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Computer-aided Design

Nachdem im ersten Teil dieses Beitrages (Bulletin SEV/VSE 25/1996) die Problem-
stellung des Hardware/Software-Codesigns, die in Frage kommenden Architekturen
und Realisierungsformen sowie Berechnungsmodelle, Spezifikationssprachen und
Entwurfspraktiken vorgestellt wurden, hat der vorliegende zweite Teil den eigent-
lichen Entwurfsablauf zum Thema. Ein grosser Teil der nachstehenden Ausfiihrungen
befasst sich mit der Partitionierung und Optimierung des Entwurfs. Diese Entwurfs-
tatigkeiten sind von grésster Bedeutung, bestimmen sie doch ganz direkt die Fahig-
keiten und den Preis der zuklinftigen Produkte.

Hardware/Software-Codesign: Mass-
geschneiderte elektronische Systeme

Teil 2: HW/SW-Synthese
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B Jiirgen Teich

4. HW/SW-Synthese

4.1 Entwurfsablauf

Der typische Entwurfsablauf bei der
Entwicklung eines HW/SW-Systems ist
in Bild 10 dargestellt. Ausgehend von der
Spezifikation des Systemverhaltens er-
folgt die Aufteilung der zu implementie-
renden Funktionalitdt in Hardware- und
Softwarefunktionalitit. Man spricht in
diesem Zusammenhang auch von der
Hardware/Software-Partitionierung.

Man sollte sich spitestens an dieser
Stelle den Unterschied zwischen Hard-
ware- und Softwarerealisierung verge-
genwirtigen. Zum einen lduft zwar keine
Software ohne Hardware (der Prozessor
realisiert eine gewiinschte Funktionalitiit
durch Ausfiihrung eines Programms),
zum anderen aber wird die Unterschei-
dung zwischen Hard- und Softwarereali-
sierung schwammig, wenn man zum
Beispiel an programmierbare Hard-
warebausteine (z. B. PLA, FPGA) denkt.
Dem Baustein wird die Funktionalitit der
Schaltung, die er realisieren soll, durch

Programmierung (Software) aufgeprigt
und ldsst sich sogar hiufig withrend des
Betriebs umprogrammieren. In dieser
Hinsicht ist die Funktionalitit ebenfalls
in Software realisiert (als Code, der die
Gatterschaltung konfiguriert). Man kann
also von einer Programmierung auf Gat-
terebene sprechen (siehe auch Bild 6 in
Teil 1). Ausserdem werden selbst kom-
plexe Asic heute mit Hilfe von Program-
miersprachen (Hardwarebeschreibungs-
sprachen, zum Beispiel VHDL, Verilog)
beschrieben und synthetisiert. Wir treffen
daher die iibliche, jedoch nicht fest defi-
nierte Konvention, dass man von einer
Implementierung einer Funktionalitét in
Hardware genau dann redet, wenn der
Entwerfer bildlich eine Schaltung vor
Auge hat, welche die Funktionalitit (und
nur diese) implementiert, und von Soft-
ware, wenn das beabsichtigte Endsta-
dium der Synthese eine Beschreibung ist,
die als Programm von einer Maschine
ausgefiihrt wird.

Im Verlauf der Hardware/Software-
Partitionierung wird nun die Entschei-
dung getroffen, welche Funktionalitiit in
Software und welche in eine Schaltung
verfeinert wird. Spiter werden wir die
wesentlichen Anforderungen und Auf-
gaben der Hardware/Software-Partitio-
nierung ndher betrachten.

