
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 88 (1997)

Heft: 3

Artikel: Hardware/Software-Codesign : Massgeschneiderte elektronische
Systeme : Teil 2 : HW/SW-Synthese

Autor: Teich, Jürgen

DOI: https://doi.org/10.5169/seals-902179

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-902179
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Computer-aided Design

Nachdem im ersten Teil dieses Beitrages (Bulletin SEVA/SE 25/1996) die Problemstellung

des Hardware/Software-Codesigns, die in Frage kommenden Architekturen
und Realisierungsformen sowie Berechnungsmodelle, Spezifikationssprachen und
Entwurfspraktiken vorgestellt wurden, hat der vorliegende zweite Teil den eigentlichen

Entwurfsablauf zum Thema. Ein grosser Teil der nachstehenden Ausführungen
befasst sich mit der Partitionierung und Optimierung des Entwurfs. Diese
Entwurfstätigkeiten sind von grösster Bedeutung, bestimmen sie doch ganz direkt die
Fähigkeiten und den Preis der zukünftigen Produkte.

Hardware/Software-Codesign: Mass-

geschneiderte elektronische Systeme
Teil 2: HW/SW-Synthese

Adresse des Autors
PD Dr.-Ing. Jürgen Teich, Institut für Technische

Informatik und Kommunikationsnetze
(TIK), ETH Zürich, 8092 Zürich

Jürgen Teich

4. HW/SW-Synthese

4.1 Entwurfsablauf
Der typische Entwurfsablauf bei der

Entwicklung eines HW/SW-Systems ist
in Bild 10 dargestellt. Ausgehend von der

Spezifikation des Systemverhaltens
erfolgt die Aufteilung der zu implementierenden

Funktionalität in Hardware- und
Softwarefunktionalität. Man spricht in
diesem Zusammenhang auch von der
Hardware/Software-Partitionierung.

Man sollte sich spätestens an dieser
Stelle den Unterschied zwischen Hardware-

und Softwarerealisierung
vergegenwärtigen. Zum einen läuft zwar keine
Software ohne Hardware (der Prozessor
realisiert eine gewünschte Funktionalität
durch Ausführung eines Programms),
zum anderen aber wird die Unterscheidung

zwischen Hard- und Softwarerealisierung

schwammig, wenn man zum
Beispiel an programmierbare
Hardwarebausteine (z. B. PLA, FPGA) denkt.
Dem Baustein wird die Funktionalität der
Schaltung, die er realisieren soll, durch

Programmierung (Software) aufgeprägt
und lässt sich sogar häufig während des

Betriebs umprogrammieren. In dieser
Hinsicht ist die Funktionalität ebenfalls
in Software realisiert (als Code, der die
Gatterschaltung konfiguriert). Man kann
also von einer Programmierung auf
Gatterebene sprechen (siehe auch Bild 6 in
Teil 1). Ausserdem werden selbst
komplexe Asie heute mit Hilfe von
Programmiersprachen (Hardwarebeschreibungssprachen,

zum Beispiel VHDL, Verflog)
beschrieben und synthetisiert. Wir treffen
daher die übliche, jedoch nicht fest
definierte Konvention, dass man von einer

Implementierung einer Funktionalität in
Hardware genau dann redet, wenn der
Entwerfer bildlich eine Schaltung vor
Auge hat, welche die Funktionalität (und
nur diese) implementiert, und von
Software, wenn das beabsichtigte Endstadium

der Synthese eine Beschreibung ist,
die als Programm von einer Maschine
ausgeführt wird.

Im Verlauf der Hardware/Software-
Partitionierung wird nun die Entscheidung

getroffen, welche Funktionalität in
Software und welche in eine Schaltung
verfeinert wird. Später werden wir die
wesentlichen Anforderungen und
Aufgaben der Hardware/Software-Partitio-
nierung näher betrachten.

