
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 89 (1998)

Heft: 17

Artikel: Komponentensoftware : oder wie die Informatik doch noch zu einer
Ingenieurdisziplin wird

Autor: Pfister, Cuno

DOI: https://doi.org/10.5169/seals-902099

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-902099
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Informatik

Softwarekomponenten sollten sich ohne Aufwand (Plug & Play) zu robusten und
effizienten Anwendungen kombinieren lassen. Auch wenn die heutige Situation von
einem solchen Idealzustand noch weit entfernt ist, treibt der Kostendruck die
Softwareentwicklung in diese Richtung. Der vorliegende Beitrag befasst sich - ausgehend
vom derzeitigen Entwicklungsstand - mit den Anforderungen, welche an den
Entwickler von Softwarekomponenten gestellt werden, mit den Standardisierungsanstrengungen

der Softwarehäuser, mit der Schnittstellenproblematik sowie mit der
wichtigen Rolle der Programmiersprachen und des Softwaredesigns. Der Autor weist
zudem auf die intakten Chancen der Schweizer Komponentenindustrie hin, welche
dank Erfahrung und Anwendungswissen in verschiedenen Branchen (Beispiel
Werkzeugmaschinenbau) bei der Softwareintegration eine hervorragende Stellung
einnimmt und auch in Zukunft einnehmen wird, vorausgesetzt, dass der Heimmarkt
mitzieht.

Komponentensoftware - oder wie
die Informatik doch noch zu einer
Ingenieurdisziplin wird

Cuno Pfister Beispiel den Bus-Interfaces von Intel-
Mikroprozessoren reichen. Diese
Standards erlauben verschiedenen Anbietern,
die gleiche Funktionalität in Konkurrenz
zueinander anzubieten. Der Kunde kann
so aus verschiedenen Angeboten das für
ihn beste auswählen.

Adresse des Autors
Dr. Cuno Pfister, Oberen Microsystems AG
Technopark Zürich, 8005 Zürich
Email pfister@oberon.ch

Wenn ein Elektrotechniker oder ein
Maschinenbauer ein Produkt konstruiert,
dann muss er nicht bei null anfangen,
sondern kann auf ein reichhaltiges Angebot

an Marktkomponenten zurückgreifen.
Das Angebot reicht von DIN-konformen
Schrauben bis zu komplexen Maschinenanlagen,

von einfachen TTL-Bausteinen
bis zu komplexen Mikroprozessoren. Für
die wichtigsten Komponenten gibt es

Standards, die von offiziellen DIN-Nor-
men bis zu De-facto-Standards wie zum

Auf dem Weg zur reifen
Ingenieurdisziplin

Im Vergleich zu älteren Ingenieurdisziplinen

hat die Informatik noch keinen
vergleichbaren Entwicklungsstand
erreicht. Märkte für Softwarekomponenten
werden zwar schon seit 1967 gefordert,
entstehen aber tatsächlich erst jetzt in
nennenswertem Umfang. Für die Informatik

markiert diese aktuelle Entwicklung

nichts weniger als den Übergang zu
einer reifen Ingenieurdisziplin. Es geht
eigentlich um eine Verallgemeinerung
des klassischen Software-Engineerings:
Softwareteile (Komponenten) sollen so

Bulletin SEV/VSE 17/98



Komponentensoftware

konstruiert werden, dass sie potentiell
auch als binäre Produkte (d.h. ohne
Quellcode) auf den Markt gebracht und

vom Kunden zu minimalen Kosten
integriert werden können. Neue Komponenten

sollen zu existierenden Systemen
hinzugefügt und existierende Komponenten
individuell ersetzt werden können, ohne
dass dadurch der Rest des Systems
tangiert wird.