Ausgehend von dieser Partitionierung,
werden die Teilspezifikationen dann
durch Synthesewerkzeuge verfeinert. Fiir
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die Verhaltensbeschreibung der Software
bedeutet dies beispielsweise die Generie-
rung eines Hochsprachenprogramms
(z. B. in C, Pascal) und die Compilierung
dieses Codes in Maschinencode mit Hilfe
eines Compilers fiir den Zielprozessor.
Analog wird fiir die Verhaltensbeschrei-
bung der Hardwarekomponenten eine
Verhaltensbeschreibung typischerweise
in einer Hardwarebeschreibungssprache
generiert (z. B. VHDL, Verilog). Mit
Hilfe von CAD-Werkzeugen lassen sich
auch diese Hardwarebeschreibungen nun
verfeinern. Ist beispielsweise ein FPGA
die Zielarchitektur zur Implementierung
der Hardware, so wird die VHDL-Be-
schreibung verfeinert bis auf eine struktu-
relle Netzlistenbeschreibung beziehungs-
weise eine Beschreibung der Plazierung
und Verdrahtung von Gattern aus einer
Zellbibliothek beim Entwurf eines Asic.
Fiir diese im allgemeinen komplexen
Syntheseschritte gibt es — @hnlich wie bei
den Compilern zur Softwaresynthese —
automatische Werkzeuge, welche die
Zwischenschritte der High-Level-Syn-

these, Logiksynthese und gegebenenfalls
der Plazierung und Verdrahtung tiberneh-
men. Zu den Werkzeuganbietern zihlen
beispielsweise die CAD-Systemhiuser
Cadence, Synopsys und Mentor.

Nach der Hardware/Software-Partitio-
nierung muss die Spezifikation so verfei-
nert werden, dass die Komponenten mit-
einander fehlerfrei Daten auszutauschen
in der Lage sind. Die Kommunikation
eines Mikroprozessors mit einer Hard-
warekomponente (z. B. Asic, FPGA)
kann zum Beispiel iiber einen Prozessor-
bus (memory-mapped 1/0, DMA, Inter-
rupt), eine serielle Schnittstelle oder tiber
einen Port erfolgen. Man kann sich vor-
stellen, dass zum einen in der Software
Treiberroutinen zur Realisierung der
Kommunikation synthetisiert und zum
anderen in der Hardware eine Steuerein-
heit zur Adressierung der Hardwarekom-
ponenten, zum Generieren der Prozes-
sorsignale und des Kommunikations-
protokolls realisiert werden miissen. Den
gesamten Schritt bezeichnet man als
Interfacesynthese. Eine wichtige Anfor-
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derung betrifft die Korrektheit des Zu-
sammenspiels zwischen Hardware und
Software. Zur Validierung miissen Simu-
lationswerkzeuge miteinander gekoppelt
werden und die Beschreibung auf unter-
schiedlichen Verfeinerungsstufen der
Synthese — Verhalten (funktional), Regi-
ster-Transfer (taktzyklenecht), Gatter
(inkl. Gatterverzdgerungszeiten) — simu-
liert werden. Bei Verilog ist dies bei-
spielsweise auf Verhaltensebene durch
Einbindung von in C geschriebenen
Funktionen und Prozeduren moglich. Auf
Register-Transfer-Ebene ist eine takt-
zyklengetreue Modellierung der Prozes-
sorsignale notig. Die benétigte Simula-
tionszeit steigt im allgemeinen stark mit
dem Grad der Verfeinerung.

4.2 Hardware/Software-
Partitionierung

Heutzutage hat man bereits ein gutes
Verstindnis fiir die getrennte Optimie-
rung von Software (Ablaufplanung, Be-
fehlsauswahl, Registerallokation) und
Hardware (High-Level-Synthese, Logik-
optimierung). Hingegen zeigt es sich,
dass das mangelnde Erwigen von
HW/SW-Alternativen hiufig zu Entwiir-
fen fiihrt, die entweder zu teuer (iiber-
dimensioniert), zu langsam (unterdimen-
sioniert) oder gemiss den Anforderungen
nicht flexibel fiir spitere Anderun-
gen sind (siehe z. B. Bild 4 in Teil 1).
Typischerweise werden Entwurfsbe-
schrinkungen (z. B. maximale Kosten,
minimale Performanz, maximaler Lei-
stungsverbrauch) vorgegeben, die giiltige
Entwurfsrdume von ungiiltigen Entwurfs-
gebieten abgrenzen.

