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Nichtlineare Regelungen

Verbesserungen der Regelgute sind meist mit erhéhten Stellbewegungen verbunden.
Damit machen sich die stets vorhandenen Stellgréssenanschlage starker bemerkbar.
Ebenso kénnen betriebliche Grenzen von weiteren Variablen in der Anlage haufiger
tangiert werden. Dies bedeutet, dass die Regelaufgaben nichtlinear werden. Gel6st
werden diese einerseits durch Optimierung der Trajektorie im Sinne einer optimalen
Steuersequenz (Maximumprinzip bzw. Modellpradiktive Regelung) oder andererseits
durch Beibehalten der linearen Regelung fir kleine Auslenkungen und Hinzuflgen
weiterer Ruckfuhrungen, die bei grossen Auslenkungen aktiv werden. In der Praxis
wird der zweite Weg in der Form von Anti-Wind-up- bzw. Override-Reglern verbrei-
tet benutzt, wobei die Regelungen meist noch empirisch-intuitiv entworfen werden.
Im folgenden wird an einem Beispiel aus der Mechatronik gezeigt, wie sich solche

Regelungen systematisch entwerfen und analysieren lassen.

Regelungen mit Stellanschlagen
und Begrenzungen
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B Adolf Hermann Glattfelder

Steigende Anforderungen an die Re-
gelgiite von Regelkreisen bedeuten unter
anderem, dass bei sonst gleichen Bedin-
gungen stirkere und schnellere Stell-
bewegungen auftreten. Damit wird zum
einem das Stellorgan auch hiufiger vor-
tibergehend «iibersteuert», das heisst, es
werden die stets vorhandenen Sittigun-
gen haufiger fiihlbar. Zum anderen wer-
den infolge der stirkeren Stellbewegun-
gen oft Ausgangsgrossen der Regel-
strecke ihre betrieblichen Grenzwerte
iiberschreiten. Typische Beispiele sind zu
grosse Temperaturdifferenzen beim ra-
schen Aufwirmen dickwandiger Bau-
teile, Uberhitzung der Wicklungen hoch-
dynamischer Servoantriebe, zu hohe Ge-
schwindigkeiten bzw. Drehzahlen bei
Positionsregelungen usw. Es treten also
bei der linearen Regelung, wie sie fiir
kleine Auslenkungen ausgelegt wurde,

im Betrieb bei grosseren Auslenkungen
Beschrinkungen der Bewegung auf. Man
spricht bei der ersten obigen Gruppe von
Input Constraints, bei der zweiten von
Output Constraints (Bild 1).

Fiir den Entwurf solcher Regelungen
gibt es im wesentlichen zwei Gruppen
von Methoden. Die erste basiert auf der
Theorie optimaler Systeme mit Beschriin-
kungen und damit auf dem Maximum-
prinzip, zum Beispiel [1,2]. Die klassi-
sche Losung fiihrt auf eine optimale
Steuerfolge wu*(¢), die dann in einem
zweiten Schritt aus dem momentanen Be-
wegungszustand x () abzuleiten ist (sog.
Syntheseaufgabe). Bei schnelligkeitsopti-
malen Systemen entstehen so die Bang-
Bang-Regler mit ihren erzeugenden
Schaltkurven bzw. Schaltflichen im
Zustandsraum. Im letzten Jahrzehnt
wurden numerische Verfahren entwickelt,
die auf der Online-Optimierung der
Trajektorie unter Einbezug der Beschriin-
kungen beruhen. Sie haben mittlerweile
in der praktischen Anwendung unter der
Bezeichnung Model Predictive Control
eine breite Akzeptanz gefunden, zum
Beispiel [3].

Bei der zweiten Gruppe von Entwurfs-
verfahren (z.B. [4] und dortige Referen-
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Sessess

Regelungstechnik
Bild 1 Eingrdssen-
z : Regelstrecken mit
% a Stellanschlagen (Input
Constraints)
b Begrenzungen weiterer
u o y. Ausgangsgrossen
i Z - G,(5) - (Output Constraints)
@ z — 4 VA
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zen) legt man in einem ersten Schritt eine
lineare Regelung aus. Sie soll fiir kleine
Auslenkungen um den Auslegungs-Be-
triebszustand die geforderte Regelgiite
erbringen. Dann beniitzt man diese Rege-
lung einfach fiir grossere Auslenkungen
weiter, trotz transientem Beriihren der
Anschldge. Dabei wird sich das Regel-
verhalten verschlechtern, unter Umstin-
den bis zur Instabilitit. Bei solch unge-
niigendem Regelverhalten ergiinzt man in
einem zweiten Schritt die lineare Regel-
struktur mit intuitiven Zusitzen derart,
dass man von Graceful Degradation spre-
chen kann.

