Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 87 (1996)

Heft: 25

Artikel: Hardware/Software-Codesign : Massgeschneiderte elektronische
Systeme : Teil 1 : HW/SW-Architekturen und Spezifikation

Autor: Teich, Jurgen

DOl: https://doi.org/10.5169/seals-902405

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-902405
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

SO ' .(_‘I‘.

Computer-aided besign

Die zunehmende Automatisierung im Bereich des Entwurfs elektronischer Schaltun-
gen hat dazu gefihrt, dass man immer komplexere Systeme in immer kiirzerer Zeit
mit Hilfe von CAD-Werkzeugen entwickeln kann. Aus Kosten- und Effizienzgriinden
bestehen die betrachteten Systeme typischerweise aus einer Kombination von (pro-
grammierbaren) Hardware- und Softwarekomponenten. Unter dem Schlagwort
Hardware/Software-Codesign verbirgt sich das heutige Bestreben, dem Entwurf gan-
zer, komplexer Systeme mit Hilfe von CAD-Werkzeugen Herr zu werden. Dieser Artikel
gibt eine einfiihrende Ubersicht (iber die Entwurfsprobleme, mit denen sich dieses

Forschungsgebiet beschaftigt.

Hardware/Software-Codesign: Mass-
geschneiderte elektronische Systeme

Teil 1: HW/SW-Architekturen und Spezifikation

Adresse des Autors

PD Dr.-Ing. Jiirgen Teich, Institut fiir Technische
Informatik und Kommunikationsnetze (TIK)
ETH Ziirich, 8092 Ziirich

Bulletin SEV/VSE 25/96

B Jiirgen Teich

1. Was ist Hardware/Software-
Codesign?

Obwohl der Begriff Hardware/Soft-
ware-Codesign als neues Zauberwort in
vieler Munde ist, sind bestimmte Auspri-
gungsformen und Problemstellungen der
damit bezeichneten Technik bereits seit
vielen Jahren bekannt. Ein Ingenieur bei-
spielsweise, der ein neues System entwik-
kelt, das einen Mikroprozessor als Schal-
tungsbestandteil enthilt, baut zuerst die
Hardware (Platine, ASIC usw.) auf und
programmiert anschliessend die program-
mierbaren Komponenten (Software).

1.1 Wachsende Komplexitit

Wir betrachten den automatisierten Ent-
wurf und die Optimierung komplexer digi-
taler Systeme, die aus Hardware- und
Softwarekomponenten bestehen, soge-
nannte Hardware/Software-Systeme. Ob-
wohl solche Systeme bereits seit vielen
Jahren von Ingenieuren und Technikern
konzipiert und gebaut werden, ist man sich
heutzutage dariiber einig, dass man nur
durch den Einsatz rechnergestiitzter Ent-

wurfsmethoden (Computer-aided Design)
die Komplexitidt moderner Systeme bewl-
tigen und bessere Entwiirfe (Performanz,
Kosten) in kiirzerer Zeit schaffen kann.
Dies erklért das wachsende Interesse der
Industrie und der Forschung an rechnerge-
stiitzten Entwurfsmethoden.

Die Komplexitit, so wie sie hier ver-
standen wird, entsteht nicht nur durch die
Anzahl der Einzelkomponenten, aus denen
ein System zusammengesetzt ist, sondern
vor allem durch Heterogenitdt. In Zukunft
liegen die Anforderungen gerade bei der
Beherrschung heterogener technischer Sy-
steme, die sich durch verschiedenartige
Komponenten und Interaktionen auszeich-
nen und die fiir einen ganz bestimmten
Anwendungsbereich zugeschnitten sind,
bei den sogenannten anwendungsspezifi-
schen Systemen. Solche Anwendungsbe-
reiche sind unter anderem die Bereiche
Medizintechnik, Prozess- und Industrie-
steuerungen, digitale Netzwerke, Tele-
kommunikation und digitale Signal- und
Bildverarbeitung. Bemerkenswerterweise
lag 1991 der Marktanteil solcher Systeme
bereits bei umgerechnet 31 Milliarden
US-Dollar gegeniiber 46,5 Milliarden
US-Dollar fiir Vielzweckrechner (PC,
Laptops, Workstations) mit einer Wachs-
tumsrate von 18% gegeniiber 10% fiir
Vielzweckrechner [1].

Ein konkretes Beispiel eines solchen
Systems ist die in Bild 1 dargestellte
integrierte Schaltung, die innerhalb eines

17

Elektromk

Hardware Software

I o o v T o e e e B R S

Speicher

| o
U Datenpfad DSP L
= CORE RAM -
[] |Datenpfad Od
oooooog D\S\DD\
\li Ueber [~ | Modulation/ [| Kanalkodierung/ [<7| Sprach- [<] Code}: |:|
tragung (= Demodulation |- Dekodierung |—={ kodierung | —{J
—
L Systemmanagement & Control l<—>{ MMI e

Bild 1

Blockdiagramm der Funktion eines zellularen Telefons nach dem GSM-Standard (unten) und Ab-

bildung der Blocke auf eine Ein-Chip-Realisierung mit einem DSP-Core (oben)

mobilen Telefongerites (GSM-Standard)
eingesetzt wird.