Man erkennt, dass der Raum von ge-
mischten Hardware/Software-Realisie-
rungen eine breite Basis von Zwischen-
losungen bietet. Aus Effizienzgriinden
lohnt es sich, diesen Raum, der im allge-
meinen mehr als zweidimensional ist,
niiher zu untersuchen. Die Abklirung von
Alternativen ist daher Teil der Aufgabe
der Hardware/Software-Partitionierung.
Dabei sind zwei Wege denkbar, um Ent-
wurfspunkte zu charakterisieren und zu
bewerten:

— Synthese (synthesebasierter Ansatz)
— Abschiitzung (bibliotheksbasierter An-
satz)

Der erste Weg ist oft zu zeitaufwendig;
insbesondere bei komplexen Systement-
wiirfen konnen nur wenige Entwurfs-
punkte betrachtet werden. Der wesent-
liche Vorteil dieses Weges besteht
allerdings darin, dass das Verhalten eines
Entwurfspunktes sehr genau dem Ver-
halten des gebauten Systems entspricht
(Simulation bzw. Profiling des Codes).

Bulletin ASE/UCS 3/97
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Bild 11 Darstellung eines Hybrid-Codierers fiir Bildsequenzen

Beim zweiten Ansatz konnen im allge-
meinen wesentlich mehr Entwurfspunkte
iteriert werden, da eine Abschitzung mit
Hilfe von optimierten Modulbibliotheken
im allgemeinen schneller als durch
Synthese erfolgen kann. Nachteil dieser
Methode ist allerdings, dass — je nach
Granularitit der Bibliotheksmodule — die
Schiitzung ungenau ist und man beziig-
lich der wahren Kosten, Performanz usw.
nie ganz sicher sein kann, ob sich das ent-

worfene System nach der Realisierung -

wie abgeschitzt verhilt: Trifft man eine
zu konservative Abschidtzung, dann findet
man eventuell nicht alle optimalen Lo-
sungen, trifft man eine zu vage Abschiit-
zung, so kann es sein, dass der Entwurfs-
punkt nicht alle Entwurfsbeschrinkungen
erfiillt. Der erste Pfad wird daher héufiger
bei Systemen gegangen, die ein hohes
Mass an Steuerung beziehungsweise ein
hohes Mass an Nichtdeterminismus auf-
weisen, sogenannte Systeme mit Steue-
rungsdominanz (z. B. eingebettete Steue-
rungssysteme, Embedded Control). In
diesen Fillen wire eine bibliotheks-
basierte Schitzung meist viel zu unge-
nau. Exakte Werte der Entwurfspara-
meter miissen iiber eine Simulation nach
der Synthese gewonnen werden. Bei so-
genannten Systemen mit Datenflussdomi-
nanz (z. B. signal- und bildverarbeitende
Systeme) lassen sich die Entwurfspara-
meter hingegen recht gut aus Bibliothe-
ken abschitzen, da solche Systeme im
allgemeinen einen hohen Grad an Deter-
minismus und statischer Parallelitiit auf-
weisen.

4.2.1 Optimierung

Betrachten wir den Entwurfsraum giil-
tiger HW/SW-Losungen niher, so stellen
wir fest, dass nicht nur ein Punkt optimal
sein kann; es gibt zum Beispiel Losungen
(z. B. Punkt P, in Bild 4), die kosten-
optimal sind, und Losungen, die eine
optimale Performanz (z. B. Punkt Pg in
Bild 4) aufweisen. Im allgemeinen sind
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alle diejenigen Entwurfspunkte interes-
sant, die dahingehend optimal sind, dass
sie von keinem anderen Punkt in allen
Entwurfskriterien geschlagen werden.
Solche Punkte nennt man auch Pareto-
Punkte.