Damit stellt sich die Frage, ob die End-
Ruhelage der Regelung asymptotisch sta-
bil ist, wie gross der Anziehungsbereich
ist und auch wie gross der Verlust an Op-
timalitit ausfdllt. Im folgenden soll eine
Einfiihrung in diese zweite Gruppe von
Verfahren gegeben werden. Zunichst
werden die Aufgabenstellung herausgear-
beitet und die Losungskonzepte darge-
stellt. Dann wird der Entwurfsgang an
einem Fallbeispiel aus der Mechatronik
tiber drei Etappen hinweg gezeigt. Beson-
dere Bedeutung wird dabei der nicht-
linearen Stabilititsanalyse zukommen.

Die Aufgabenstellung
und die Losungsansatze

Im Rahmen dieser Einfithrung be-
schrinken wir uns auf Eingrossen-Rege-
lungen. Wir gehen auf die Elemente
Regelstrecke, Regler, Nichtlinearitit und
Auslenkungsmodell ein.

Die Regelstrecke

Wir gehen von einem linearen, zeitin-
varianten Modell des Stellverhaltens aus,
das fiir kleine Auslenkungen um den Aus-
legungs-Betriebspunkt der Regelstrecke
giiltig ist. Es kann demgemiiss durch die
Ubertragungsfunktion G,(s) dargestellt
werden. Dieses Modell wird im folgen-
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den vereinfachend im ganzen ausgefah-
renen Betriebsbereich weiterverwendet,
auch wenn dieses gegen dessen Riinder
hin ungenau sein sollte. Die Regelstrecke
muss selbst nicht asymptotisch stabil
sein; sie darf also einen oder mehrere
Pole auf der Imaginidrachse oder gar in
der rechten Halbebene haben. Alles an-
dere wiirde die praktische Anwendbarkeit
des Entwurfsganges unbrauchbar ein-
schrinken.

Regler

Wie bereits erwiihnt, wird ein linearer
Regler eingesetzt, der im Hinblick auf
den Schmalbereichsbetrieb um den Aus-
legungspunkt entworfen wird. Die Wahl
der Entwurfsmethode ist frei; sie kann
sich also ganz nach der Spezifikation des
Schmalbereichsbetriebs richten. Dabei
soll jedoch das Regelgiitepotential dieser

Sinne ausgeschopft werden, dass zur Er-
zielung eines akzeptablen Weitbereichs-
verhaltens keine Apriori-Abstriche an der
Regelgiite gemacht werden. Das Ergebnis
dieses Entwurfs ist eine Regler-Ubertra-
gungsfunktion Gy, (s). Dabei muss Gy, (s)
selbst nicht asymptotisch stabil sein und
darf damit insbesondere auch Integral-
anteile aufweisen.

Das Auslenkungsmodell

Im Sinne der klassischen Regelungs-
technik und der Anwendungsniihe gehen
wir von Soll-Wert-Spriingen aus. Im Ge-
gensatz zu linearen Regelungen wird hier
die Sprunghohe r\(7) wichtig. Sie sei
«klein», wenn u,(¢) die Anschlige gerade
nicht beriihrt, und «gross» entspreche
dem im Betrieb maximal vorkommenden
Wert. Damit ist auch gleich der erforder-
liche Anziehungsbereich festgelegt. Er ist
also stets beschrinkt, und ein Stabilitiits-
nachweis «im Ganzen» ist nicht zwin-
gend notig.

Bei der nichtlinearen Stabilititstheorie
(vgl. z.B. [5]) steht das Eigenverhalten
hin zur Ruhelage im Nullpunkt im Vor-
dergrund. Wir stellen diesen Zusammen-
hang her, indem wir mittels einer Koordi-
natentransformation die Endruhelage in
den Nullpunkt schieben. Dann betrachten
wir die Sprungantwort als von einer ent-
sprechend verschobenen Anfangsruhe-
lage ausgehend. Und diese Anfangsruhe-
lage konnen wir uns erreicht denken
durch das Aufbringen der entsprechenden
Anfangsbedingungen im Zeitpunkt des
Soll-Wert-Sprunges bei =0. Somit wird
anstelle der Fiihrungssprungantwort das

Schmalbereichsregelung voll in dem  dquivalente Eigenverhalten betrachtet.
@ aw-fb 3 L&
(s !
k- i >&
u, bou
i 5 | Y1
Gg(s) i _.__>i G, (s) -
 SEEReET S NS e :
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=)= Gg(s) - : Y
r,up ._._._1._._! - >
I u i b
1 + 9. 1
) Gpg (8) = > G,(s) -
Bild2 Regelkonzepte 5 1)
a  Anti-Wind-up
Feedback (fur Input
Constraints)
b Override Control (fir
Output Constraints)
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Ersatz 1m2 x20 1T x10 x1
Totzeit Tt
P 4
X2
Bild 3  Die Positionsregelung (als Simulink-Modell)
Die Nichtlinearitit Losungsansiitze

Fiir den Fall der Stellanschlige
(Input Constraints) sind eine Reihe
prizisierender Annahmen zu treffen
(Bild 1a), die aus der Sicht der prakti-
schen Anwendung wiederum moglichst
wenig einschrinkend sein diirfen. Wir
gehen davon aus, dass Anschlige nur
im Stellorgan auftreten und dass sonst
nirgends weitere Nichtlinearitdten vor-
kommen. Weiter sind nur Hubanschlidge
und keine zusitzlichen Geschwindig-
keitsanschlige vorhanden, so wie dies
Bild la vorwegnimmt. Die Huban-
schldge sind zeitinvariant. Die Steigung
der Kennlinie dazwischen ist konstant
gleich eins.

Weiter setzen wir voraus, dass das
Stellsignal u,(7) in der Anfangs-Ruhelage
(gemiiss Abschnitt «Das Auslenkungs-
modell») wie in der End-Ruhelage im In-
neren des Arbeitsbereiches des Stellorga-
nes liegt, und zwar in einem endlichen
Abstand von den Anschldgen, derart dass
eine Schmalbereichsregelung um diese
beiden Betriebspunkte moglich ist. Mit
anderen Worten sollen die Anschlige nur
fiir grossere Auslenkungen und transient
fiihlbar werden.

Im Falle der Begrenzung (Output Con-
straints) beschrinken wir uns auf den Fall
einer Ausgangsgrosse (Bild 1b)

Y210 £ Y2(1) S Yo i

mit den Betriebsgrenzwerten y;i: Yoni-
Diese sind zeitinvariant und so gelegt,
dass y, sowohl fiir die Anfangs- wie fiir
die End-Ruhelage im Inneren dieses In-
tervalles liegt und in endlichem Abstand
von den Grenzwerten. Damit soll wie-
derum eine lineare Schmalbereichsrege-
lung fiir hinreichend kleine Auslenkun-
gen moglich sein. Weiter ist die Uber-
tragung u—y, linear und zeitinvariant,
das heisst beschreibbar durch G,(s).
Schliesslich sind keine weiteren Nicht-
linearititen (Hysterese, Anschlige usw.)
fiihlbar.
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Fiir den Fall der Stellanschlige hat
sich der sogenannte Anti-Wind-up-An-
satz (Bild 2a) durchgesetzt. Er ist eine
Verallgemeinerung des Anti-Reset-Wind-
up(ARW)-Zusatzes fiir den PI-Regler,
der das Weglaufen des Integralanteiles
bei Beriihren des Stellanschlages ver-
hindert und ihn zudem auf einen giin-
stigen Anfangswert beim Ubergang in
den Schmalbereich setzt. Auf diesem
Gebiet ist eine rege internationale
Forschungstitigkeit zu beobachten (z.B.
[4,6,7,8,9]).

In gleicher Weise stammt der Losungs-
ansatz fiir den Fall der Begrenzung (Bild
2b) ebenfalls aus der Praxis [10, 11, 12].
Man spricht von Begrenzungsregelung
oder Override Control. Dabei wird in
einem zweiten linearen Regler Gpg,(s)
eine Stellgrosse u,(r) derart erzeugt, dass
yo(1) dem «bedrohten» Grenzwert y,;
entlanglduft. Weiter erfolgt das «Um-
schalten» zwischen u,(¢) und u,(1) «stoss-
frei» iiber einen Minimalwertauswihler
oder (dquivalent) durch Positionierung
des oberen Anschlages entsprechend
u5(1). Begrenzungen nach unten Yy,
(in Bild 2b nicht gezeichnet) werden
gleichermassen implementiert und lau-
fen dann iiber einen Maximalwertaus-
wiihler [12].

Interessanterweise  werden  solche
Schaltungen in der Praxis gerne beniitzt;
die Forschung hat sich hingegen erst
wenig damit beschiftigt.

Ein Fallbeispiel

Es geht um die Positionsregelung einer
reibungsfrei gelagerten Punktmasse, bei
der die Stellkraft sehr verzogerungsarm
erzeugt werden soll und bei der schnelle,
prizise Sensoren den Ort und die Ge-
schwindigkeit erfassen. Zugrunde liegt
eine Werkzeugmaschinenachse fiir die
Hochgeschwindigkeitszerspanung  [13,
14]. Als Antrieb dient ein Linearmotor,

Nichtlineare Regelungeﬁ'

der eine Beschleunigungsfihigkeit bis
50 m/s? bereitstellt. Diese soll durch die
Regelung auch wirklich «ausgefahren»
werden. Gefordert wird eine dimen-
sionslose Reglerverstirkung ;=500 und
eine iiberschwingfreie Fiihrungssprung-
antwort fiir ein dimensionsbefreites
r1<0.10.