Damit wird Komponentensoftware
nicht nur zu einem Ansatz, mit dem neue
Software konstruiert werden kann,
sondern auch zu einem Prinzip, das erlaubt,
mit Legacy-Software («ererbte»
Software, d.h. alte installierte Softwarebasis)
systematischer und effektiver als bisher
umzugehen. Der Lebenszyklus eines

Softwaresystems kann durchaus länger
werden als derjenige einer einzelnen
Komponente des Systems. Meistens ist es

aufgrund der bereits erfolgten Investitionen

nötig, existierende Legacy-Software
in Komponenten zu verpacken, man
spricht hier von «Legacy Wrapping».
Solche nie für eine Wiederverwendung
gedachten «Komponenten» wird man
zwar im allgemeinen nicht nachträglich
selbst in Komponenten zerlegen können,
trotzdem sind sie für einen schrittweisen
Übergang zu komponentenbasierten
Lösungen unerlässlich. Legacy Wrapping ist
also eine legitime und absolut notwendige

Tätigkeit, welche jedoch die
langfristigen Perspektiven und Möglichkeiten
der Komponentensoftware oft verdeckt.
Dies birgt die Gefahr in sich, dass heute

lediglich die Legacy-Software von morgen

konstruiert wird.

Analogien zur konventionellen
Technik sind irreführend

Die Entwicklung hin zu
Komponentensoftware ist spannend und letztlich
unvermeidlich, da es dabei gleichzeitig um
ein grundlegendes Ingenieurprinzip (teile
und herrsche) sowie auch um ein
grundlegendes Prinzip der Marktwirtschaft,
das Prinzip der Arbeitsteilung geht
(betriebsübergreifende Wertschöpfungsketten).

Bei der Komponentensoftware
handelt es sich also um mehr als eine
bloss nützliche neue Technologie - wie
etwa im Falle der objektorientierten
Programmierung. Sie löst aber auch nicht
alle Probleme der Informatik. Zudem
sind die für die Komponentensoftware
nötigen Technologien und Methoden
noch unreif; es gibt noch viele Fallstricke
und Sackgassen, leere Versprechungen,
Missverständnisse und enttäuschte

Erwartungen. Dies rührt nicht zuletzt daher,
dass Analogien zum Maschinenbau oder

zur Elektrotechnik irreführend sind. Eine

Softwarekomponente entspricht in der
physischen Welt eher dem Bauplan einer
Fabrik voller Produktionsanlagen als

einem Objekt, das von einer solchen
Anlage produziert wird. Deshalb entspricht
eine Softwarekomponente nicht einem
Objekt im Sinne der objektorientierten
Programmierung, sondern eher einer
Dynamic Link Library (Fabrik), bestehend

aus einer oder mehreren Klassen

(Produktionsanlagen). Im Gegensatz zur
physischen Welt ist dann die Produktion
von Objekten beim Kunden vor Ort
möglich und praktisch kostenlos [1J.
Diese Bemerkung ist nur ein Hinweis
auf das konzeptionelle und terminologische

Chaos, das in diesem Bereich
noch herrscht.

Standardisierung - eine
Herausforderung

Softwarekomponenten verschiedener
Anbieter können auf unterschiedliche
Weise zu einer neuen Lösung integriert
(komponiert) werden. Beispielsweise
gibt es auch heute noch aufwendige
internationale Standardisierungsbemühungen,
die lediglich auf die Spezifikation eines
Datenschemas und Fileformates für den

Datenaustausch hinauslaufen. Als
Beispiel sei der Step-Standard (ISO 10303)
im Bereich der Werkzeugmaschinen-Informatik

genannt. Diese Offline-Integration

von Softwarepaketen ist die
rudimentärste Art, getrennt entwickelte
Softwarepakete zu integrieren.

Dass dieser Ansatz mit seinem Hin-
und Hertransportieren von Datenfiles
unbefriedigend ist, wurde schon lange
erkannt. Heute wird deshalb - was als

Schritt in die richtige Richtung zu werten
ist - vermehrt versucht, Netzwerkprotokolle

und -Services zu definieren, die den

Datentransfer von der Ebene der un-
typisierten Byte-Ströme auf die Ebene
der typisierten Datenstrukturen anheben.
Dadurch kann man sich viel Arbeit ersparen

und Fehlerquellen bei der Datenkonversion

ausschliessen. Ein Beispiel für
eine Standardisierungsbemühung nach
diesem Ansatz, auch wieder aus dem
Bereich der Werkzeugmaschinen-Informatik,

ist der europäische Osaca-Standard

(Open System Architecture for Controls
Association).

Anwendungs- und
Plattformunabhängigkeit

Es ist nicht sinnvoll, wenn in jedem
Anwendungsbereich die Infrastruktur für
die Kommunikation zwischen Applikationen

neu erfunden wird, wie das zum
Beispiel bei Osaca noch der Fall ist. Statt

dessen sollte man sich auf die Definition
von (Programmier-)Schnittstellen
konzentrieren, welche von der Implementierung

der darunterliegenden Infrastruktur
abstrahieren. Dieser Ansatz wurde mit
Omac (Open Modular Architecture
Controller) verfolgt, der amerikanischen
Konkurrenz zu Osaca. Omac basiert auf
dem Corba-Standard (Common Object
Request Broker Architecture) der OMG
(Object Management Group, http://www.
omg.org). Dies ist ein Standard für
verteilte Objekte und Legacy Wrapping, für
den es eine grosse Zahl von Implementierungen

verschiedener Hersteller und für
verschiedene Plattformen gibt.

Die stärkere Trennung zwischen
Schnittstellen und Implementierungen,
die eine Infrastruktur wie Corba mit sich

bringt, erlaubt auch die Verwendung von
mehreren Programmiersprachen, während

(Infrastruktur-)Eigenentwicklungen
oft auf eine Sprache beschränkt sind, wie
das zum Beispiel bei Osaca der Fall ist

(C++). Eigenentwicklungen sind zudem
oft auf Source-Code-Reuse beschränkt,
da es zum Beispiel für C++ kein
standardisiertes Objektmodell (d.h. keinen
Integrationsstandard für bereits übersetzten
Code) gibt.

Wenn man mit einer Infrastruktur
(Middleware) für verteilte Objekte
arbeitet, zum Beispiel mit Corba oder
DCOM (Distributed Component Object
Model, http://www.microsoft.com/com)
von Microsoft, dann abstrahiert man von
der geographischen Konfiguration der

Objekte (Location Transparency). Eine
Applikation arbeitet immer mit Objekten,
ob sich diese Objekte nun im selben Pro-
zess (d.h. Adressraum), in einem anderen
Prozess auf derselben Maschine oder in
einem Prozess auf einer anderen
Maschine befinden. Wenn die Objekte sich
nicht im gleichen Prozess befinden, dann
übernehmen Platzhalter (Proxies) ihre
Rolle, und Corba oder DCOM übernehmen

die Kommunikation zwischen den
Proxies und den realen Objektimplementierungen

(Servers).

Von der Transparenz des Ortes
zur In-Process-Integration

Die Transparenz des Ortes einer
Objektimplementierung war lange Zeit der

heilige Gral der verteilten Systeme.
Inzwischen ist allerdings eine grosse
Ernüchterung zu verspüren, hat sich doch
die Performance von Applikationen, die
ohne Rücksicht auf die Verteilung von
Objekten entworfen und entwickelt wurden,

in den meisten Fällen als unerträglich

schlecht erwiesen. Der Grund dafür
ist, dass die Kommunikation zwischen

12 Bulletin ASE/UCS 17/98



Informatik

Prozessen - oder gar über Rechnergrenzen

hinweg - um mehrere Grössenord-

nungen langsamer ist als der direkte
Zugriff auf Daten im selben Adressraum.
In der Forschung setzt deshalb eine
Abkehr von transparenten Objektsystemen
ein, hin zu Infrastrukturen, bei denen
bessere Möglichkeiten zum Eingriff und

zum Tuning von Konfigurationen
bestehen.

Wenn man sich reale Systeme
anschaut, die zum Beispiel auf Corba basieren,

dann wird es deshalb nicht
überraschen, dass die erfolgreichen Systeme
diese Infrastruktur bewusst als komfortables

Kommunikationsvehikel für den
Transfer von Daten benutzen und nicht
als transparenten Zugriffsmechanismus
auf Daten, die sich an beliebigen Orten
befinden können.

Aus der Sicht der Anwendungssoftware

ist es nun aber nicht wünschenswert,

Daten zu transferieren, da dadurch

Kopien der Daten entstehen, die zueinander

inkonsistent werden können. Besser
wäre es, die Daten in einer einzigen
Komponente zu verwalten und von
anderen Komponenten aus darauf
zuzugreifen. Aus den genannten Effizienzproblemen

folgt, dass eine solche Integration
innerhalb eines Prozesses (in Process)
erfolgen sollte. Diese Art der Integration
von Softwarekomponenten ist mit
Abstand am flexibelsten und erlaubt die

bestmögliche Modularisierung. OLE for
Design and Modeling (http://www.dmac.
org) ist ein Beispiel für ein API, welches

vorrangig die Integration zwischen
Prozessen auf derselben Maschine und in
Process unterstützt.

In bezug auf Infrastrukturstandards hat
dies subtile Konsequenzen. Corba zum
Beispiel betrachtet den verteilten Fall als

Normalfall, erlaubt aber die In-Process-

Integration als speziellen Fall auf
herstellerabhängige Art. Microsoft hat

hingegen bei COM (Component Object
Model) die In-Process-Integration als

Normalfall betrachtet und diesen Fall
deshalb stark optimiert und auf binärer
Ebene standardisiert. Trotzdem können
mit der DCOM-Erweiterung von COM
auch entfernte Objekte transparent be¬

File Network
Transfer Communication

Bild 1 Von Fileformaten bis zur In-Process-Integration

Bulletin SEV/VSE 17/98

handelt werden. Moderne Windows-Applikationen

benutzen COM, sobald sie

zum Beispiel OLE (Object Linking and

Embedding) oder ActiveX-Controls
unterstützen, da diese Technologien letztlich

Sammlungen von COM-Schnittstel-
len darstellen.

Schnittstellenproblematik -
ein zentrales Sicherheitsproblem

Wenn man Integration mittels kommu-
nikationsorientierten Infrastrukturen
erreichen will, so ignoriert man meistens
ein zentrales Sicherheitsproblem: das

Problem der Versionierung von Schnittstellen.

Wenn eine Schnittstelle, zum
Beispiel ein API für Motion Control, einmal
publiziert worden ist, dann kann es von
einer unbekannten Anzahl von
Fremdkomponenten benutzt werden. Wenn man
diese Schnittstelle dann ändert (syntaktisch

oder semantisch), dann besteht eine

grosse Wahrscheinlichkeit, dass existierende

Komponenten damit nicht mehr
korrekt interagieren. Konsequenterweise
darf eine einmal publizierte Schnittstelle
nie mehr geändert werden. Da in der
Informatik aber nichts konstanter ist
als die stetige Änderung von Anforderungen,

muss es folglich möglich sein, dass

ein Objekt gleichzeitig mehrere verschiedene

Schnittstellen unterstützt. Es kann
sich dabei um verschiedene Versionen
desselben Services oder um sich gegenseitig

ergänzende Services handeln. So

implementiert etwa ein ActiveX-Control
eine ganze Reihe von OLE-Schnittstellen,

zum Beispiel zum Zeichnen
des Controls, zum Abspeichern des

Controls, zur Behandlung von Benutzereingaben

usw.
Man beachte, dass die Versionierung

von Schnittstellen nicht dasselbe wie die

Versionierung von konkreten Komponenten

ist. Ein Klient sollte sich immer nur
auf eine Schnittstelle abstützen und
unabhängig von deren Implementierung (und
damit auch deren Version) bleiben. In
bezug auf dieses Grundproblem offener
Systeme ist Microsofts COM-Standard
weitaus am besten durchdacht. Leider
aber hat die enge Integration von COM-

Distributed In-Process
Objects Integration

Increased Integration

Komponenten in einer Microsoft-Umgebung

auch Nachteile. Einerseits greifen
die meisten COM-Objekte auch auf
komplexe (mehr oder weniger) Windows-
spezifische Services zu und sind dadurch
nicht mehr voll portabel. Es gibt aber
andererseits noch ein schwerwiegenderes
Problem bei COM. Die In-Process-
Integration von Komponenten verschiedener