Beispiel 1.1

Das Bild I aus [2] zeigt ein typisches
heterogenes Hardware/Software-System,
bestehend aus einem Prozessor (DSP),
anwendungsspezifischer Hardware und
Peripherie. Es handelt sich um eine Ein-
Chip-Realisierung des GSM-Standards fiir
ein zellulares Telefon. Das Bild zeigt die
Zuteilung der einzelnen Segmente eines
Blockdiagramms auf die Architektur. Der
Prozessor wird eingesetzt, um Aufgaben
mit niedrigen bis mittleren Datenraten
(Kodierung/Dekodierung) sowie Steue-
rungsfunktionen zu {ibernehmen. Die
Blocke, die hohere Rechenleistungen er-
fordern (Modulation und Demodulation),
werden in anwendungsspezifischer Hard-
ware realisiert.

Da solche Systeme meistens in einen
technischen Kontext eingebettet sind,
spricht man auch von eingebetteten Syste-
men (Bild 2). Diese sind dazu bestimmit,
Funktionen als Antwort auf bestimmte
Stimuli auszufiihren und Daten informa-
tionstechnisch zu verarbeiten. Neben dem
Hardware/Software-Heterogenitétsaspekt
sind bei diesen Systemen auch die Aspekte
mechanisch/elektrisch (Sensoren, Akto-
ren) und Analog/Digital (A/D- und D/A-
Wandler) wichtig.

Das grosse Interesse am systematischen
Entwurf von eingebetteten Systemen ist
zuriickzufiihren auf

— Fortschritte in den Schliisseltechnolo-
gien (Mikroelektronik, formale Metho-
den). Dadurch ergibt sich eine

— steigende Vielfalt von Anwendungen
und Leistungsanforderungen, verbun-
den mit

18

— der Notwendigkeit, Entwurfs- und Test-
kosten zu senken.

Um die Entwicklung in diesem Bereich
genauer zu verstehen, fithrt man sich
sinnvollerweise die historische Entwick-
lung kurz vor Augen. Insgesamt lassen
sich drei Abschnitte erkennen:

— Nachdem die Zahl der Objekte in den
unteren Entwurfsebenen (Geometrie,
physikalische Ebene) aufgrund des Zeit-
aufwandes und der Fehleranfilligkeit
ohne Automatisierung nicht mehr hand-
habbar war, wurden in der Industrie und
in der Forschung Modelle und Metho-
den fiir die Schaltungssimulation, Pla-
zierung und Verdrahtung entwickelt.

— In einem weiteren Schritt wurden dann
auch hohere Abstraktionsebenen in die
Automatisierung einbezogen, wie zum
Beispiel die Simulation von Schaltun-
gen auf Logikebene oder die Logik-
synthese.

— Neue Anforderungen beziiglich der
Systemkomplexitit, der Zeitspanne
zwischen Produktidee und Marktein-
fiihrung sowie der Zuverldssigkeit und
Giite fiihren nun zur Entwurfsautomati-
sierung auf der noch abstrakteren Sy-
stemebene.

Kopplung

il

[
Standard-

i il 11
(R

i Prozessor

Prozessor

Eingebettetes System

Systemumgebung

Bild 2 Schematische Darstellung eines ein-
gebetteten Systems

Auf der Systemebene besteht eine
zentrale Aufgabe darin, eine Aufteilung
der Funktionalitit in Hardware- und Soft-
warekomponenten vorzunehmen, die so-
genannte Hardware/Software-Partitionie-
rung.

Beispiel 1.2

Ein Netzwerk-Controller soll entworfen
werden, der einen Speicher mit einer
seriellen Schnittstelle koppelt (Bild 3 aus
[3]). Seine Aufgabe besteht darin, Daten
tiber die serielle Schnittstelle zu senden
und zu empfangen und dabei ein bestimm-
tes Protokoll einzuhalten (z. B. CS/CD fiir
Ethernet). Dabei ist die maximale Daten-
tibertragungszeit Ty, (in ns) fiir ein Kilo-
byte an Daten einzuhalten. Das System ist
ferner einer Kostenschranke K, (in Fran-
ken) unterworfen und soll nicht mehr als
Ppa (in mW) Leistung verbrauchen. Of-
fensichtlich muss man zunéchst die Ent-
scheidung treffen, welche Aufgaben in
Software und welche Aufgaben in Hard-
ware realisiert werden. Eine exemplari-
sche Aufteilung ist in Bild 3 dargestellt.