Beispiel 4.1

Punkt P, in Bild 4.1 ist neben P4 und
P, ein Pareto-Punkt. P, und P; sind zwar
gleich gut in den Kosten, jedoch weist P,
eine niedrigere Dateniibertragungszeit
auf, wihrend P, einen niedrigeren Lei-
stungsverbrauch besitzt. Auch von ande-
ren Punkten wird keiner der beiden
Punkte in allen Eigenschaften dominiert.
Folglich sind beide Punkte Pareto-
Punkte.

Geometrisch lassen sich Pareto-Punkte
so verdeutlichen: Seien die Eigenschaften
aller Entwurfsmetriken zu minimieren
(z. B. Kosten, Datenberechnungszeit,
Leistungsverbrauch usw.), dann liegt ein
Pareto-Punkt genau dann vor, wenn es
keinen Entwurfspunkt innerhalb des von
ihm mit dem Nullpunkt eingeschlossenen
Quadranten gibt.

Wenn man die Moglichkeit hat, Ent-
wurfsalternativen zu untersuchen, so
besteht das Problem der Entwurfs-
raumexploration darin, dem Entwick-
lungsingenieur alle beziehungsweise

Computer-aided Desigﬁ

moglichst viele Pareto-Punkte als Alter-
nativen anzubieten.

Bild 4 stellt nur die Eigenschaften
von Entwurfspunkten, also moglichen
Systemlosungen dar; es sagt nichts dar-
tiber aus, wie man zu solchen System-
16sungen kommt.

4.2.2 Allokation, Bindung und
Ablaufplanung

Zur Berechnung eines Entwurfspunk-
tes muss das Werkzeug zur Hard-
ware/Software-Partitionierung drei Auf-
gaben 16sen, die wir als nichstes
beschreiben mochten. Dabei wihlen wir
das Beispiel eines Video-Codecs zur
Kompression von Bildsequenzen.

Beispiel 4.2

In digitalen Videoanwendungen miis-
sen die Anforderungen an die Ubertra-
gungsbandbreiten oft durch eine geeig-
nete Datenkompression reduziert werden.
Das folgende Beispiel ist ein Hybrid-
Codierer, der Transformationscodierung
und pridiktive Codierung kombiniert.
Der Kompressionsfaktor einer reinen
Bildcodierung wird durch ein pridiktives
Schema fiir Bildfolgen verbessert. Ein
Block innerhalb eines Bildes wird aus
den Daten eines entsprechenden Blocks
des vorangegangenen Bildes geschiitzt.
Bild 11 zeigt eine Darstellung eines sol-
chen Hybrid-Codierers auf der Verhal-
tensebene.

Aus der nun folgenden Beschreibung
wird deutlich, dass die einzelnen Blocke
der Darstellung komplexe Teiloperatio-
nen beschreiben und dass die Kommu-
nikation mittels komplexer Datentypen
erfolgt (hier Bildsequenzen, wobei die
Bilder ihrerseits wieder aus Blocken, Ma-
kroblécken und einzelnen Pixeln zusam-
mengesetzt sind). Die zweidimensionale
diskrete Kosinustransformation (DCT)
wird auf nichtiiberlappende Blocke des
Priadiktionsfehlerbildes b[i] angewendet.
Die transformierten Blocke reprisentie-
ren den rdumlichen Frequenzinhalt des

