führungssprunghöhen:

(5a) r, 0.001 (a), r, 0.01 (b), r, 0.1 (c)

Im Schmalbereichfall (a) ergibt sich
eine Ausregelzeit von rund 0,01 s. Im Fall
(b) entspricht das Antwortverhalten nahezu

dem zeitminimalen Übergang (in
ca. 0,01 s) mit einem leichten
Überschwingen. Dieses verschwindet, wenn
die Soll-Wert-Sprunghöhe etwas verkleinert

wird (r, 0.009). Für Fall (c) ist das

Verhalten völlig unbrauchbar.

Weiter ist der Kreistest nur dann
anwendbar, wenn der lineare Systemteil in
dieser kanonischen Form asymptotisch
stabil ist. Dies ist im allgemeinen nicht
der Fall (vgl. Abschnitte «Die
Regelstrecke» und «Der Regler»), so auch hier
nicht. Man kann dies aber durch eine
Lineartransformation erreichen. Dazu
wird die Sättigungskennlinie ersetzt durch
eine Parallelschaltung gemäss Bild 5b
[12], Entsprechend modifiziert sich der
lineare Systemteil (Bild 5c):

L(S):

-1.0

G,
offen

1 + G, offe„

chP(G, offJ

chP(Gl gesM

-1.0 + -

1

1 +GU

(7)

Die Stabilitätsanalyse
Zu untersuchen ist die äquivalente

Eigenbewegung hin zur Ruhelage im
Nullpunkt: Ist sie nachweisbar asymptotisch

stabil? Und ist der
Anziehungsbereich hinreichend gross? Dazu
haben sich die sogennanten Sektor-
Kriterien (Kreis- und Popov-Kriterium)
als zweckmässig erwiesen [5], Wir bauen
hier auf dem Kreistest auf, der etwas
einfacher zu handhaben ist, aber auch etwas
konservativere Aussagen als der Popov-
Test macht.

Als erstes muss der Regelkreis in
«kanonischer Form» vorliegen, was
durch einfaches Umzeichnen geschieht,
Bild 5a, mit

G(s)=-Gloffen(s)=-GRX(s) • G„x(s) (6a)

und hier wie in Gleichung (3)

k2sTx + £, k2sTx+kx
G(s) — e '

wobei chP für das charakteristische
(Nenner-)Polynom der entsprechenden
Übertragung steht. Hier ist nun L(s)
aufgrund des Entwurfs der linearen
Schmalbereichsregelung sicher voraussetzungskonform

asymptotisch stabil.
In unserem Fallbeispiel wird:

L(s) -1.0 +

—1.0 + -

s~TxT2 + sTxk2 + kx

(8)

(s + £2)

s%T2 s T, T.i'2 (6b)

Der nichtlineare Systemteil (Bild 6)
besteht aus der Totzonen-Kennlinie mit
Flankensteigung eins ausserhalb der
Anschlagswerte. Der aktive Teil dieser
Kennlinie ist eingeschlossen zwischen
der unteren Sektorgrenze mit Steigung
a=0 also (1 /a)= °° Damit degeneriert der
Kreis, aufgespannt durch die Punkte

-(l/a)+j0 und -(l/7>)+j0, zur Vertikalen
mit dem Fusspunkt bei -( Mb).

Weiter berechnet sich die Steigung b

der oberen Sektorgrenze gemäss Bild 6

zu:

Bulletin ASE/UCS 17/98
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Bild 6 Die neue Sektor-Nichtlinearität

b ^3-L (9a)
Wj

und daraus

A — ——— 1.0 +-^b M, - Uhi M, - Uhi

~ 1.0 H——— 1.0 + ——— (9b)

w,(+0) kxx,(+0)

1.0 h—-——
Q 7jr2x,(+0)

Für den grafischen Stabilitätstest [5,
12] kann man weiter vereinfachend bei
beiden Subsystemen den Summanden
-1.0 weglassen, so dass:

Cs + Q)2 (Cs/Q) + 1)2

und (10)