Ausgehend von dieser Partitionierung,
werden die Teilspezifikationen dann
durch Synthesewerkzeuge verfeinert. Für

Bulletin SEV/VSE 3/97 17

Elektronik

::#:&S£':¥:W#ÄW£WÄ

die Verhaltensbeschreibung der Software
bedeutet dies beispielsweise die Generierung

eines Hochsprachenprogramms
(z. B. in C, Pascal) und die Compilierung
dieses Codes in Maschinencode mit Hilfe
eines Compilers für den Zielprozessor.
Analog wird für die Verhaltensbeschreibung

der Hardwarekomponenten eine
Verhaltensbeschreibung typischerweise
in einer Hardwarebeschreibungssprache
generiert (z. B. VHDL, Verilog). Mit
Hilfe von CAD-Werkzeugen lassen sich
auch diese Hardwarebeschreibungen nun
verfeinem. Ist beispielsweise ein FPGA
die Zielarchitektur zur Implementierung
der Hardware, so wird die VHDL-Be-
schreibung verfeinert bis auf eine strukturelle

Netzlistenbeschreibung beziehungsweise

eine Beschreibung der Plazierung
und Verdrahtung von Gattern aus einer
Zellbibliothek beim Entwurf eines Asie.
Für diese im allgemeinen komplexen
Syntheseschritte gibt es - ähnlich wie bei
den Compilern zur Softwaresynthese -
automatische Werkzeuge, welche die
Zwischenschritte der High-Level-Syn-

Bild 10 Typischer
Entwurfsablauf von HW/SW-

Systemen

these, Logiksynthese und gegebenenfalls
der Plazierung und Verdrahtung übernehmen.

Zu den Werkzeuganbietem zählen

beispielsweise die CAD-Systemhäuser
Cadence, Synopsys und Mentor.

Nach der Hardware/Software-Partitio-
nierung muss die Spezifikation so verfeinert

werden, dass die Komponenten
miteinander fehlerfrei Daten auszutauschen
in der Lage sind. Die Kommunikation
eines Mikroprozessors mit einer
Hardwarekomponente (z. B. Asie, FPGA)
kann zum Beispiel über einen Prozessorbus

(memory-mapped I/O, DMA, Interrupt),

eine serielle Schnittstelle oder über
einen Port erfolgen. Man kann sich
vorstellen, dass zum einen in der Software
Treiberroutinen zur Realisierung der
Kommunikation synthetisiert und zum
anderen in der Hardware eine Steuereinheit

zur Adressierung der Hardwarekomponenten,

zum Generieren der
Prozessorsignale und des Kommunikations-
protokolls realisiert werden müssen. Den

gesamten Schritt bezeichnet man als

Interfacesynthese. Eine wichtige Anfor-

Bild 4 Verschiedene

Realisierungsvarianten
eines Netzwerk-Controllers

(Wiederholung)

derung betrifft die Korrektheit des

Zusammenspiels zwischen Hardware und
Software. Zur Validierung müssen
Simulationswerkzeuge miteinander gekoppelt
werden und die Beschreibung auf
unterschiedlichen Verfeinerungsstufen der
Synthese - Verhalten (funktional),
Register-Transfer (taktzyklenecht), Gatter
(inkl. Gatterverzögerungszeiten) - simuliert

werden. Bei Verilog ist dies
beispielsweise auf Verhaltensebene durch
Einbindung von in C geschriebenen
Funktionen und Prozeduren möglich. Auf
Register-Transfer-Ebene ist eine takt-
zyklengetreue Modellierung der
Prozessorsignale nötig. Die benötigte
Simulationszeit steigt im allgemeinen stark mit
dem Grad der Verfeinerung.

4.2 Hardware/Software-
Partitionierung

Heutzutage hat man bereits ein gutes
Verständnis für die getrennte Optimierung

von Software (Ablaufplanung,
Befehlsauswahl, Registerallokation) und
Hardware (High-Level-Synthese,
Logikoptimierung). Hingegen zeigt es sich,
dass das mangelnde Erwägen von
HW/SW-Alternativen häufig zu Entwürfen

führt, die entweder zu teuer
(überdimensioniert), zu langsam (unterdimensioniert)

oder gemäss den Anforderungen
nicht flexibel für spätere Änderungen

sind (siehe z. B. Bild 4 in Teil 1).

Typischerweise werden
Entwurfsbeschränkungen (z. B. maximale Kosten,
minimale Performanz, maximaler
Leistungsverbrauch) vorgegeben, die gültige
Entwurfsräume von ungültigen Entwurfsgebieten

abgrenzen.
Man erkennt, dass der Raum von

gemischten Hardware/Software-Realisierungen

eine breite Basis von Zwischenlösungen

bietet. Aus Effizienzgründen
lohnt es sich, diesen Raum, der im
allgemeinen mehr als zweidimensional ist,
näher zu untersuchen. Die Abklärung von
Alternativen ist daher Teil der Aufgabe
der Hardware/Software-Partitionierung.
Dabei sind zwei Wege denkbar, um
Entwurfspunkte zu charakterisieren und zu
bewerten:

- Synthese (synthesebasierter Ansatz)

- Abschätzung (bibliotheksbasierter
Ansatz)

Der erste Weg ist oft zu zeitaufwendig;
insbesondere bei komplexen Systementwürfen

können nur wenige Entwurfspunkte

betrachtet werden. Der wesentliche

Vorteil dieses Weges besteht
allerdings darin, dass das Verhalten eines
Entwurfspunktes sehr genau dem
Verhalten des gebauten Systems entspricht
(Simulation bzw. Profiling des Codes).

18 Bulletin ASE/UCS 3/97

Computer-aided Design

current frame --a prediction error

a[i]
2SO
il V b[i]

DCT Q
c[i]

predicted frame

c

DCT"'

k[i]
loop
filter

Mil motion
compensation

motion vector g[i]

motion
estimation

frame memory

d[i]

e[i]

previous frame
hü

RLC

Bild 11 Darstellung eines Hybrid-Codierers für Bildsequenzen

Beim zweiten Ansatz können im
allgemeinen wesentlich mehr Entwurfspunkte
iteriert werden, da eine Abschätzung mit
Hilfe von optimierten Modulbibliotheken
im allgemeinen schneller als durch
Synthese erfolgen kann. Nachteil dieser
Methode ist allerdings, dass - je nach
Granularität der Bibliotheksmodule - die

Schätzung ungenau ist und man bezüglich

der wahren Kosten, Performanz usw.
nie ganz sicher sein kann, ob sich das
entworfene System nach der Realisierung
wie abgeschätzt verhält: Trifft man eine

zu konservative Abschätzung, dann findet
man eventuell nicht alle optimalen
Lösungen, trifft man eine zu vage Abschätzung,

so kann es sein, dass der Entwurfspunkt

nicht alle Entwurfsbeschränkungen
erfüllt. Der erste Pfad wird daher häufiger
bei Systemen gegangen, die ein hohes
Mass an Steuerung beziehungsweise ein
hohes Mass an Nichtdeterminismus
aufweisen, sogenannte Systeme mit
Steuerungsdominanz (z. B. eingebettete
Steuerungssysteme, Embedded Control). In
diesen Fällen wäre eine bibliotheks-
basierte Schätzung meist viel zu ungenau.

Exakte Werte der Entwurfsparameter

müssen über eine Simulation nach
der Synthese gewonnen werden. Bei
sogenannten Systemen mit Datenflussdomi-
nanz (z. B. signal- und bildverarbeitende
Systeme) lassen sich die Entwurfsparameter

hingegen recht gut aus Bibliotheken

abschätzen, da solche Systeme im
allgemeinen einen hohen Grad an
Determinismus und statischer Parallelität
aufweisen.

4.2.1 Optimierung
Betrachten wir den Entwurfsraum

gültiger HW/SW-Lösungen näher, so stellen
wir fest, dass nicht nur ein Punkt optimal
sein kann; es gibt zum Beispiel Lösungen
(z.B. Punkt P7 in Bild4), die
kostenoptimal sind, und Lösungen, die eine

optimale Performanz (z. B. Punkt P6 in
Bild 4) aufweisen. Im allgemeinen sind

alle diejenigen Entwurfspunkte interessant,

die dahingehend optimal sind, dass

sie von keinem anderen Punkt in allen
Entwurfskriterien geschlagen werden.
Solche Punkte nennt man auch Pareto-
Punkte.

Beispiel 4.1

Punkt P4 in Bild 4.1 ist neben P6 und
P7 ein Pareto-Punkt. P4 und P7 sind zwar
gleich gut in den Kosten, jedoch weist P4

eine niedrigere Datenübertragungszeit
auf, während P7 einen niedrigeren
Leistungsverbrauch besitzt. Auch von anderen

Punkten wird keiner der beiden
Punkte in allen Eigenschaften dominiert.
Folglich sind beide Punkte Pareto-
Punkte.

Geometrisch lassen sich Pareto-Punkte
so verdeutlichen: Seien die Eigenschaften
aller Entwurfsmetriken zu minimieren
(z. B. Kosten, Datenberechnungszeit,
Leistungsverbrauch usw.), dann liegt ein
Pareto-Punkt genau dann vor, wenn es

keinen Entwurfspunkt innerhalb des von
ihm mit dem Nullpunkt eingeschlossenen
Quadranten gibt.

Wenn man die Möglichkeit hat,
Entwurfsalternativen zu untersuchen, so
besteht das Problem der Entwurfs-
raumexploration darin, dem
Entwicklungsingenieur alle beziehungsweise

möglichst viele Pareto-Punkte als
Alternativen anzubieten.

Bild 4 stellt nur die Eigenschaften
von Entwurfspunkten, also möglichen
Systemlösungen dar; es sagt nichts
darüber aus, wie man zu solchen
Systemlösungen kommt.

4.2.2 Allokation, Bindung und
Ablaufplanung

Zur Berechnung eines Entwurfspunktes

muss das Werkzeug zur Hard-
ware/Software-Partitionierung drei
Aufgaben lösen, die wir als nächstes
beschreiben möchten. Dabei wählen wir
das Beispiel eines Video-Codecs zur
Kompression von Bildsequenzen.

Beispiel 4.2
In digitalen Videoanwendungen müssen

die Anforderungen an die
Übertragungsbandbreiten oft durch eine geeignete

Datenkompression reduziert werden.
Das folgende Beispiel ist ein Hybrid-
Codierer, der Transformationscodierung
und prädiktive Codierung kombiniert.
Der Kompressionsfaktor einer reinen
Bildcodierung wird durch ein prädiktives
Schema für Bildfolgen verbessert. Ein
Block innerhalb eines Bildes wird aus
den Daten eines entsprechenden Blocks
des vorangegangenen Bildes geschätzt.
Bild 11 zeigt eine Darstellung eines
solchen Hybrid-Codierers auf der
Verhaltensebene.

Aus der nun folgenden Beschreibung
wird deutlich, dass die einzelnen Blöcke
der Darstellung komplexe Teiloperationen

beschreiben und dass die Kommunikation

mittels komplexer Datentypen
erfolgt (hier Bildsequenzen, wobei die
Bilder ihrerseits wieder aus Blöcken, Ma-
kroblöcken und einzelnen Pixeln
zusammengesetzt sind). Die zweidimensionale
diskrete Kosinustransformation (DCT)
wird auf nichtüberlappende Blöcke des

Prädiktionsfehlerbildes b[i\ angewendet.
Die transformierten Blöcke repräsentieren

den räumlichen Frequenzinhalt des

(150) (20) (40) (100) (200) (0)

4 9 10 II 2

(150) (50) (100) (50) (0)

Bild 12 Beschreibung der Möglichkeiten von Zielarchitekturen und Komponenten zur Realisierung des

Video-Codecs. Die Werte in Klammern bedeuten die Kosten der Ressourcen im Falle einer Verwendung.

Bulletin SEV/VSE 3/97 19

Elektronik

Knoten
#

Operation Ressource/ Ressource/ Ressource/
Berechnungsdauer Berechnungsdauer Berechnungsdauer

1 IN INM/0
31 IND INM/0
14 OUT OUTM/O
36 OUTD OUTM/O

2 BM BMM/22 DSP/60 RISC/88
3 RF FM/0 DPFM/0

37 RFD FM/0 DPFM/0
12 SF FM/0 DPFM/0
39 SFD FM/0 DPFM/0
4 LF HC/2 DSP/3 RISC/9

38 LFD HC/2 DSP/3 RISC/9
5 DIFF SAM/1 DSP/2 RISC/2
6 DCT DCTM/2 DSP/4 RISC/8

10 IDCT DCTM/2 DSP/4 RISC/8
34 IDCTD DCTM/2 DSP/4 RISC/8

7 TH HC/2 DSP/8 RISC/8
8 Q HC/1 DSP/2 RISC/2
9 IQ HC/1 DSP/2 RISC/2

33 IQD HC/1 DSP/2 RISC/2
11 REC SAM/1 DSP/2 RISC/2
35 RECD SAM/1 DSP/2 RISC/2
13 RLC HC/2 DSP/8 RISC/8
32 RLD HC/2 DSP/8 RISC/8

Tabelle I Abbildungsmöglichkeiten von Operationen auf Komponenten

•£
AAA A A -

V V

7 A 9

V A

AAA ATI

9 9

A V 6 9

Aç A 1

AAA

9 9

A 9 V

A V

SBS

SBM

A

V V V V 9 ' vv! VVI
99 '

SAM

Bild 13 Architektur einer der schnellsten Implementierungen des Video-Codecs

entsprechenden Blocks. Die nachfolgende

Quantisierung (Q) benutzt die
räumliche Redundanz innerhalb eines
Bildes und die abschliessende Codierung
(RLC) die Dynamik der zu übertragenden
Werte. Die Bewegungsschätzung und
Bewegungskompensation werden für die

Codierung zwischen aufeinanderfolgenden
Bildern einer Sequenz benutzt. Ein

Block im Bild a[i] wird verglichen mit
Nachbarblöcken des vorangegangenen
Bildes /[(], und hieraus wird ein
Bewegungsvektor g[r] bestimmt. Als Resultat
der Bewegungskompensation erhält man

ein geschätztes Bild k[i\. In Bild 11

werden Teilalgorithmen als Blöcke
dargestellt. Es gibt also noch keine
Spezifikation des zeitlichen Ablaufs, der
Abbildung auf eine Zielarchitektur, der
Speichergrössen, der Partitionierung von
Bildern in Blöcke oder Makroblöcke.

Bild 12 zeigt eine Vielfalt möglicher
Systemarchitekturen. Dargestellt sind
drei Busse, die unterschiedliche Datenraten

besitzen, zwei Speichermodule,
zwei Risc-Prozessoren, ein Signalprozessor

(DSP), einige dedizierte Hardwaremodule,

nämlich ein Blockmatching-
modul (BMM), ein Modul zur Berechnung

von DCT/IDCT-Transformationen
(DCTM), ein Subtrahier/Addier-Modul
(SAM), ein Huffman-Coder (HC) und
I/O-Module (INM und OUTM). Die
Risc-Prozessoren (RISC1 und RISC2)
sowie der DSP können jeden der Blöcke
der Spezifikation implementieren,
allerdings ist der DSP schneller für spezielle
Aufgaben, jedoch teuer als die Rise. Die
anderen Hardwaremodule sind nur in der
Lage, spezielle Aufgaben zu implementieren.

Beispielsweise kann das DCTM-
Modul nur die Operationen DCT und
IDCT implementieren. Die Möglichkeiten

und Eigenschaften der Abbildung von
Operationen auf Module sind in Tabelle I
dargestellt. Dabei wurden die in Bild 11

dargestellten Blöcke in elementare
Operationen verfeinert und in die Kanten
Kommunikationsknoten eingefügt, die
hier nicht dargestellt sind. Diese
Kommunikationsknoten können intern auf den
Modulen oder auf den Bussen realisiert
werden.