i
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Bild 12 Beschreibung der Mdglichkeiten von Zielarchitekturen und Komponenten zur Realisierung des
Video-Codecs. Die Werte in Klammern bedeuten die Kosten der Ressourcen im Falle einer Verwendung.
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Knoten Operation Ressource/ Ressource/ Ressource/
# Berechnungsdauer Berechnungsdauer Berechnungsdauer
1 IN INM/0
31 IND INM/0
14 ouT OUTM/0
36 OUTD OUTM/0
2 BM BMM/22 DSP/60 RISC/88
3 RF EM/0 DPEM/0
37 RFD FM/0 DPEM/0
12 SF FM/0 DPEM/0
39 SFD FM/0 DPFEM/0
4 LF HC/2 DSP/3 RISC/9
38 LFD HC/2 DSP/3 RISC/9
5 DIFF SAM/1 DSP/2 RISC/2
6 DCT DCTM/2 DSP/4 RISC/8
10 IDCT DCTM/2 DSP/4 RISC/8
34 IDCTD DCTM/2 DSP/4 RISC/8
7 TH HC/2 DSP/8 RISC/8
8 Q HC/1 DSP/2 RISC/2
9 1Q HC/1 DSP/2 RISC/2
33 1QD HC/1 DSP/2 RISC/2
11 REC SAM/1 DSP/2 RISC/2
35 RECD SAM/1 DSP/2 RISC/2
13 RLC HC/2 DSP/8 RISC/8
HC/2 DSP/8 RISC/8

32 RLD

Tabelle |~ Abbildungsméglichkeiten von Operationen auf Komponenten

PTP
RISC1 FM DPFM DSP INM
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Bild 13 Architektur einer der schnellsten Implementierungen des Video-Codecs

entsprechenden Blocks. Die nachfol-
gende Quantisierung (Q) benutzt die
rdumliche Redundanz innerhalb eines
Bildes und die abschliessende Codierung
(RLC) die Dynamik der zu tibertragenden
Werte. Die Bewegungsschitzung und Be-
wegungskompensation werden fiir die

Codierung zwischen aufeinanderfolgen-
den Bildern einer Sequenz benutzt. Ein
Block im Bild a[i] wird verglichen mit
Nachbarblocken des vorangegangenen
Bildes f[i], und hieraus wird ein Bewe-
gungsvektor g[i] bestimmt. Als Resultat
der Bewegungskompensation erhilt man

ein geschitztes Bild k[i]. In Bild 11
werden Teilalgorithmen als Blocke dar-
gestellt. Es gibt also noch keine Spezi-
fikation des zeitlichen Ablaufs, der Ab-
bildung auf eine Zielarchitektur, der
Speichergrossen, der Partitionierung von
Bildern in Blocke oder Makroblocke.

Bild 12 zeigt eine Vielfalt moglicher
Systemarchitekturen. Dargestellt sind
drei Busse, die unterschiedliche Daten-
raten besitzen, zwei Speichermodule,
zwei Risc-Prozessoren, ein Signalprozes-
sor (DSP), einige dedizierte Hardware-
module, ndmlich ein Blockmatching-
modul (BMM), ein Modul zur Berech-
nung von DCT/IDCT-Transformationen
(DCTM), ein Subtrahier/Addier-Modul
(SAM), ein Huffman-Coder (HC) und
[/O-Module (INM und OUTM). Die
Risc-Prozessoren (RISC1 und RISC2)
sowie der DSP konnen jeden der Blocke
der Spezifikation implementieren, aller-
dings ist der DSP schneller fiir spezielle
Aufgaben, jedoch teuer als die Risc. Die
anderen Hardwaremodule sind nur in der
Lage, spezielle Aufgaben zu implemen-
tieren. Beispielsweise kann das DCTM-
Modul nur die Operationen DCT und
IDCT implementieren. Die Moglichkei-
ten und Eigenschaften der Abbildung von
Operationen auf Module sind in Tabelle I
dargestellt. Dabei wurden die in Bild 11
dargestellten Blocke in elementare Ope-
rationen verfeinert und in die Kanten
Kommunikationsknoten eingefiigt, die
hier nicht dargestellt sind. Diese Kommu-
nikationsknoten konnen intern auf den
Modulen oder auf den Bussen realisiert
werden.

Zunichst soll das Partitionierungs-
Tool eine Zielarchitektur aus der Vielfalt
von Komponenten auswihlen. Diese
Aufgabe bezeichnet man als Allokation
der Ressourcen. Beispielsweise soll nur
einer der drei in Bild 12 dargestellten
Busse ausgewiihlt werden, da voraus-
gesetzt wird, dass jedes Modul (mit
Ausnahme des Blockmatchingmoduls
BMM) nur einen Busanschluss hat. Die
Kosten eines Entwurfspunktes werden
dann hiufig einfach aus der Summe der

Bild 14 Gantt-Chart einer der schnellsten gefundenen Implementierungen
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Pa, Raj s Pay
Bildperiode P 22 42 54
Kosten ¢ 350 340 330

Kosten der allozierten Komponenten ge-
bildet.

Beispiel 4.3

Bild 13 zeigt die Allokation fiir einen
speziellen Entwurfspunkt. Alle nicht ge-
strichelten Komponenten sind alloziert,
das heisst, sie gehoren zur Implementie-
rung, alle gestrichelten Komponenten
gehoren nicht zur Implementierung.

Im weiteren muss festgelegt werden,
welche Funktionalitit auf welche Kom-
ponente abgebildet wird (Bindung) und
wann die Funktionalitit (Reihenfolge
oder absolute Zeit) auf den Komponenten
berechnet wird (Ablaufplanung).

Dabei muss bekannt sein, auf welche
Komponenten eine Funktion abgebildet
werden kann und welche Eigenschaften
eine solche Bindung mit sich bringt (Ko-
sten, Berechnungsdauer usw., Tabelle I).
Ublicherweise gibt man diese Abbil-
dungsmoglichkeiten in Bibliotheken an.
Zum Beispiel kann ein Modul zur Reali-
sierung eines Filters in verschiedenen
Softwarerealisierungen fiir verschiedene
Zielprozessoren sowie in Form verschie-
dener Zellbibliotheken fiir Hardware-
komponenten (z. B. FPGA, Makroblock
fiir Asic usw.) vorliegen, jeweils parame-
trisiert in Kosten, Ausfiihrungsdauer, Lei-
stungsaufnahme usw.

Auf der Systemebene ist besonders
wichtig, auch Kommunikations- (Busse,
Verbindungsleitungen) und Speicher-
ressourcen (RAM, ROM, Register usw.)

Tabelle Il Pareto-Punkte
Pa,  Pa;  Pag ineinem einzigen Lauf
des evolutionaren Algo-
78 114 166  rithmus
280 230 180

zu modellieren und als Ressourcen zu be-
trachten. Beispielsweise kann die Ent-
scheidung HW oder SW oft davon abhiin-
gen, wie das Kommunikationsmedium
realisiert ist. Sollte ndmlich ein unter-
dimensionierter Bus zum Flaschenhals
fiir die Performanz werden, wiire es bes-
ser, eine reine Softwarerealisierung zu
entwerfen; ein Geschwindigkeitsgewinn
durch eine dedizierte Hardwarekompo-
nente wiirde durch den Kommunikations-
flaschenhals ja wieder zunichte gemacht.

Fiir eine gegebene Problemstellung
sind also

— die Funktionalitit an funktionale Ein-
heiten (Prozessoren, Multiplizierer,
ALU usw.),

— Kommunikationen an Busressourcen
und

— Variablen an Speicherressourcen zu
binden.

Die Bindung und Ablaufplanung stellt
man tiblicherweise in einem Gantt-Chart
dar (Bild 14). Dargestellt sind auf der X-
Achse die Zeit und auf der Y-Achse die
allozierten Ressourcen (Bild 13). Die
Bindung der Operationen und die Be-
rechnungsintervalle der Operationen sind
als Balken dargestellt. Fiir die Bestim-
mung eines Ablaufplans miissen Daten-
abhingigkeiten und Ressourcenbeschriin-
kungen beriicksichtigt werden. Aus Platz-
griinden konnen wir hier nicht niher
auf die dabei zu l6senden Probleme ein-
gehen.

od |
Period -
150]
125 ¥
¥
100]
757
507
25 1
Bild 15 Entwurfsraum-
A . . : . : exploration (Video-
150 250 as0 450 550 el Codec) in CodeSign mit
ost .
den in Tabelle Il darge-
stellten Pareto-Punkten
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4.2.3 HW/SW-Partitionierung
in CodeSign

Ziel der Entwurfsraumexploration ist,
moglichst viele Implementierungen zu
finden, die Pareto-Punkte sind. Im Pro-
jekt CodeSign der ETH Ziirich wurde
dazu ein Verfahren eingesetzt, das auf
dem Prinzip der evolutiondren Algorith-
men beruht [20]. Eine Ubersicht iiber die
Prinzipien der Optimierung mittels evo-
lutiondrer Algorithmen findet man zum
Beispiel in der Ausgabe 25/95 des Bulle-
tins SEVVSE [21]. Das Verfahren zeigt
sich als sehr gut geeignet zur Entwurfs-
raumexploration, da die Komplexitit der
zu untersuchenden Losungen (1.9-10%7
mogliche Bindungen im Beispiel) sowohl
exakte Methoden als auch enumerative
Suchmethoden in den Schatten stellt.

Beispiel 4.4

Die fiir das Beispiel des Video-Codecs
gefundenen Pareto-Punkte sind in Ta-
belle II und in Bild 15 fiir einen zwei-
dimensionalen Entwurfsraum (Kosten
und Bildperiode) dargestellt. Die Berech-
nungszeit des Verfahrens zur Ermittlung
aller Pareto-Punkte betrug weniger als
10 Minuten.

Bild 14 zeigt den Gantt-Chart der
schnellsten gefundenen Implementierung
und Bild 13 die Architektur des entspre-
chenden Entwurfspunktes. Offensichtlich
ist die minimale Periode durch die Be-
rechnungsdauer des Blockmatching-
moduls (BMM) bestimmt.

4.3 Schitzung

Das Problem der Schitzung ist bereits
auf den Ebenen der Software-Codegene-
rierung und Hardwaresynthese bekannt.
Will man beispielsweise garantieren kon-
nen, dass ein Prozessor in einem gewis-
sen maximalen Zeitintervall (sog. Dead-
line) auf ein Ereignis (z. B. Interrupt) rea-
giert, so muss man die Ausfiihrungszeit
des auf dem Prozessor laufenden Pro-
gramms im schlimmsten angenommenen
Fall kennen. Man weiss, dass fiir ein ge-
gebenes Programm im allgemeinen nur
unter zahlreichen Einschriankungen (Ver-
zicht auf Zeigeroperationen, beschrinkte
Schleifengrenzen, keine Interrupts) iiber-
haupt entscheidbar ist, ob das Programm
in endlicher Zeit beendet wird. Zusitzlich
machen es die heutigen Prozessoren
durch komplizierte Cache-Mechanismen
und intensives Befehlspipelining sowie
Ausnahmebehandlungen schwer, die
Ausfiihrungszeit eines Code-Segments zu
berechnen. Zum anderen ist die Abschiit-
zung der Ausfiihrungszeit schwierig
wegen der Existenz von datenabhidngigen
Befehlen, insbesondere Programmkon-
trollstrukturen (Schleifen, Verzweigun-
gen).
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Heutige Arbeiten zur Schitzung versu-
chen nun beispielsweise, moglichst gute

Schranken fiir die Worst-Case-Aus-
fiihrungszeiten eines Code-Segments zu
bestimmen. Aus sicherheitskritischen
Gesichtspunkten (z. B. bei Echtzeit-
Systemen) ist man an der Worst-Case-
Ausfiihrungszeit interessiert, da beim
Verpassen einer Deadline mit katastro-
phalen Auswirkungen zu rechnen ist.