Q27]r2JCj(+0)

Man ersieht, dass in diesem speziellen
Fall die Nyquist-Kontur (Ortskurve)
L~(j©) unabhängig von der Wahl von Q
ist - es ändert sich nämlich nur die
Frequenzkotierung - und dass sich die Test-
Vertikale bei -A" wie folgt verschiebt:
• nach links (in Richtung mehr
Stabilitätsreserve) mit steigendem Arbeitsbereich

des Stellorgans uhi
• nach rechts (in Richtung weniger
Stabilitätsreserve) mit steigender relativer

Polverschiebung (07))2 (d.h.
steigender spezifizierter Regelgüte) und
auch mit steigender Anfangsauslenkung
4+0) (d.h. steigender Soll-Wert-Sprunghöhe

rj).
Bild 7 zeigt den grafischen Stabilitätstest,

erzeugt mit einigen wenigen Zeilen
Matlab. Für den Fall (a) in Bild 4 liegt
-A~ bei —oo_ Es entsteht folglich sicher
kein Schnittpunkt, und das
Schmalbereichsverhalten ist asymptotisch stabil.
Im Fall (b) treten knapp zwei Schnittpunkte

auf. Deshalb ist asymptotische
Stabilität nicht mehr nachweisbar. Reduziert

man jedoch die Sprunghöhe auf
>7=0.009, dann ergeben sich gerade keine
Schnittpunkte mehr, und das Eigenverhalten

ist noch nachweisbar asymptotisch
stabil.

Im Fall (c) hingegen reicht die
Nyquist-Kontur weit nach links über die

Testgerade hinaus. Auch hier ist kein
Stabilitätsnachweis mehr möglich. Da der
Test konservativ ist, kann nicht der
Schluss gezogen werden, dass sich der

geschlossene Kreis nun instabil verhalte,
sondern es ist einfach «keine Aussage»
mehr möglich. Erfahrungsgemäss ist
jedoch in einer solchen geometrischen
Situation mindestens mit viel zu schwacher

Dämpfung zu rechnen, so wie in
Bild 4c gezeigt.

Abhilfemassnahmen

Es gibt hierzu eine Vielzahl von
Ansätzen. Im folgenden sind drei mögliche
Varianten herausgegriffen.

Reduktion von Q
Das Ziel dieser Massnahme ist, den

nachweisbaren Anziehungsbereich auf
den benötigten Betriebswert zu bringen.
Dazu muss die Testgerade nach links
geschoben werden, bis sich für
den «Gross»-Fall r, 0.1 gerade keine

Schnittpunkte mehr ergeben. Als einziger
freier Parameter in der Liste zu
Gleichung (10) bleibt dann noch der Wert für
Q [7]; er müsste gemäss Gleichung (10)
um einen Faktor von ungefähr (10)1/2

reduziert werden. Die (hier nicht
gezeigte) Simulation der Führungssprungantwort

zeigt, dass das Regelverhalten
(Bild 4c) jetzt dem akzeptablen Ablauf
nach Bild 4b mit einer Ausregelzeit von
etwa 0,04 s vergleichbar wird. Dadurch
reduziert sich allerdings auch die Steifigkeit

(Störunterdrückung) der
Schmalbereichsregelung um einen Faktor von
ungefähr 10. Diese Massnahme ist zwar
sehr einfach, aber nicht konform mit den

Bild 7 Der grafische
Stabilitätstest für die
drei Fälle (a), (b) und (c)

in Bild 4

eingangs gemachten Vorgaben. Deshalb
wird sie hier nicht weiterverfolgt.

Reduktion der transienten
Auslenkungen

Der Stabilitätstest zeigt, dass die
Anfangsphase der Führungssprungantwort
massgebend ist, weil der Regelfehler dort
am grössten ist. Mit anderen Worten
überfordert das Anlegen des Sprunges bei
weitem die Möglichkeit der Anlage,
diesem Sprung zu folgen. Wenn man statt
dessen einen «vernünftigeren» Soll-Wert-
Verlauf r{t) vorgibt, der sich weniger weit
von der maximal realisierbaren Trajekto-
rie y{t) entfernt, dann wird auch der
geforderte Anziehungsbereich nachweisbar.

Allerdings ist die Erzeugung dieser Tra-
jektorie etwas aufwendiger. Diese
interessante Alternative (vgl. z.B. [15]) soll
hier aus Platzgründen nicht weiterverfolgt

werden.

Geschwindigkeitsbeschränkungen
Die Erscheinungen in Bild 4c lassen

sich auch so interpretieren, dass in der
ersten Beschleunigungsphase derart viel
kinetische Energie aufgebaut wird, dass

sie in der Bremsphase (wegen der
Anschläge) nicht mehr zeitgerecht auf null
abgebaut werden kann. Damit dies möglich

bleibt, müsste die Annäherungsgeschwindigkeit

an die Ruhelage auf den

Wert begrenzt bleiben, wie er in Bild 4b
(d.h. für r,=0.01) erreicht wird.

Regelungen mit Geschwindigkeitsbegrenzungen

Realisieren lässt sich das obige Konzept

direkt als Begrenzungsregelung
gemäss Bild lb [16]. Als Begrenzte y2W
wird die Geschwindigkeit x2(t) zurück-
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r1 0.1, r2up 0.0667
r1 0.01

Bild 8 Die Führungssprungantworten mit Geschwindigkeitsbegrenzung

auf konstanten Soll-Wert, für r, 0.01 (a) und r, 0.1 (b)

geführt. Als Begrenzungs-Soll-Wert ist
gemäss obiger Überlegung r2(r)=0,0667
gesetzt. Da die Übertragungsfunktion
G2(s)=Y2(s)/ U(s) erster Ordnung ist,
wird ein P-Regler gewählt (auf den

Integralanteil wird wiederum verzichtet), und
dessen Verstärkungsfaktor k2, wird der
Einfachheit halber gleich jenem der

Geschwindigkeitsrückführung im
Positionsregelkreis gesetzt, vergleiche
Gleichung (4):

k2. k2~62.8 OD

Die Simulation in Bild 8 zeigt, dass

nun auch für den Fall (c) das

Überschwingen verschwindet. Die Ausregelzeit

ist mit etwa 0,08 s noch recht gross.
Man kann sie verkürzen, wenn man
bedenkt, dass der gesetzte Begrenzungs-
Soll-Wert eigentlich nur am Ende beim
Übergang zur Positionsregelung so tief
sein muss, um das Überschwingen zu
unterbinden. Vorher darf dieser Soll-Wert
grösser gewählt werden. Ein möglicher
Ansatz ist, r2 proportional zum Regelfehler

e, zunehmen zu lassen. Bild 9a zeigt
die entsprechende Regelstruktur, wobei
die Koeffizienten im Ansatz für r2

r2{e\)=r2ü+kR-e{=G.050 + 3.33 e] (12)

hier durch Probieren festgelegt wurden.
Die Reglerverstärkungsfaktoren k2x

sowie kx und k2 bleiben unverändert.
Gemäss der Simulation in Bild 9b für
Fall (c) ist nun die Ausregelzeit auf etwa
0,04 s halbiert. Es tritt kein Überschwingen

auf.
Bild 9c zeigt schliesslich zum

Vergleich den zeitminimalen Übergang (in

ca. 0,032 s), wie er mit dem System in
Bild 9a bei kH=4.82 genau genug erreicht
werden könnte.

Der Vorteil der Begrenzungsregelung
gegenüber dieser zeitminimalen Steuerung

ist, dass sie deutlich weniger
empfindlich auf Parameterunsicherheiten
reagiert, denn gemäss Bild 9b liegt u(t) auf
der Bremstrajektorie innerhalb der
Anschläge, so dass noch Reserve für ein
allenfalls benötigtes stärkeres Bremsen
vorhanden ist.