Zunächst soll das Partitionierungs-
Tool eine Zielarchitektur aus der Vielfalt
von Komponenten auswählen. Diese
Aufgabe bezeichnet man als Allokation
der Ressourcen. Beispielsweise soll nur
einer der drei in Bild 12 dargestellten
Busse ausgewählt werden, da vorausgesetzt

wird, dass jedes Modul (mit
Ausnahme des Blockmatchingmoduls
BMM) nur einen Busanschluss hat. Die
Kosten eines Entwurfspunktes werden
dann häufig einfach aus der Summe der

SB F

HC

DCTM

SAM

BMM

C_RF1_BM.1 C;|BII_Lj;9< EI.) N _D®j(j=_B4EC_4(wj^mai DC_ID(jaOTB^jaDGRl||D_HE(jjB[ï_LFj CI»Io|(W^pCD_s)jatBL(j|ÔjDç| LDK^eir_n^.c3

LF 3 IND1 II TH:3 QiO IQ:3 F1LC:3 ||RLD:1 RFI 1

IQD:2 oa
L

T:3 IDCT3

DIFF.3 lj)CTD:| REC:3

BM 2

I I ».

HC

DCTM

SAM

BMM

Cycles

Bild 14 Gantt-Chart einer der schnellsten gefundenen Implementierungen

20 Bulletin ASE/UCS 3/97

Pa, Pa2 Pa3 Pa4 Pa5 Pa6

Bildperiode P 22 42 54 78 114 166
Kosten c 350 340 330 280 230 180

Tabelle II Pareto-Punkte
In einem einzigen Lauf
des evolutionären
Algorithmus

Kosten der allozierten Komponenten
gebildet.

Beispiel 4.3
Bild 13 zeigt die Allokation für einen

speziellen Entwurfspunkt. Alle nicht
gestrichelten Komponenten sind alloziert,
das heisst, sie gehören zur Implementierung,

alle gestrichelten Komponenten
gehören nicht zur Implementierung.

Im weiteren muss festgelegt werden,
welche Funktionalität auf welche
Komponente abgebildet wird (Bindung) und

wann die Funktionalität (Reihenfolge
oder absolute Zeit) auf den Komponenten
berechnet wird (Ablaufplanung).

Dabei muss bekannt sein, auf welche
Komponenten eine Funktion abgebildet
werden kann und welche Eigenschaften
eine solche Bindung mit sich bringt
(Kosten, Berechnungsdauer usw., Tabelle I).
Üblicherweise gibt man diese Abbil-
dungsmöglichkeiten in Bibliotheken an.

Zum Beispiel kann ein Modul zur
Realisierung eines Filters in verschiedenen
Softwarerealisierungen für verschiedene

Zielprozessoren sowie in Form verschiedener

Zellbibliotheken für
Hardwarekomponenten (z. B. FPGA, Makroblock
für Asie usw.) vorliegen, jeweils parame-
trisiert in Kosten, Ausführungsdauer,
Leistungsaufnahme usw.

Auf der Systemebene ist besonders

wichtig, auch Kommunikations- (Busse,
Verbindungsleitungen) und
Speicherressourcen (RAM, ROM, Register usw.)

zu modellieren und als Ressourcen zu
betrachten. Beispielsweise kann die
Entscheidung HW oder SW oft davon abhängen,

wie das Kommunikationsmedium
realisiert ist. Sollte nämlich ein
unterdimensionierter Bus zum Flaschenhals
für die Performanz werden, wäre es besser,

eine reine Softwarerealisierung zu
entwerfen; ein Geschwindigkeitsgewinn
durch eine dedizierte Hardwarekomponente

würde durch den Kommunikationsflaschenhals

ja wieder zunichte gemacht.
Für eine gegebene Problemstellung

sind also

- die Funktionalität an funktionale
Einheiten (Prozessoren, Multiplizierer,
ALU usw.),

- Kommunikationen an Busressourcen
und

- Variablen an Speicherressourcen zu
binden.

Die Bindung und Ablaufplanung stellt
man üblicherweise in einem Gantt-Chart
dar (Bild 14). Dargestellt sind auf der X-
Achse die Zeit und auf der T-Achse die
allozierten Ressourcen (Bild 13). Die
Bindung der Operationen und die
Berechnungsintervalle der Operationen sind
als Balken dargestellt. Für die Bestimmung

eines Ablaufplans müssen
Datenabhängigkeiten und Ressourcenbeschränkungen

berücksichtigt werden. Aus
Platzgründen können wir hier nicht näher
auf die dabei zu lösenden Probleme
eingehen.

Bild 15 Entwurfsraum-

exploration (Video-
Codec) in CodeSign mit
den in Tabelle II

dargestellten Pareto-Punkten

Bulletin SEV/VSE 3/97

Computer-aided Design

4.2.3 HW/SW-Partitionierung
in CodeSign

Ziel der Entwurfsraumexploration ist,

möglichst viele Implementierungen zu
finden, die Pareto-Punkte sind. Im Projekt

CodeSign der ETH Zürich wurde
dazu ein Verfahren eingesetzt, das auf
dem Prinzip der evolutionären Algorithmen

beruht [20]. Eine Übersicht über die

Prinzipien der Optimierung mittels
evolutionärer Algorithmen findet man zum
Beispiel in der Ausgabe 25/95 des Bulletins

SEVVSE [21]. Das Verfahren zeigt
sich als sehr gut geeignet zur
Entwurfsraumexploration, da die Komplexität der

zu untersuchenden Lösungen (1.9-1027

mögliche Bindungen im Beispiel) sowohl
exakte Methoden als auch enumerative
Suchmethoden in den Schatten stellt.

Beispiel 4.4
Die für das Beispiel des Video-Codecs

gefundenen Pareto-Punkte sind in
Tabelle II und in Bild 15 für einen
zweidimensionalen Entwurfsraum (Kosten
und Bildperiode) dargestellt. Die
Berechnungszeit des Verfahrens zur Ermittlung
aller Pareto-Punkte betrug weniger als
10 Minuten.

Bild 14 zeigt den Gantt-Chart der
schnellsten gefundenen Implementierung
und Bild 13 die Architektur des
entsprechenden Entwurfspunktes. Offensichtlich
ist die minimale Periode durch die
Berechnungsdauer des Blockmatching-
moduls (BMM) bestimmt.

4.3 Schätzung
Das Problem der Schätzung ist bereits

auf den Ebenen der Software-Codegene-
rierung und Hardwaresynthese bekannt.
Will man beispielsweise garantieren können,

dass ein Prozessor in einem gewissen

maximalen Zeitintervall (sog. Deadline)

auf ein Ereignis (z. B. Interrupt)
reagiert, so muss man die Ausführungszeit
des auf dem Prozessor laufenden
Programms im schlimmsten angenommenen
Fall kennen. Man weiss, dass für ein
gegebenes Programm im allgemeinen nur
unter zahlreichen Einschränkungen (Verzicht

auf Zeigeroperationen, beschränkte
Schleifengrenzen, keine Interrupts)
überhaupt entscheidbar ist, ob das Programm
in endlicher Zeit beendet wird. Zusätzlich
machen es die heutigen Prozessoren
durch komplizierte Cache-Mechanismen
und intensives Befehlspipelining sowie
Ausnahmebehandlungen schwer, die
Ausführungszeit eines Code-Segments zu
berechnen. Zum anderen ist die Abschätzung

der Ausführungszeit schwierig
wegen der Existenz von datenabhängigen
Befehlen, insbesondere Programmkontrollstrukturen

(Schleifen, Verzweigungen).

21

Elektronik

Heutige Arbeiten zur Schätzung versuchen

nun beispielsweise, möglichst gute
Schranken für die Worst-Case-Aus-
führungszeiten eines Code-Segments zu
bestimmen. Aus sicherheitskritischen
Gesichtspunkten (z. B. bei Echtzeit-
Systemen) ist man an der Worst-Case-

Ausführungszeit interessiert, da beim
Verpassen einer Deadline mit katastrophalen

Auswirkungen zu rechnen ist.

Analogien lassen sich auch im Bereich
der Hardwaresynthese finden. Eine gute
Abschätzung der benötigten Chipfläche
bedarf beispielsweise einer vorausgegangenen

Plazierung und Verdrahtung. Da
die Synthese bis auf diese physikalische
Ebene im allgemeinen zu lange dauert,
muss man auf höheren Entwurfsebenen
(z. B. High-Level-Synthese) auch eine
konservative Schätzung des Flächenaufwands

und der Verzögerungen vornehmen,

damit man garantieren kann, dass

bestimmte Entwurfsbeschränkungen
(z, B. Chipfläche, Taktrate) eingehalten
werden.