In den meisten Fillen erfolgt die Hard-
ware/Software-Partitionierung durch Ab-
schitzung von Kosten und Performanz-
anforderungen nach dem jeweiligen Erfah-
rungswissen des Entwicklungsingenieurs.
Da diese Entwurfsentscheidung auf groben
Schitzungen beruht, ist keine Gewihr
geleistet, dass das realisierte System alle
Entwurfsbeschrinkungen erfiillt bezie-
hungsweise dass es in einer gewiinschten
Hinsicht optimal ist. Solche Systeme sind
meist in mindestens einer Eigenschaft
unter- oder iiberdimensioniert, wie das
folgende Beispiel zeigt.

Beispiel 1.3

Das Bild 4 zeigt verschiedene Losungen
zur Realisierung des Netzwerk-Controllers
aus Beispiel 1.2. Die Menge von Entwurfs-
beschrinkungen kennzeichnet hier einen
dreidimensionalen Entwurfsraum mit den
Achsen Dateniibertragungszeit/kByte T,
Kosten K und Leistungsverbrauch P. Ein
mit der Entwicklung beauftragter Soft-
wareingenieur konstruierte ein System mit
einem Mikroprozessor und erhielt ein Sy-
stem mit den durch den Entwurfspunkt P,
gekennzeichneten Eigenschaften. Offen-
sichtlich erfiillt diese Losung zwar die

Kostenanforderungen, aber nicht die
Datenratenbeschrinkung. Ein Hardware-
ingenieur entwickelte eine dedizierte
integrierte Schaltung, deren Eigen-

schaften durch den Punkt P, dargestellt
sind. Offensichtlich erfiillt diese Realisie-
rung die Performanzanforderungen und
Leistungsverbrauchsanforderungen, nicht
aber die Kosten. Die Schaltung wurde
tiberdimensioniert. Der Punkt P, entspricht

Bulletin ASE/UCS 25/96

osesesesesest

Software

/ DMA
'

Interface

/
Paketformatierung
/

Forfmatwandlung

Speicher <g= Selbsttest

/
Kollisionsantwort

Diagnose ,”
.7 Adresserkennung
.

’
’

Analoges Interface

Hardware

Bild3 Netzwerk-Con-
troller: Exemplarische
Partitionierung der zu
implementierenden
Funktionalitat in Hard-
ware und Software

= 1

einer gemischten Hardware/Software-Lo-
sung gemiss der Partitionierung in Bild 3.
Viele Losungen, bei denen die Hard-
ware/Software-Partitionierung ad hoc be-
stimmt wurde, erfiillen die Entwurfsbe-
schrinkungen nicht oder sind suboptimal.
Aus diesen Beispielen sollte deutlich
geworden sein, dass automatische Synthe-
severfahren von heterogenen Systemen
unbedingt erforderlich sind, damit die
Systementwicklung mit dem Technologie-
fortschritt Schritt halten kann und der
Entwurf effizienter Systeme moglich ist.

1.2 Problemstellungen

Die Silbe «Co» im Wort Codesign
(deutsch: Co-Entwurf) erlaubt zahlreiche
Interpretationen, die zusammen gesehen
die wichtigsten Problemstellungen dieses
Forschungsgebietes umfassen.

e Complexity (Komplexitit der betrachte-
ten Systeme): Wie bereits erwéhnt, zeich-
net sich die Komplexitit in unserem
Zusammenhang vor allem durch die Hete-
rogenitit der betrachteten Komponenten
aus.

e Concurrent Design: HW/SW-Codesign
nutzt die Synergie von Hardware und Soft-
ware durch einen gemeinsamen Entwurf
aus.

e Co-Specification (Spezifikation: hetero-
gen/homogen): Offensichtlich besteht ein
grosses Problem darin, wie man ein kom-
plexes Hardware/Software-System spezifi-
ziert.

e Co-Synthesis: Hierunter versteht man
das gemeinsame Synthetisieren von Hard-
ware und Software, wobei das Problem der
Entwurfsraumexploration von gemischten
Losungsformen sowie die Optimierung im
Vordergrund stehen.

e Correctness: Aufgrund der Heterogeni-
tdt der Komponenten ist die Validierung
eines Entwurfs auf Korrektheit (Simu-
lation, Verifikation) schwierig, da exi-
stierende Werkzeuge entweder nur auf
Hardware- oder nur auf Softwarebereiche
zugeschnitten sind. Die Probleme der
Kopplung von Simulatoren und des Bewei-
sens von Systemeigenschaften sind mit den
Problemen der Spezifikation verwandt.

e Coordination: Schliesslich zielt man
im Bereich des Hardware/Software-
Codesigns auf eine Automatisierung der
Entwurfsabldufe. Dazu gehort die Kopp-
lung existierender Werkzeuge, die Verwal-
tung von Versionen sowie die Moglichkeit,
den Entwurfsprozess tiber grafische Benut-
zeroberfldchen zu steuern usw.

oo

|
: P,
Yo
v .l |
i //‘
P
o
i
/" 1
a0
i
I PZ.
KT!)Z\X = ;
Tz e
Jopied e 3R
A 611. | