Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 89 (1998)

Heft: 17

Artikel: Komponentensoftware : oder wie die Informatik doch noch zu einer
Ingenieurdisziplin wird

Autor: Pfister, Cuno

DOI: https://doi.org/10.5169/seals-902099

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-902099
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Softwarekomponenten sollten sich ohne Aufwand (Plug & Play) zu robusten und
effizienten Anwendungen kombinieren lassen. Auch wenn die heutige Situation von
einem solchen Idealzustand noch weit entfernt ist, treibt der Kostendruck die Soft-
wareentwicklung in diese Richtung. Der vorliegende Beitrag befasst sich — ausgehend
vom derzeitigen Entwicklungsstand — mit den Anforderungen, welche an den Ent-
wickler von Softwarekomponenten gestellt werden, mit den Standardisierungs-
anstrengungen der Softwarehauser, mit der Schnittstellenproblematik sowie mit der
wichtigen Rolle der Programmiersprachen und des Softwaredesigns. Der Autor weist
zudem auf die intakten Chancen der Schweizer Komponentenindustrie hin, welche
dank Erfahrung und Anwendungswissen in verschiedenen Branchen (Beispiel Werk-
zeugmaschinenbau) bei der Softwareintegration eine hervorragende Stellung ein-
nimmt und auch in Zukunft einnehmen wird, vorausgesetzt, dass der Heimmarkt
mitzieht.

Komponentensoftware - oder wie
die Informatik doch noch zu einer
Ingenieurdisziplin wird

B Cuno Pfister Beispiel den Bus-Interfaces von Intel-
Mikroprozessoren reichen. Diese Stan-
dards erlauben verschiedenen Anbietern,
die gleiche Funktionalitit in Konkurrenz
zueinander anzubieten. Der Kunde kann
so aus verschiedenen Angeboten das fiir

ihn beste auswiihlen.

Auf dem Weg zur reifen
Ingenieurdisziplin
Im Vergleich zu élteren Ingenieurdiszi-

Adresse des Autors

Dr. Cuno Pfister, Oberon Microsystems AG
Technopark Ziirich, 8005 Ziirich

Email pfister@oberon.ch

Bulletin SEV/VSE 17/98

Wenn ein Elektrotechniker oder ein
Maschinenbauer ein Produkt konstruiert,
dann muss er nicht bei null anfangen,
sondern kann auf ein reichhaltiges Ange-
bot an Marktkomponenten zuriickgreifen.
Das Angebot reicht von DIN-konformen
Schrauben bis zu komplexen Maschinen-
anlagen, von einfachen TTL-Bausteinen
bis zu komplexen Mikroprozessoren. Fiir
die wichtigsten Komponenten gibt es
Standards, die von offiziellen DIN-Nor-
men bis zu De-facto-Standards wie zum

plinen hat die Informatik noch keinen
vergleichbaren Entwicklungsstand er-
reicht. Mirkte fiir Softwarekomponenten
werden zwar schon seit 1967 gefordert,
entstehen aber tatsdchlich erst jetzt in
nennenswertem Umfang. Fiir die Infor-
matik markiert diese aktuelle Entwick-
lung nichts weniger als den Ubergang zu
einer reifen Ingenieurdisziplin. Es geht
eigentlich um eine Verallgemeinerung
des klassischen Software-Engineerings:
Softwareteile (Komponenten) sollen so

11

komponentensoftware

konstruiert werden, dass sie potentiell
auch als bindre Produkte (d.h. ohne
Quellcode) auf den Markt gebracht und
vom Kunden zu minimalen Kosten inte-
griert werden konnen. Neue Komponen-
ten sollen zu existierenden Systemen hin-
zugefiigt und existierende Komponenten
individuell ersetzt werden konnen, ohne
dass dadurch der Rest des Systems tan-
giert wird.

Damit wird Komponentensoftware
nicht nur zu einem Ansatz, mit dem neue
Software konstruiert werden kann, son-

- dern auch zu einem Prinzip, das erlaubt,
mit Legacy-Software («ererbte» Soft-
ware, d.h. alte installierte Softwarebasis)
systematischer und effektiver als bisher
umzugehen. Der Lebenszyklus eines
Softwaresystems kann durchaus linger
werden als derjenige einer einzelnen
Komponente des Systems. Meistens ist es
aufgrund der bereits erfolgten Investitio-
nen notig, existierende Legacy-Software
in Komponenten zu verpacken, man
spricht hier von «Legacy Wrapping».
Solche nie fiir eine Wiederverwendung
gedachten «Komponenten» wird man
zwar im allgemeinen nicht nachtriglich
selbst in Komponenten zerlegen konnen,
trotzdem sind sie fiir einen schrittweisen
Ubergang zu komponentenbasierten Lo-
sungen unerlisslich. Legacy Wrapping ist
also eine legitime und absolut notwen-
dige Titigkeit, welche jedoch die lang-
fristigen Perspektiven und Moglichkeiten
der Komponentensoftware oft verdeckt.
Dies birgt die Gefahr in sich, dass heute
lediglich die Legacy-Software von mor-
gen konstruiert wird.

Analogien zur konventionellen
Technik sind irrefiihrend

Die Entwicklung hin zu Komponen-
tensoftware ist spannend und letztlich un-
vermeidlich, da es dabei gleichzeitig um
ein grundlegendes Ingenieurprinzip (teile
und herrsche) sowie auch um ein grund-
legendes Prinzip der Marktwirtschaft,
das Prinzip der Arbeitsteilung geht
(betriebsiibergreifende Wertschopfungs-
ketten). Bei der Komponentensoftware
handelt es sich also um mehr als eine
bloss niitzliche neue Technologie — wie
etwa im Falle der objektorientierten Pro-
grammierung. Sie l6st aber auch nicht
alle Probleme der Informatik. Zudem
sind die fiir die Komponentensoftware
notigen Technologien und Methoden
noch unreif; es gibt noch viele Fallstricke
und Sackgassen, leere Versprechungen,
Missverstidndnisse und enttiduschte Er-
wartungen. Dies riihrt nicht zuletzt daher,
dass Analogien zum Maschinenbau oder
zur Elektrotechnik irrefiihrend sind. Eine

12

Softwarekomponente entspricht in der
physischen Welt eher dem Bauplan einer
Fabrik voller Produktionsanlagen als
einem Objekt, das von einer solchen An-
lage produziert wird. Deshalb entspricht
eine Softwarekomponente nicht einem
Objekt im Sinne der objektorientierten
Programmierung, sondern eher einer
Dynamic Link Library (Fabrik), beste-
hend aus einer oder mehreren Klassen
(Produktionsanlagen). Im Gegensatz zur
physischen Welt ist dann die Produktion
von Objekten beim Kunden vor Ort
moglich und praktisch kostenlos [1].
Diese Bemerkung ist nur ein Hinweis
auf das konzeptionelle und terminolo-
gische Chaos, das in diesem Bereich
noch herrscht.

Standardisierung - eine
Herausforderung

Softwarekomponenten verschiedener
Anbieter konnen auf unterschiedliche
Weise zu einer neuen Losung integriert
(komponiert) werden. Beispielsweise
gibt es auch heute noch aufwendige inter-
nationale Standardisierungsbemiihungen,
die lediglich auf die Spezifikation eines
Datenschemas und Fileformates fiir den
Datenaustausch hinauslaufen. Als Bei-
spiel sei der Step-Standard (ISO10303)
im Bereich der Werkzeugmaschinen-In-
formatik genannt. Diese Offline-Integra-
tion von Softwarepaketen ist die rudi-
mentirste Art, getrennt entwickelte Soft-
warepakete zu integrieren.

Dass dieser Ansatz mit seinem Hin-
und Hertransportieren von Datenfiles
unbefriedigend ist, wurde schon lange er-
kannt. Heute wird deshalb — was als
Schritt in die richtige Richtung zu werten
ist — vermehrt versucht, Netzwerkproto-
kolle und -Services zu definieren, die den
Datentransfer von der Ebene der un-
typisierten Byte-Strome auf die Ebene
der typisierten Datenstrukturen anheben.
Dadurch kann man sich viel Arbeit erspa-
ren und Fehlerquellen bei der Datenkon-
version ausschliessen. Ein Beispiel fiir
eine Standardisierungsbemiihung nach
diesem Ansatz, auch wieder aus dem Be-
reich der Werkzeugmaschinen-Informa-
tik, ist der europiische Osaca-Standard
(Open System Architecture for Controls
Association).

Anwendungs- und Plattform-
unabhéngigkeit

Es ist nicht sinnvoll, wenn in jedem
Anwendungsbereich die Infrastruktur fiir
die Kommunikation zwischen Applika-
tionen neu erfunden wird, wie das zum
Beispiel bei Osaca noch der Fall ist. Statt

dessen sollte man sich auf die Definition
von (Programmier-)Schnittstellen kon-
zentrieren, welche von der Implementie-
rung der darunterliegenden Infrastruktur
abstrahieren. Dieser Ansatz wurde mit
Omac (Open Modular Architecture Con-
troller) verfolgt, der amerikanischen
Konkurrenz zu Osaca. Omac basiert auf
dem Corba-Standard (Common Object
Request Broker Architecture) der OMG
(Object Management Group, http:/www.
omg.org). Dies ist ein Standard fiir ver-
teilte Objekte und Legacy Wrapping, fiir
den es eine grosse Zahl von Implementie-
rungen verschiedener Hersteller und fiir
verschiedene Plattformen gibt.

Die stirkere Trennung zwischen
Schnittstellen und Implementierungen,
die eine Infrastruktur wie Corba mit sich
bringt, erlaubt auch die Verwendung von
mehreren Programmiersprachen, wiih-
rend (Infrastruktur-)Eigenentwicklungen
oft auf eine Sprache beschrinkt sind, wie
das zum Beispiel bei Osaca der Fall ist
(C++). Eigenentwicklungen sind zudem
oft auf Source-Code-Reuse beschriinkt,
da es zum Beispiel fiir C++ kein standar-
disiertes Objektmodell (d.h. keinen Inte-
grationsstandard fiir bereits iibersetzten
Code) gibt.

Wenn man mit einer Infrastruktur
(Middleware) fiir verteilte Objekte
arbeitet, zum Beispiel mit Corba oder
DCOM (Distributed Component Object
Model, http://www.microsoft.com/com)
von Microsoft, dann abstrahiert man von
der geographischen Konfiguration der
Objekte (Location Transparency). Eine
Applikation arbeitet immer mit Objekten,
ob sich diese Objekte nun im selben Pro-
zess (d.h. Adressraum), in einem anderen
Prozess auf derselben Maschine oder in
einem Prozess auf einer anderen Ma-
schine befinden. Wenn die Objekte sich
nicht im gleichen Prozess befinden, dann
tibernechmen Platzhalter (Proxies) ihre
Rolle, und Corba oder DCOM iiberneh-
men die Kommunikation zwischen den
Proxies und den realen Objektimplemen-
tierungen (Servers).

Von der Transparenz des Ortes
zur In-Process-Integration

Die Transparenz des Ortes einer Ob-
jektimplementierung war lange Zeit der
heilige Gral der verteilten Systeme. In-
zwischen ist allerdings eine grosse
Erniichterung zu verspiiren, hat sich doch
die Performance von Applikationen, die
ohne Riicksicht auf die Verteilung von
Objekten entworfen und entwickelt wur-
den, in den meisten Fillen als unertrig-
lich schlecht erwiesen. Der Grund dafiir
ist, dass die Kommunikation zwischen

Bulletin ASE/UCS 17/98

Prozessen — oder gar iiber Rechnergren-
zen hinweg — um mehrere Grossenord-
nungen langsamer ist als der direkte
Zugriff auf Daten im selben Adressraum.
In der Forschung setzt deshalb eine Ab-
kehr von transparenten Objektsystemen
ein, hin zu Infrastrukturen, bei denen
bessere Moglichkeiten zum Eingriff und
zum Tuning von Konfigurationen be-
stehen.

Wenn man sich reale Systeme an-
schaut, die zum Beispiel auf Corba basie-
ren, dann wird es deshalb nicht iiber-
raschen, dass die erfolgreichen Systeme
diese Infrastruktur bewusst als komfor-
tables Kommunikationsvehikel fiir den
Transfer von Daten benutzen und nicht
als transparenten Zugriffsmechanismus
auf Daten, die sich an beliebigen Orten
befinden konnen.

Aus der Sicht der Anwendungssoft-
ware ist es nun aber nicht wiinschens-
wert, Daten zu transferieren, da dadurch
Kopien der Daten entstehen, die zueinan-
der inkonsistent werden konnen. Besser
wire es, die Daten in einer einzigen
Komponente zu verwalten und von an-
deren Komponenten aus darauf zuzu-
greifen. Aus den genannten Effizienzpro-
blemen folgt, dass eine solche Integration
innerhalb eines Prozesses (in Process) er-
folgen sollte. Diese Art der Integration
von Softwarekomponenten ist mit Ab-
stand am flexibelsten und erlaubt die
bestmdgliche Modularisierung. OLE for
Design and Modeling (http://www.dmac.
org) ist ein Beispiel fiir ein API, welches
vorrangig die Integration zwischen Pro-
zessen auf derselben Maschine und in
Process unterstiitzt.

In bezug auf Infrastrukturstandards hat
dies subtile Konsequenzen. Corba zum
Beispiel betrachtet den verteilten Fall als
Normalfall, erlaubt aber die In-Process-
Integration als speziellen Fall auf herstel-
lerabhingige (!) Art. Microsoft hat hin-
gegen bei COM (Component Object
Model) die In-Process-Integration als
Normalfall betrachtet und diesen Fall
deshalb stark optimiert und auf binirer
Ebene standardisiert. Trotzdem konnen
mit der DCOM-Erweiterung von COM
auch entfernte Objekte transparent be-

handelt werden. Moderne Windows-Ap-
plikationen benutzen COM, sobald sie
zum Beispiel OLE (Object Linking and
Embedding) oder ActiveX-Controls un-
terstiitzen, da diese Technologien letzt-
lich Sammlungen von COM-Schnittstel-
len darstellen.

Schnittstellenproblematik -
ein zentrales Sicherheitsproblem

Wenn man Integration mittels kommu-
nikationsorientierten Infrastrukturen er-
reichen will, so ignoriert man meistens
ein zentrales Sicherheitsproblem: das
Problem der Versionierung von Schnitt-
stellen. Wenn eine Schnittstelle, zum Bei-
spiel ein API fiir Motion Control, einmal
publiziert worden ist, dann kann es von
einer unbekannten Anzahl von Fremd-
komponenten benutzt werden. Wenn man
diese Schnittstelle dann édndert (syntak-
tisch oder semantisch), dann besteht eine
grosse Wahrscheinlichkeit, dass existie-
rende Komponenten damit nicht mehr
korrekt interagieren. Konsequenterweise
darf eine einmal publizierte Schnittstelle
nie mehr geiindert werden. Da in der
Informatik aber nichts konstanter ist
als die stetige Anderung von Anforderun-
gen, muss es folglich moglich sein, dass
ein Objekt gleichzeitig mehrere verschie-
dene Schnittstellen unterstiitzt. Es kann
sich dabei um verschiedene Versionen
desselben Services oder um sich gegen-
seitig ergiinzende Services handeln. So
implementiert etwa ein ActiveX-Control
eine ganze Reihe von OLE-Schnitt-
stellen, zum Beispiel zum Zeichnen
des Controls, zum Abspeichern des
Controls, zur Behandlung von Benutzer-
eingaben usw.

Man beachte, dass die Versionierung
von Schnittstellen nicht dasselbe wie die
Versionierung von konkreten Komponen-
ten ist. Ein Klient sollte sich immer nur
auf eine Schnittstelle abstiitzen und unab-
hingig von deren Implementierung (und
damit auch deren Version) bleiben. In
bezug auf dieses Grundproblem offener
Systeme ist Microsofts COM-Standard
weitaus am besten durchdacht. Leider
aber hat die enge Integration von COM-

File Network Distributed In-Process
Transfer Communication Objects Integration
4>

Increased Integration

Bild 1 Von Fileformaten bis zur In-Process-Integration

Bulletin SEV/VSE 17/98

Informatik

Komponenten in einer Microsoft-Umge-
bung auch Nachteile. Einerseits greifen
die meisten COM-Objekte auch auf
komplexe (mehr oder weniger) Windows-
spezifische Services zu und sind dadurch
nicht mehr voll portabel. Es gibt aber
andererseits noch ein schwerwiegenderes
Problem bei COM. Die In-Process-
Integration von Komponenten verschie-
dener Hersteller fiihrt zu einem Zuverlis-
sigkeitsproblem: eine Komponente kann
aus Versehen Daten einer anderen Kom-
ponente zerstoren, da deren Daten im sel-
ben Adressraum liegen. Die Vorteile einer
derart engen Integration zu erhalten ohne
deswegen fragile Systeme zu schaffen, ist
eine der grossen technischen Heraus-
forderungen der Komponentensoftware-
Entwicklung. Hier besteht der grosste
Innovationsbedarf. Ein moglicher Ansatz
wiren neuartige Hardware-Schutzmecha-
nismen, die aber in absehbarer Zukunft
nicht zu erwarten sind. Als Alternative
dazu bleiben sichere Programmierspra-
chen, das heisst Sprachen, welche die
vollstindige Speicherintegritit garantie-
ren. Dies sind notwendigerweise Spra-
chen, die Garbage Collection unterstiit-
zen, also den Speicher automatisch ver-
walten. In diesem strengen Sinne sind
Sprachen wie Pascal, Modula-2 oder C++
unsichere Sprachen, withrend Component
Pascal (Oberon) und Java sicher sind.
Java bietet mit JavaBeans die notigen
Voraussetzungen, um portable und im ge-
nannten Sinne sichere Softwarekompo-
nenten zu entwickeln. Trotzdem hat auch
Java Probleme, zum Beispiel im Bereich
der Effizienz, der unausgereiften Biblio-
theken und der unbefriedigenden Ver-
sionskontrolle von Schnittstellen und
Komponenten.

Die Rolle
der Programmiersprachen

Entgegen der landldufigen Meinung,
dass die Wahl der Programmiersprache
heute keine Rolle mehr spielt, stellt
sichere Komponentensoftware in bezug
auf Programmiersprachen also geradezu
eine Wasserscheide dar, da sie ganz be-
stimmte Anforderungen an ein Laufzeit-
system stellt. Das war auch der Grund
dafiir, dass die Sprachen Oberon und Java
tiberhaupt entwickelt werden mussten,
und erkldrt, wieso man praktisch dieselbe
Laufzeitumgebung fiir beide Sprachen
benutzen kann. Dies belegt das neue
Echtzeitbetriebssystem JBed (http://
www.oberon.ch/rtos), welches als erstes
kommerzielles Betriebssystem kompo-
nentenbasiert entworfen wurde und des-
sen Laufzeitsystem Java und Component
Pascal gleichermassen unterstiitzt.

13

Komponentensoftware

Implementation Cost

A

Glueing Plug & Play

Cournponesnt lanuiasiurer

Implementation Cost

A

Glueing Plug & Play
Systemn Sornpusesr

Bild 2 Spektrum zwischen ungeplanter Integration (Glueing) zu vorbereiteter Integration (Plug & Play)

Im Desktop-Bereich sind bisher etwa
6000 COM-Komponenten auf dem
Markt; dieser Markt diirfte 1997 iiber
eine Milliarde Franken Umsatz erreicht
haben. Fiir Java sind bereits gegen 200
JavaBeans-Komponenten auf dem Markt,
und eine rasante Zunahme kann erwartet
werden. Es sieht deshalb so aus, dass
echte Komponentensoftware in den nich-
sten Jahren entweder auf COM oder
JavaBeans basieren wird, wobei fiir die
Kommunikation zwischen Beans ein
Subset von Corba zum Standard werden
diirfte. Es existieren verschiedene Pro-
dukte, welche die COM- und die Java-
Welt iiberbriicken helfen.

Echtes Plug & Play bleibt das Ziel

Zusammenfassend kann man sagen,
dass die Integration von Softwarekompo-
nenten von der Offline-Integration mittels
Fileformaten iiber den Online-Versand
von Daten mittels Netzwerken zur siche-
ren In-Process-Integration von Kompo-
nenten fiihrt. Die Herausforderung liegt
darin, wie man die Integrationskosten fiir
separat entwickelte Komponenten mini-
mieren kann. Testen geniigt in einer offe-
nen Komponentenwelt nicht mehr, denn
wie kann man eine Komponente auf
Kompatibilitit zu einer anderen Kompo-
nente testen, wenn man diese gar nicht
kennt oder wenn sie noch gar nicht exi-
stiert? Im Idealfall sollte man Komponen-
ten ohne jeglichen Integrationsaufwand
miteinander kombinieren konnen. Ein
solches tatsidchliches Plug & Play von
Komponenten ist heute noch sehr selten
und wird in seiner Idealform auch selten
bleiben. Trotzdem muss das Ziel sein, die
Integrationskosten minimal zu halten, das
heisst, so nahe wie immer moglich an
echtes Plug & Play heranzukommen. Die
heutige Situation, in der noch intensiv
Legacy Wrapping mittels aufwendigem
«Glue»-Code betrieben wird, das heisst,

14

wo Softwarepakete integriert werden, die
nie dafiir gedacht waren, ist langfristig
schlicht zu teuer (Bild 2).

Um die Integrationskosten zu mini-
mieren, miissen wir also zunehmend in
Richtung Plug & Play und sicherer In-
Process-Integration gelangen. Korrektes
Funktionieren von derart integrierten
Komponenten setzt gute Infrastruktur-
standards und sichere Programmierspra-
chen voraus. Darauf aufbauend braucht
es aber auch gute Designs von anwen-
dungsspezifischen API, sogenannten
Komponentenframeworks. Technisch ge-
sehen liegt die Herausforderung darin,
wie man moglichst viel Kompatibilitit
ohne Testen gewihrleisten kann, das
heisst, wie man dafiir sorgen kann, dass
sowohl der Klient eines Services als auch
der Implementator des Services sich an
die Schnittstelle, das heisst an einen
«Vertrag», halten. Manche gingigen
Entwicklungsmethoden, nicht zuletzt die

objektorientierte Programmierung, haben
hier so ihre Tiicken [1]. Es wird letztlich
aber immer einen Teil des Vertrages
geben, dessen Einhaltung nicht mit ver-
niinftigem Aufwand durch Werkzeuge
oder Methoden gewiihrleistet werden
kann. Dort wird der Markt durch scharfe
Konkurrenz dafiir sorgen, dass Kompo-
nentenanbieter mit zu schlechter Qualitit
vom Markt verdringt werden.

Gute Chancen fiir Schweizer
Komponentenindustrie

Die Schweiz gehort zu den Lindern, in
denen am meisten Know-how im Bereich
Komponentensoftware vorhanden ist,
mindestens vergleichbar mit den USA.
Dazu kommt die Erfahrung der Schwei-
zer Industrie bei der Softwareintegration
und das Anwendungswissen in verschie-
denen Branchen, zum Beispiel im
Werkzeugmaschinenbau. Das sind ideale
Voraussetzungen fiir den Aufbau einer
eigenen, sinnvoll spezialisierten Kompo-
nentenindustrie. Diese einmalige Chance
gilt es zu nutzen. Aktivititen an den
Hochschulen und bei den Softwareanbie-
tern wie auch Aktivititen im Rahmen des
Schweizer Automatik-Pools oder im Be-
reich der Werkzeugmaschinenindustrie
lassen hoffen. Die bange Frage aber ist,
ob der Heimmarkt ebenfalls innovativ
genug ist oder lieber wartet, bis Anbieter
im Ausland aufgeholt haben.

Literatur

[1] C Szyperski: Component Software - Beyond
Object-Oriented Programming, Addison-Wesley,
1998, ISBN 0-201-17888-5.

d'ingénieur

que le marché intérieur suive.

Logiciels pour composants

Ou comment I'informatique devient quand méme une discipline

On devrait pouvoir combiner sans dépense (Plug & Play) des composants logi-
ciels en applications robustes et efficientes. Méme si la situation actuelle est
encore notablement éloignée d’un tel état idéal, la pression des cofits pousse le
développement de logiciels dans cette direction. Larticle ci-dessus traite — a la
lumiere de I’état actuel du développement — des exigences que 1’on pose au déve-
loppeur de composants logiciels, des efforts de standardisation des firmes de
logiciels, de la problématique des interfaces ainsi que du réle important joué par
les langages de programmation et le design des logiciels. L’auteur attire en outre
I’attention sur les chances intactes de 1’industrie suisse des composants qui, grice
a I’expérience et les connaissances acquises dans les applications par différentes
branches (exemple construction de machines-outils) prend une position remar-
quable dans I'intégration des logiciels — et prendra a I’avenir aussi — a condition

Bulletin ASE/UCS 17/98

	Komponentensoftware : oder wie die Informatik doch noch zu einer Ingenieurdisziplin wird