Die Regelstrecke
Bild 3 zeigt das lineare Modell der

Regelstrecke in  dimensionsbefreiter
Form
1 g
G(s)=———e"
( ) SZT;Y‘Z (]a)
mit den Daten:
]_S_R:———-———O.lom=50'10_3s (lb)
v  2.0mls
und
I, = mgvy _ 200kg 2m/s _ 50.10s
F 8kN
R (lc)
sowie
T,=0.5-107% (1d)

Mit 7, sind die restlichen Verzogerun-
gen von Stellantrieb, Regelalgorithmus
und Sensoren nach oben abgeschiitzt.

Fiir hinreichend tiefe Frequenzen kann
die Stelliibertragungsfunktion der Regel-
strecke rational gebrochen approximiert
werden durch:

Gl

I @

Weiter gilt fiir den Arbeitsbereich bzw.
die Anschlige des Stellorgans:

—100% <u(t)<+100%
—8 kN<F (1) <+8kN (2b)
Der Regler

Bild 3 zeigt die gewihlte Reglerstruk-
tur; es handelt sich um einen klassischen
P-Regler fiir die Position (auf einen I-An-
teil wurde bewusst verzichtet, wie es bei
solchen Antrieben giingige Praxis ist) mit
einer P-Aufschaltung der Geschwindig-
keit. Die Reglereinstellwerte werden
mittels Polfestlegung bestimmt. Dazu
wird die Approximation G,(s) nach Glei-
chung (2) verwendet.

Die charakteristische Gleichung des
geschlossenen Kreises lautet

14Gp, (s)=1+G, -Gy,
k,sT, +k, _0 (3a)
szT, T,
oder
0=5>T,To+sT ky+k, (3b)

was zu vergleichen ist mit

17



ﬁegelungstechnik

Loges:

Bild 4 Fiihrungssprung-

antworten des
Regelkreises mit
Stellanschlagen

mit r;=0.001 (a),
r;=0.01(b),
r=0.1(c

0 0.02 0.04
r1 =0.001

$2452Q+Q%=0 (3¢)
mit  als Bandbreite des geschlossenen
Kreises.
Durch Koeffizientenvergleich ergibt
sich
& =QT\T, (4a)
k,=2QT, (4b)
Dabei ist Q in gentigendem Abstand

von der kritischen Kreisfrequenz oy in-
folge der Totzeit T, zu wiihlen. Aus

b
OL =3 (52)
das heisst
T

ergibt sich bei einem Abstand Faktor 5:
T
Ky =20 (5¢)

eingesetzt in die Bestimmungsgleichun-
gen fiir die Reglereinstellwerte

@

a1 1
,‘ A [0 G) = €™ 5 o UeysT, 4k —l

¢

Bild5 Zur Stabilitatsuntersuchung des Regelkreises
mit Stellanschlagen

a die direkt entstehende kanonische Form (nicht
geeignet)

b die Umformung der Nichtlinearitat

¢ die neue, nunmehr geeignete kanonische Form

k,=(10m)*=1000
und

k,=2(10m)=62.8 (5d)

Mit anderen Worten bleibt die Sprung-
antwort linear bis r,=0.001, das heisst bis
auf 1% der spezifizierten Sprunghdhe.

Die Fiihrungssprungantworten
Bild 4 zeigt das transiente Verhalten
fiir drei Fiihrungssprunghdhen:

r;=0.001 (a), r,=0.01 (b), r;=0.1 (¢)

Im Schmalbereichfall (a) ergibt sich
eine Ausregelzeit von rund 0,01 s. Im Fall
(b) entspricht das Antwortverhalten nahe-
zu dem zeitminimalen Ubergang (in
ca. 0,01 s) mit einem leichten Uber-
schwingen. Dieses verschwindet, wenn
die Soll-Wert-Sprunghohe etwas verklei-
nert wird (r;,=0.009). Fiir Fall (c) ist das
Verhalten véllig unbrauchbar.

Die Stabilititsanalyse

Zu untersuchen ist die dquivalente
Eigenbewegung hin zur Ruhelage im
Nullpunkt: Ist sie nachweisbar asympto-
tisch stabil? Und ist der Anzie-
hungsbereich hinreichend gross? Dazu
haben sich die sogennanten Sektor-
Kriterien (Kreis- und Popov-Kriterium)
als zweckmiissig erwiesen [5]. Wir bauen
hier auf dem Kreistest auf, der etwas ein-
facher zu handhaben ist, aber auch etwas
konservativere Aussagen als der Popov-
Test macht.

Als erstes muss der Regelkreis in
«kanonischer Form» vorliegen, was
durch einfaches Umzeichnen geschieht,
Bild 5a, mit

G(5)=—G|af]'m(5)=—GR|(S)'Gul(S)
und hier wie in Gleichung (3)
kysT, +k, . k,sT, +k

Gi(s)= e =
s*ET, s*T, T, (6b)

(6a)

Weiter ist der Kreistest nur dann an-
wendbar, wenn der lineare Systemteil in
dieser kanonischen Form asymptotisch
stabil ist. Dies ist im allgemeinen nicht
der Fall (vgl. Abschnitte «Die Regel-
strecke» und «Der Regler»), so auch hier
nicht. Man kann dies aber durch eine
Lineartransformation erreichen. Dazu
wird die Sittigungskennlinie ersetzt durch
eine Parallelschaltung gemiss Bild 5b
[12]. Entsprechend modifiziert sich der

lineare Systemteil (Bild 5c¢):

G, .
ug:——iﬂ1—=40+—_i_—
1+ G, 1+G

chP(G, , )/fm)
chP(G, ge.\'chl.) (7

1 offen

=-10+

wobei c¢hP fiir das charakteristische
(Nenner-)Polynom der entsprechenden
Ubertragung steht. Hier ist nun L(s) auf-
grund des Entwurfs der linearen Schmal-
bereichsregelung sicher voraussetzungs-
konform asymptotisch stabil.

In unserem Fallbeispiel wird:

2
Ls)=-10+——> 00
s°T,T, + sTk, + k
2 (8)
S 1, £ . —
(s+Q)

Der nichtlineare Systemteil (Bild 6)
besteht aus der Totzonen-Kennlinie mit
Flankensteigung eins ausserhalb der An-
schlagswerte. Der aktive Teil dieser
Kennlinie ist eingeschlossen zwischen
der unteren Sektorgrenze mit Steigung
a=0 also (1/a)= o . Damit degeneriert der
Kreis, aufgespannt durch die Punkte
—(1/a)+j0 und —(1/b)+j0, zur Vertikalen
mit dem Fusspunkt bei —(1/b).

Weiter berechnet sich die Steigung b
der oberen Sektorgrenze gemiss Bild 6
zu:

Bulletin ASE/UCS 17/98



Bild6 Die neue Sektor-Nichtlinearitat

b=t "W (9a)
Uy
und daraus
A:l: % = i
b ul - uhi ul uht
~10+—2_=10+—n_  Ob)
1, (+0) kyx, (+0)
=10 Ui

+
Q°TT,x,(+0)

Fiir den grafischen Stabilititstest [5,
12] kann man weiter vereinfachend bei
beiden Subsystemen den Summanden
—1.0 weglassen, so dass:

s? o (s/ Q)?

L = =
)= 107 G/

und
- Uy

= O’TT,x,(+0)

(10)

Man ersieht, dass in diesem speziellen
Fall die Nyquist-Kontur (Ortskurve)
L™(jo) unabhingig von der Wahl von Q
ist — es dndert sich nidmlich nur die Fre-
quenzkotierung — und dass sich die Test-
Vertikale bei —A~ wie folgt verschiebt:
® nach links (in Richtung mehr Stabi-
litiitsreserve) mit steigendem Arbeitsbe-
reich des Stellorgans uy;
®nach rechts (in Richtung weniger
Stabilititsreserve) mit steigender rela-
tiver Polverschiebung (Q7,)* (d.h. stei-
gender spezifizierter Regelgiite) und
auch mit steigender Anfangsauslenkung
X(+0) (d.h. steigender Soll-Wert-Sprung-
héhe 7).

Bild 7 zeigt den grafischen Stabilitits-
lest, erzeugt mit einigen wenigen Zeilen
Matlab. Fiir den Fall (a) in Bild 4 liegt
—A” bei —e. Es entsteht folglich sicher
kein Schnittpunkt, und das Schmalbe-
reichsverhalten ist asymptotisch stabil.
Im Fall (b) treten knapp zwei Schnitt-
punkte auf. Deshalb ist asymptotische
Stabilitit nicht mehr nachweisbar. Redu-
ziert man jedoch die Sprunghthe auf
1=0.009, dann ergeben sich gerade keine
Schnittpunkte mehr, und das Eigenver-
halten ist noch nachweisbar asymptotisch
stabil.
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Im Fall (c) hingegen reicht die Ny-
quist-Kontur weit nach links iiber die
Testgerade hinaus. Auch hier ist kein Sta-
bilititsnachweis mehr moglich. Da der
Test konservativ ist, kann nicht der
Schluss gezogen werden, dass sich der
geschlossene Kreis nun instabil verhalte,
sondern es ist einfach «keine Aussage»
mehr moglich. Erfahrungsgemiss ist je-
doch in einer solchen geometrischen
Situation mindestens mit viel zu schwa-
cher Ddmpfung zu rechnen, so wie in
Bild 4c gezeigt.

Abhilfemassnahmen

Es gibt hierzu eine Vielzahl von An-
sitzen. Im folgenden sind drei mogliche
Varianten herausgegriffen.

Reduktion von Q

Das Ziel dieser Massnahme ist, den
nachweisbaren Anziehungsbereich auf
den benotigten Betriebswert zu bringen.
Dazu muss die Testgerade nach links
geschoben  werden, bis sich fiir
den «Gross»-Fall r;=0.1 gerade keine
Schnittpunkte mehr ergeben. Als einziger
freier Parameter in der Liste zu Glei-
chung (10) bleibt dann noch der Wert fiir
Q [7]; er miisste gemiiss Gleichung (10)
um einen Faktor von ungefihr (10)%
reduziert werden. Die (hier nicht ge-
zeigte) Simulation der Fiihrungssprung-
antwort zeigt, dass das Regelverhalten
(Bild 4c) jetzt dem akzeptablen Ablauf
nach Bild 4b mit einer Ausregelzeit von
etwa 0,04 s vergleichbar wird. Dadurch
reduziert sich allerdings auch die Steifig-
keit (Storunterdriickung) der Schmal-
bereichsregelung um einen Faktor von
ungefihr 10. Diese Massnahme ist zwar
sehr einfach, aber nicht konform mit den
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eingangs gemachten Vorgaben. Deshalb
wird sie hier nicht weiterverfolgt.

Reduktion der transienten
Auslenkungen

Der Stabilititstest zeigt, dass die An-
fangsphase der Fiihrungssprungantwort
massgebend ist, weil der Regelfehler dort
am grossten ist. Mit anderen Worten
tiberfordert das Anlegen des Sprunges bei
weitem die Moglichkeit der Anlage, die-
sem Sprung zu folgen. Wenn man statt
dessen einen «verniinftigeren» Soll-Wert-
Verlauf r(z) vorgibt, der sich weniger weit
von der maximal realisierbaren Trajekto-
rie y(7) entfernt, dann wird auch der ge-
forderte Anziehungsbereich nachweisbar.
Allerdings ist die Erzeugung dieser Tra-
jektorie etwas aufwendiger. Diese inter-
essante Alternative (vgl. z.B. [15]) soll
hier aus Platzgriinden nicht weiterver-
folgt werden.

Geschwindigkeitsbeschrinkungen

Die Erscheinungen in Bild 4c lassen
sich auch so interpretieren, dass in der
ersten Beschleunigungsphase derart viel
kinetische Energie aufgebaut wird, dass
sie in der Bremsphase (wegen der An-
schlige) nicht mehr zeitgerecht auf null
abgebaut werden kann. Damit dies mog-
lich bleibt, miisste die Anniherungsge-
schwindigkeit an die Ruhelage auf den
Wert begrenzt bleiben, wie er in Bild 4b
(d.h. fiir r;=0.01) erreicht wird.

Regelungen mit Geschwindigkeits-
begrenzungen

Realisieren ldsst sich das obige Kon-
zept direkt als Begrenzungsregelung
gemiss Bild 1b [16]. Als Begrenzte y,(7)
wird die Geschwindigkeit x,(#) zuriick-

Kreistest

0.4+

0.3t

0.2.. & 3

0.1}

0

Bild 7 Der grafische
Stabilitatstest fiir die o i :
drei Falle (a), (b) und () e 000

in Bild 4
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Bild 8 Die Fiihrungssprungantworten mit Geschwindigkeitshegrenzung
auf konstanten Soll-Wert, fiir r,= 0.01 (a) und r;= 0.1 (b)

gefiihrt. Als Begrenzungs-Soll-Wert ist
gemiiss obiger Uberlegung r,(1)=0,0667
gesetzt. Da die Ubertragungsfunktion
G,(s)=Y5(s)/U(s) erster Ordnung ist,
wird ein P-Regler gewihlt (auf den Inte-
gralanteil wird wiederum verzichtet), und
dessen Verstirkungsfaktor k,, wird der
Einfachheit halber gleich jenem der
Geschwindigkeitsriickfiihrung im Posi-
tionsregelkreis gesetzt, vergleiche Glei-
chung (4):

k2]:k2z62.8 (11)

Die Simulation in Bild 8 zeigt, dass
nun auch fiir den Fall (¢) das Uber-
schwingen verschwindet. Die Ausregel-
zeit ist mit etwa 0,08 s noch recht gross.
Man kann sie verkiirzen, wenn man be-
denkt, dass der gesetzte Begrenzungs-
Soll-Wert eigentlich nur am Ende beim
Ubergang zur Positionsregelung so tief
sein muss, um das Uberschwingen zu
unterbinden. Vorher darf dieser Soll-Wert
grosser gewihlt werden. Ein mdglicher
Ansatz ist, r, proportional zum Regelfeh-
ler ¢, zunehmen zu lassen. Bild 9a zeigt
die entsprechende Regelstruktur, wobei
die Koeffizienten im Ansatz fiir r,

ry(e))=rygtkg-¢,=0.050+3.33 ¢, (12)

hier durch Probieren festgelegt wurden.
Die Reglerverstirkungsfaktoren &,
sowie k, und k, bleiben unverindert.
Gemiss der Simulation in Bild 9b fiir
Fall (¢) ist nun die Ausregelzeit auf etwa
0,04 s halbiert. Es tritt kein Uberschwin-
gen auf.

Bild 9¢ zeigt schliesslich zum Ver-
gleich den zeitminimalen Ubergang (in

20

ca. 0,032 s), wie er mit dem System in
Bild 9a bei k;=4.82 genau genug erreicht
werden konnte.

Der Vorteil der Begrenzungsregelung
gegeniiber dieser zeitminimalen Steue-
rung ist, dass sie deutlich weniger emp-
findlich auf Parameterunsicherheiten rea-
giert, denn gemiss Bild 9b liegt u(r) auf
der Bremstrajektorie innerhalb der An-
schlige, so dass noch Reserve fiir ein al-
lenfalls benotigtes stirkeres Bremsen
vorhanden ist.

Auch fiir die Begrenzungsregelungen
lasst sich die nichtlineare Stabilititsana-
lyse mit derselben Methodik durchfiihren
[16]. Man denkt sich dazu den Transien-
ten in Bild 9b in zwei Phasen zerlegt. In
der ersten ist der Begrenzungskreis aktiv.
Er bewegt das System aus der verschobe-
nen Ruhelage hin auf die geschwindig-
keitslimitierte Bewegung in der Nihe des
Begrenzungs-Soll-Wertes gemiss Glei-
chung (12). Dabei stosst u,(7) an die Stell-
anschlige. Es ist also zuerst nachzuwei-
sen, dass der erste Teil der Bewegung hin
zu dieser «Gleit-Ruhelage» stabil ver-
lduft.

In der zweiten Phase transferiert der
Minimalwert-Auswiihler die Regelung
vom Begrenzungskreis auf den Haupt-
regelkreis. Beim anschliessenden Ausre-
gelvorgang soll der Stellanschlag nicht
beriihrt werden (Bild 9b), was durch ent-
sprechende Dimensionierung von r,(f)
stets sichergestellt werden kann. Mithin
ist als zweites nachzuweisen, dass der
Ubergang von der Gleit-Ruhelage lings
(1) zur End-Ruhelage bei r (7)=0 stabil
verléduft.

Fiir die erste Phase ist zu betrachten:

- s'TT,

T STT, + 5Tk, +kgk,y,
(13a)

L(s)=17G

20ffen
und
-_ Uy = Uy,

A = =
T u,(F0)—u,, ki (+0) —u

uhi

hi (l3b)

ey (g + kg, (+0)) 1,

Bild 10a zeigt den grafischen Stabi-
litidtstest. Fiir kg=0 wird der nachweis-
bare Anziehungsbereich unendlich gross.
Er schrumpft mit steigendem k. Fiir die
hier gewiihlten Parameterwerte r,, und kg
kann die Stabilitit bis r(+0)=0.1 nachge-
wiesen werden, jedoch nicht mehr fiir
«iibergrosse» Auslenkungen r,(+0)=1.0.

Fiir die zweite Phase des Transienten
muss der Stabilititstest mit dem Mi-
nimalwert-Auswiihler verwendet werden
[12]. Allgemein ist dann zu betrachten:

L= 1+G, 5,
1+ Gy pn

_ PO, ey ), BP(C ) 14)

ChP(G2offen) ChP(Glge.u'hl.)
mit y,'=y,—kgy, (15)
das heisst
1+G20m," = 1+k21(——1——kk—21—]

ST, ST,

STT, + sTik,, — kgk,,

= s’TT, (16a)

Bulletin ASE/UCS 17/98



g MinSel - =

> 2]
u
o] DRy tic>p sk vsh—>»{ 1]

lob hib

Ersatz- 1/T2 x20 1m a5 a

Totzeit Tt

0 0.02 0.04 0.06
ri=0:1
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a  die Struktur (als Simulink-Modell)
b «abgestimmtes» Fiihrungsverhalten

¢ praktisch zeitoptimales Verhalten zum Quervergleich

schliesslich
I4G, ..
L~ =—
1+G

1 offen
(5/Q)" +2(s/Q) = (kpksy /K, )
((s2)+1)° (1Eb]

und
ky\ry

T (+0) + 1, (+0) — ky 1y

s

(16c)

wobei einzusetzen ist
1y (+0)=k x,(+0) —k>x»(+0) und u,(+0):=0
(17)

Der grafische Stabilititstest Bild 10b
weist nach, dass diese zweite Phase eben-
falls stabil verlduft, und zwar bis zur
libergrossen Auslenkung r,(+0)=1.0.

Zusammenfassend ist damit das Ver-
halten im ganzen spezifizierten Betriebs-
bereich nachweisbar asymptotisch stabil.
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Zusammenfassung

Ausgangspunkt war die Feststellung,
dass steigende Anforderungen an die Re-
gelgiite mit den neueren Methoden des
Entwurfs linearer Regelungen zwar effi-
zient erfiillt werden konnen, dass aber
dann auch stirkere Stellbewegungen auf-
treten, welche hiufiger das Stellorgan mit
seinen Anschlidgen ibersteuern. Zur
Meisterung dieser Situation gibt es zwei
unterschiedliche Entwurfswege, einen
deduktiven (Losung des Optimierungs-
problems) und einen induktiven (Zwei-
Schritt-Entwurf) mittels Anti-Wind-up-
bzw. Override-Reglern. Er kann auch als
eine Entwurfsmethode der sukzessiven
Beseitigung von Engpissen, bzw. der
schrittweisen Verbesserung, bezeichnet
werden.

Der Nachteil dieses zweiten Weges ist
eine Einbusse an Optimalitit. Die Vor-
teile sind die Einfachheit — die Funk-
tionsweise ldsst sich vergleichsweise

Nichtlineare Regelungeh‘

leicht erklidren — und die grossere Un-
empfindlichkeit des Regelverlaufs gegen-
tiber kleinen Storauslenkungen, Rau-
schen, nichtmodellierter Dynamik und
Abweichungen der Regelstreckenpara-
meter (Grund: keine reine Steuerung bis
an die Stellanschlige, sondern geschlos-
sene Regelkreise).

Diese Methode bewegt sich — wie das
Beispiel zeigt — stets im Spannungsfeld
zwischen Strukturmodifikationen, transi-
entem Verhalten und nichtlinearen Stabi-
litdtseigenschaften. Eine zentrale Rolle
spielen das Experiment, die Simulation
und ebenso die «guten Ideen» zur Ver-
besserung des Verhaltens. Der Beitrag
der Theorie, der Analyse, ist beispiels-
weise, die Aquivalenz unterschiedlicher
Strukturen zu untersuchen, fiir klare Ver-
suchsbedingungen zu sorgen, die erst
Quervergleiche ermdglichen, und das
Herausarbeiten der relevanten Parameter-
kombinationen, um so Modifikationen
bzw. Versuchsreihen gezielter planen zu
konnen.

Die Methode wurde hier an einem
konkreten Fallbeispiel zweiter Ordnung
aus der Mechatronik dargestellt. Sie ldsst
sich allgemein fiir verschiedenste Pro-
zesse auch hoherer Ordnung anwenden
(z.B. [13, 17]), dann auch fiir Regelungen
mit Integralanteil, fiir den «stossfreien»
Hand/Automatik-Transfer, fiir abgeta-
stete Ausfiihrungen, fiir Systeme mit An-
schligen sowohl auf dem Stellhub wie
auch auf der Stellgeschwindigkeit, Mehr-
grossen-Regelungen und vieles mehr.
Interessant ist auch die Klirung des
genaueren Zusammenhanges mit dem
deduktiven Ansatz im Sinne des MPC.
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b fir die zweite Phase zwischen Gleit- und End-Ruhelage

Systémes de régulation
avec saturations de commande
et contraintes de sortie

Une performance plus poussée des systemes de régulation est liée a une aug-
mentation des déflections de la variable de commande. Par conséquence les satu-
rations de I’organe de commande se feront sentir plus frequemment aussi bien que
d’autres variables du processus atteindront leurs limites opérationnelles plus sou-
vent, ¢’est-a-dire des contraintes d’entrée et de sortie doivent étre inclus dans le
modele du processus. De ce fait la synthese du régulateur est un probléme non-
linéaire. Il y a deux méthodes générales de solution. La premiére consiste a appli-
quer la commande optimale en utilisant le principe de Pontrjagine ou la méthode
de commande prédictive basée sur modele. La deuxieme approche est d’abord la
synthése d’un régulateur linéaire pour les déflections restraintes, et ensuite d’une
augmentation par des rétroactions nonlinéaires simples afin d’améliorer la perfor-
mance pour les plus amples déflections. Ces structures dites d’anti-wind-up et
d’override control sont souvent utilisées en pratique, mais leur conception reste
intuitive et empirique. L’article ci-dessus démontre la conception systématique
d’une boucle de réglage de position. Le développement de méthodes plus sys-
tématiques d’analyse et de synthése est visé par un programme de recherche a
I’Institut d’ Automatique a I'EPF Zurich.
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