Ohne auf Schätzungsverfahren näher

einzugehen, lässt sich die Erfahrungsregel

aufstellen, dass sich die Dauer zur
Berechnung einer Schätzung und die
Güte der Schätzung entgegengesetzt
zueinander verhalten.

5. Zusammenfassung

Im vorliegenden Beitrag wurde
versucht, eine Übersicht über die wichtigsten

Ausprägungsformen und Problem1

Stellungen zu geben, mit denen sich

der Bereich des Hardware/Software-
Codesigns beschäftigt, wobei der
einführende Charakter des Beitrages zu
betonen ist. In einigen Punkten (Spezifikation,

HW/SW-Partitionierung) wurden
Ansätze des Projekts CodeSign der ETH
Zürich vorgestellt.

Als Fazit des Beitrages soll stehen,
dass die Möglichkeiten der
Entwurfsautomatisierung elektronischer Systeme
noch bei weitem nicht erschöpft sind und
dass in Zukunft noch einige neue
Entwurfswerkzeuge auf den Markt kommen
werden. Dies mag den Entwicklungsingenieur

beunruhigen, der sich daran

gewöhnt hat, mit ständig neuen Werkzeugen

arbeiten zu müssen. Die neuen Werkzeuge

sehen langfristig gesehen
vielversprechend aus; sie werden sicherlich
keine blosse Modeerscheinung sein.

Ich möchte an dieser Stelle Herrn Prof.
Lothar Thiele und meinen Kollegen im

Projekt CodeSign der ETH Zürich danken

für die Unterstützung und nützliche
Kommentare. Insbesondere gilt mein
Dank Rob Esser und Tobias Blickle für
die Beiträge und Abbildungen aus dem

CodeSign-Projekt. Ebenfalls möchte ich
Herrn Markus Pilz von der Universität
Zürich für aufmerksame Kommentare
danken.

Literatur

[20] T. Blickle, J. Teich and L. Thiele: System-level

synthesis using Evolutionary Algorithms. Technical

Report 16, Computer Engineering and Communication

Networks Lab (TIK), Swiss Federal Institute of
Technology (ETH) Zurich, 8092 Zurich, March 1996.

Presented at Workshop Dagstuhl Seminar No. 9613,

Evolutionary Algorithms and their Application,
Schloss Dagstuhl, Germany, March 1996.

[21] T. Blickle: Optimieren nach dem Vorbild der

Natur - Evolutionäre Algorithmen. Bulletin SEVA/SE

86(1995)25, S. 21-26.

Hardware/Software-Codesign
Partie 2: Synthèse matériel/logiciel

Après avoir présenté dans la première partie de cet article (Bulletin ASE/UCS
25/1996) l'énoncé du problème du codesign hardware/software, les architectures
et formes de réalisation ainsi que les modèles de calcul, les langages de spécification

et les pratiques de projet qui entrent en ligne de compte, cette deuxième

partie a pour thème le déroulement proprement dit du projet. Une grande partie de

cet article traite de la partition et optimisation du projet. Ces activités revêtent une
très grande importance, car elles déterminent donc tout directement les capacités
et le prix des futurs produits.

iMiiiiinmfj> Connaissez-vous l'ITG?

Il IL«"
S E V / A S E

La Société pour les techniques de l'information de l'ASE (ITG)
est un Forum national qui s'occupe des problèmes actuels de

l'électronique et des techniques de l'information. En tant que
société spécialisée de l'Association Suisse des Electriciens (ASE),
elle se tient à la disposition de tous les spécialistes et utilisateurs
intéressés du domaine des techniques de l'information.
Pour de plus amples renseignements et documents, veuillez
prendre contact avec l'Association Suisse des Electriciens, Lupp-
menstrasse 1, 8320 Fehraltorf, téléphone 019561111.

22 Bulletin ASE/UCS 3/97

	Hardware/Software-Codesign : Massgeschneiderte elektronische Systeme : Teil 2 : HW/SW-Synthese