Auch für die Begrenzungsregelungen
lässt sich die nichtlineare Stabilitätsanalyse

mit derselben Methodik durchführen
[16]. Man denkt sich dazu den Transien-
ten in Bild 9b in zwei Phasen zerlegt. In
der ersten ist der Begrenzungskreis aktiv.
Er bewegt das System aus der verschobenen

Ruhelage hin auf die geschwindig-
keitslimitierte Bewegung in der Nähe des

Begrenzungs-Soll-Wertes gemäss
Gleichung (12). Dabei stösst u2(t) an die
Stellanschläge. Es ist also zuerst nachzuweisen,

dass der erste Teil der Bewegung hin

zu dieser «Gleit-Ruhelage» stabil
verläuft.

In der zweiten Phase transferiert der
Minimalwert-Auswähler die Regelung
vom Begrenzungskreis auf den
Hauptregelkreis. Beim anschliessenden
Ausregelvorgang soll der Stellanschlag nicht
berührt werden (Bild 9b), was durch
entsprechende Dimensionierung von r2(t)
stets sichergestellt werden kann. Mithin
ist als zweites nachzuweisen, dass der
Übergang von der Gleit-Ruhelage längs
r2(f) zur End-Ruhelage bei rx(t)=0 stabil
verläuft.

Für die erste Phase ist zu betrachten:

1 s2TJ2
L-(s)

+ Gloffen sTJi + sTtk21 + kRkn

(13a)
und

A,"=-
u2(+0)-uhi k2]r2(+0) - uhi

(13b)

^21 (r20 + kR\xx (+°)|) ~

Bild 10a zeigt den grafischen
Stabilitätstest. Für kg=0 wird der nachweisbare

Anziehungsbereich unendlich gross.
Er schrumpft mit steigendem kR. Für die
hier gewählten Parameterwerte r20 und kR

kann die Stabilität bis r,(-t-0)=0.1 nachgewiesen

werden, jedoch nicht mehr für
«übergrosse» Auslenkungen r^+O^l.O.

Für die zweite Phase des Transienten
muss der Stabilitätstest mit dem
Minimalwert-Auswähler verwendet werden
[12], Allgemein ist dann zu betrachten:

- _
l + G2offe,

]+Gloff,n

chP(G2geschL) chP(G \ offen

chP(Gloffen chP(GlgescU

mit y2'=y2-kRyx

das heisst

/

(14)

(15)

1 + G2 offen
1 + k21

1

sT,
R

s2tj.;2 y
s2TxT2 +sTtk2l -kRk2

(16a)
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0 0.02 0.04 0.06

r1 =0.1

0.02 0.04

r1 =0.1

Bild 9 Das Regelsystem mit Geschwindigkeitsbegrenzung auf einen Soll-Wert, der mit steigendem
Positionsfehler linear zunimmt

a die Struktur (als Simulink-Modell)
b «abgestimmtes» Führungsverhalten
c praktisch zeitoptimales Verhalten zum Quervergleich

schliesslich

L - _
1+G2 offen

'
1 + G1 offen

(i/ß)2 +2(s/a)-(kRk2]/k]

((,/Q)+l)2 (>6b)

und

^
^-2ir20

2 ~
M,(+0) + M2(+0)-/t2]r20 (16c)

wobei einzusetzen ist

«i(+0)=&i.k1(+0)-£2*>(+0) und «-,(+0):=0
(17)

Der grafische Stabilitätstest Bild 10b

weist nach, dass diese zweite Phase ebenfalls

stabil verläuft, und zwar bis zur
übergrossen Auslenkung r](+0)=1.0.

Zusammenfassend ist damit das
Verhalten im ganzen spezifizierten Betriebsbereich

nachweisbar asymptotisch stabil.