Analogien lassen sich auch im Bereich
der Hardwaresynthese finden. Eine gute
Abschiitzung der bendtigten Chipfliche
bedarf beispielsweise einer vorausgegan-
genen Plazierung und Verdrahtung. Da
die Synthese bis auf diese physikalische
Ebene im allgemeinen zu lange dauert,
muss man auf hoheren Entwurfsebenen
(z. B. High-Level-Synthese) auch eine
konservative Schitzung des Fldchenauf-
wands und der Verzogerungen vorneh-
men, damit man garantieren kann, dass
bestimmte Entwurfsbeschrinkungen
(z. B. Chipfliache, Taktrate) eingehalten
werden.

Ohne auf Schitzungsverfahren niher
einzugehen, ldsst sich die Erfahrungs-
regel aufstellen, dass sich die Dauer zur
Berechnung einer Schitzung und die
Giite der Schitzung entgegengesetzt zu-
einander verhalten.

5. Zusammenfassung

Im vorliegenden Beitrag wurde ver-
sucht, eine Ubersicht iiber die wichtig-
sten Auspriagungsformen und Problem-
stellungen zu geben, mit denen sich

der Bereich des Hardware/Software-
Codesigns beschiftigt, wobei der ein-
fiihrende Charakter des Beitrages zu be-
tonen ist. In einigen Punkten (Spezifika-
tion, HW/SW-Partitionierung) wurden
Ansiitze des Projekts CodeSign der ETH
Ziirich vorgestellt.

Als Fazit des Beitrages soll stehen,
dass die Moglichkeiten der Entwurfs-
automatisierung elektronischer Systeme
noch bei weitem nicht erschopft sind und
dass in Zukunft noch einige neue Ent-
wurfswerkzeuge auf den Markt kommen
werden. Dies mag den Entwicklungs-
ingenieur beunruhigen, der sich daran
gewohnt hat, mit stindig neuen Werkzeu-
gen arbeiten zu miissen. Die neuen Werk-
zeuge sehen langfristig gesehen viel-
versprechend aus; sie werden sicherlich
keine blosse Modeerscheinung sein.

Ich mochte an dieser Stelle Herrn Prof.
Lothar Thiele und meinen Kollegen im

Projekt CodeSign der ETH Ziirich dan-
ken fiir die Unterstiitzung und niitzliche
Kommentare. Insbesondere gilt mein
Dank Rob Esser und Tobias Blickle fiir
die Beitrige und Abbildungen aus dem
CodeSign-Projekt. Ebenfalls mochte ich
Herrn Markus Pilz von der Universitiit
Zirich fiir aufmerksame Kommentare
danken.
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et le prix des futurs produits.

Hardware/Software-Codesign

Partie 2: Synthése matériel/logiciel

Apres avoir présenté dans la premiere partie de cet article (Bulletin ASE/UCS
25/1996) I’énoncé du probleme du codesign hardware/software, les architectures
et formes de réalisation ainsi que les modeles de calcul, les langages de spécifi-
cation et les pratiques de projet qui entrent en ligne de compte, cette deuxieme
partie a pour theme le déroulement proprement dit du projet. Une grande partie de
cet article traite de la partition et optimisation du projet. Ces activités revétent une
tres grande importance, car elles déterminent donc tout directement les capacités
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Connaissez-vous I'lTG?

La Société pour les techniques de I'information de I’ASE (ITG)
est un Forum national qui s’occupe des problemes actuels de
I’électronique et des techniques de I’information. En tant que so-
ciété spécialisée de I'Association Suisse des Electriciens (ASE),
elle se tient a la disposition de tous les spécialistes et utilisateurs
intéressés du domaine des techniques de I’information.

Pour de plus amples renseignements et documents, veuillez
prendre contact avec I’ Association Suisse des Electriciens, Lupp-
menstrasse 1, 8320 Fehraltorf, téléphone 0195611 11.
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