Hersteller führt zu einem
Zuverlässigkeitsproblem: eine Komponente kann

aus Versehen Daten einer anderen
Komponente zerstören, da deren Daten im selben

Adressraum liegen. Die Vorteile einer
derart engen Integration zu erhalten ohne

deswegen fragile Systeme zu schaffen, ist
eine der grossen technischen
Herausforderungen der Komponentensoftware-
Entwicklung. Hier besteht der grösste
Innovationsbedarf. Ein möglicher Ansatz
wären neuartige Hardware-Schutzmechanismen,

die aber in absehbarer Zukunft
nicht zu erwarten sind. Als Alternative
dazu bleiben sichere Programmiersprachen,

das heisst Sprachen, welche die
vollständige Speicherintegrität garantieren.

Dies sind notwendigerweise Sprachen,

die Garbage Collection unterstützen,

also den Speicher automatisch
verwalten. In diesem strengen Sinne sind

Sprachen wie Pascal, Modula-2 oder C++
unsichere Sprachen, während Component
Pascal (Oberon) und lava sicher sind,
lava bietet mit JavaBeans die nötigen
Voraussetzungen, um portable und im
genannten Sinne sichere Softwarekomponenten

zu entwickeln. Trotzdem hat auch
lava Probleme, zum Beispiel im Bereich
der Effizienz, der unausgereiften Bibliotheken

und der unbefriedigenden
Versionskontrolle von Schnittstellen und
Komponenten.

Die Rolle
der Programmiersprachen

Entgegen der landläufigen Meinung,
dass die Wahl der Programmiersprache
heute keine Rolle mehr spielt, stellt
sichere Komponentensoftware in bezug
auf Programmiersprachen also geradezu
eine Wasserscheide dar, da sie ganz
bestimmte Anforderungen an ein Laufzeitsystem

stellt. Das war auch der Grund
dafür, dass die Sprachen Oberon und lava
überhaupt entwickelt werden mussten.
und erklärt, wieso man praktisch dieselbe

Laufzeitumgebung für beide Sprachen
benutzen kann. Dies belegt das neue
Echtzeitbetriebssystem JBed (http://
www.oberon.ch/rtos), welches als erstes
kommerzielles Betriebssystem
komponentenbasiert entworfen wurde und dessen

Laufzeitsystem lava und Component
Pascal gleichermassen unterstützt.

13



Komponentensoftware

Implementation Cost Implementation Cost

Bild 2 Spektrum zwischen ungeplanter Integration (Glueing) zu vorbereiteter Integration (Plug & Play)

Im Desktop-Bereich sind bisher etwa
6000 COM-Komponenten auf dem
Markt; dieser Markt dürfte 1997 über
eine Milliarde Franken Umsatz erreicht
haben. Für Java sind bereits gegen 200

JavaBeans-Komponenten auf dem Markt,
und eine rasante Zunahme kann erwartet
werden. Es sieht deshalb so aus, dass

echte Komponentensoftware in den nächsten

Jahren entweder auf COM oder
JavaBeans basieren wird, wobei für die
Kommunikation zwischen Beans ein
Subset von Corba zum Standard werden
dürfte. Es existieren verschiedene
Produkte, welche die COM- und die Java-
Welt überbrücken helfen.

Echtes Plug & Play bleibt das Ziel

Zusammenfassend kann man sagen,
dass die Integration von Softwarekomponenten

von der Offline-Integration mittels
Fileformaten über den Online-Versand
von Daten mittels Netzwerken zur sicheren

In-Process-Integration von Komponenten

führt. Die Herausforderung liegt
darin, wie man die Integrationskosten für
separat entwickelte Komponenten
minimieren kann. Testen genügt in einer offenen

Komponentenwelt nicht mehr, denn
wie kann man eine Komponente auf
Kompatibilität zu einer anderen Komponente

testen, wenn man diese gar nicht
kennt oder wenn sie noch gar nicht
existiert? Im Idealfall sollte man Komponenten

ohne jeglichen Integrationsaufwand
miteinander kombinieren können. Ein
solches tatsächliches Plug & Play von
Komponenten ist heute noch sehr selten
und wird in seiner Idealform auch selten
bleiben. Trotzdem muss das Ziel sein, die
Integrationskosten minimal zu halten, das

heisst, so nahe wie immer möglich an
echtes Plug & Play heranzukommen. Die
heutige Situation, in der noch intensiv
Legacy Wrapping mittels aufwendigem
«Glue»-Code betrieben wird, das heisst,

wo Softwarepakete integriert werden, die
nie dafür gedacht waren, ist langfristig
schlicht zu teuer (Bild 2).