Zusammenfassung

Ausgangspunkt war die Feststellung,
dass steigende Anforderungen an die
Regelgüte mit den neueren Methoden des

Entwurfs linearer Regelungen zwar
effizient erfüllt werden können, dass aber
dann auch stärkere Stellbewegungen
auftreten, welche häufiger das Stellorgan mit
seinen Anschlägen übersteuern. Zur
Meisterung dieser Situation gibt es zwei
unterschiedliche Entwurfswege, einen
deduktiven (Lösung des Optimierungsproblems)

und einen induktiven (Zwei-
Schritt-Entwurf) mittels Anti-Wind-up-
bzw. Override-Reglern. Er kann auch als

eine Entwurfsmethode der sukzessiven

Beseitigung von Engpässen, bzw. der
schrittweisen Verbesserung, bezeichnet
werden.

Der Nachteil dieses zweiten Weges ist
eine Einbusse an Optimalität. Die
Vorteile sind die Einfachheit - die
Funktionsweise lässt sich vergleichsweise

leicht erklären - und die grössere Un-
empfindlichkeit des Regelverlaufs gegenüber

kleinen Störauslenkungen,
Rauschen. nichtmodellierter Dynamik und

Abweichungen der Regel Streckenparameter

(Grund: keine reine Steuerung bis

an die Stellanschläge, sondern geschlossene

Regelkreise).
Diese Methode bewegt sich - wie das

Beispiel zeigt - stets im Spannungsfeld
zwischen Strukturmodifikationen, transi-
entem Verhalten und nichtlinearen
Stabilitätseigenschaften. Eine zentrale Rolle
spielen das Experiment, die Simulation
und ebenso die «guten Ideen» zur
Verbesserung des Verhaltens. Der Beitrag
der Theorie, der Analyse, ist beispielsweise,

die Äquivalenz unterschiedlicher
Strukturen zu untersuchen, für klare
Versuchsbedingungen zu sorgen, die erst

Quervergleiche ermöglichen, und das

Herausarbeiten der relevanten
Parameterkombinationen, um so Modifikationen
bzw. Versuchsreihen gezielter planen zu
können.

Die Methode wurde hier an einem
konkreten Fallbeispiel zweiter Ordnung
aus der Mechatronik dargestellt. Sie lässt
sich allgemein für verschiedenste
Prozesse auch höherer Ordnung anwenden
(z.B. [13, 17]), dann auch für Regelungen
mit Integralanteil, für den «stossfreien»
Hand/Automatik-Transfer, für abgetastete

Ausführungen, für Systeme mit
Anschlägen sowohl auf dem Stellhub wie
auch auf der Stellgeschwindigkeit, Mehr-
grössen-Regelungen und vieles mehr.
Interessant ist auch die Klärung des

genaueren Zusammenhanges mit dem
deduktiven Ansatz im Sinne des MPC.
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Bild 10 Grafischer Stabilitätstest für das System Bild 9b
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Systèmes de régulation
avec saturations de commande
et contraintes de sortie

Une performance plus poussée des systèmes de régulation est liée à une
augmentation des déflections de la variable de commande. Par conséquence les
saturations de l'organe de commande se feront sentir plus fréquemment aussi bien que
d'autres variables du processus atteindront leurs limites opérationnelles plus
souvent, c'est-à-dire des contraintes d'entrée et de sortie doivent être inclus dans le
modèle du processus. De ce fait la synthèse du régulateur est un problème non-
linéaire. Il y a deux méthodes générales de solution. La première consiste à appliquer

la commande optimale en utilisant le principe de Pontrjagine ou la méthode
de commande prédictive basée sur modèle. La deuxième approche est d'abord la
synthèse d'un régulateur linéaire pour les déflections restraintes, et ensuite d'une
augmentation par des rétroactions nonlinéaires simples afin d'améliorer la performance

pour les plus amples déflections. Ces structures dites d'anti-wind-up et
d'override control sont souvent utilisées en pratique, mais leur conception reste
intuitive et empirique. L'article ci-dessus démontre la conception systématique
d'une boucle de réglage de position. Le développement de méthodes plus
systématiques d'analyse et de synthèse est visé par un programme de recherche à

l'Institut d'Automatique à l'EPF Zurich.
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