Um die Integrationskosten zu
minimieren, müssen wir also zunehmend in

Richtung Plug & Play und sicherer In-
Process-Integration gelangen. Korrektes
Funktionieren von derart integrierten
Komponenten setzt gute Infrastrukturstandards

und sichere Programmiersprachen

voraus. Darauf aufbauend braucht
es aber auch gute Designs von
anwendungsspezifischen API, sogenannten
Komponentenframeworks. Technisch
gesehen liegt die Herausforderung darin,
wie man möglichst viel Kompatibilität
ohne Testen gewährleisten kann, das

heisst, wie man dafür sorgen kann, dass

sowohl der Klient eines Services als auch
der Implementator des Services sich an
die Schnittstelle, das heisst an einen

«Vertrag», halten. Manche gängigen
Entwicklungsmethoden, nicht zuletzt die

objektorientierte Programmierung, haben
hier so ihre Tücken [1]. Es wird letztlich
aber immer einen Teil des Vertrages
geben, dessen Einhaltung nicht mit
vernünftigem Aufwand durch Werkzeuge
oder Methoden gewährleistet werden
kann. Dort wird der Markt durch scharfe
Konkurrenz dafür sorgen, dass
Komponentenanbieter mit zu schlechter Qualität
vom Markt verdrängt werden.

Gute Chancen für Schweizer
Komponentenindustrie

Die Schweiz gehört zu den Ländern, in
denen am meisten Know-how im Bereich
Komponentensoftware vorhanden ist,
mindestens vergleichbar mit den USA.
Dazu kommt die Erfahrung der Schweizer

Industrie bei der Softwareintegration
und das Anwendungswissen in verschiedenen

Branchen, zum Beispiel im

Werkzeugmaschinenbau. Das sind ideale

Voraussetzungen für den Aulbau einer
eigenen, sinnvoll spezialisierten
Komponentenindustrie. Diese einmalige Chance

gilt es zu nutzen. Aktivitäten an den
Hochschulen und bei den Softwareanbietern

wie auch Aktivitäten im Rahmen des

Schweizer Automatik-Pools oder im
Bereich der Werkzeugmaschinenindustrie
lassen hoffen. Die bange Frage aber ist,
ob der Heimmarkt ebenfalls innovativ

genug ist oder lieber wartet, bis Anbieter
im Ausland aufgeholt haben.

Literatur
[1] C.Szyperski: Component Software - Beyond

Object-Oriented Programming, Addison-Wesley,
1998, ISBN 0-201-17888-5.

Logiciels pour composants
Ou comment l'informatique devient quand même une discipline
d'ingénieur

On devrait pouvoir combiner sans dépense (Plug & Play) des composants
logiciels en applications robustes et efficientes. Même si la situation actuelle est

encore notablement éloignée d'un tel état idéal, la pression des coûts pousse le

développement de logiciels dans cette direction. L'article ci-dessus traite - à la
lumière de l'état actuel du développement - des exigences que l'on pose au
développeur de composants logiciels, des efforts de standardisation des firmes de

logiciels, de la problématique des interfaces ainsi que du rôle important joué par
les langages de programmation et le design des logiciels. L'auteur attire en outre
l'attention sur les chances intactes de l'industrie suisse des composants qui, grâce
à l'expérience et les connaissances acquises dans les applications par différentes
branches (exemple construction de machines-outils) prend une position
remarquable dans l'intégration des logiciels - et prendra à l'avenir aussi - à condition

que le marché intérieur suive.

14 Bulletin ASE/UCS 17/98


	Komponentensoftware : oder wie die Informatik doch noch zu einer Ingenieurdisziplin wird

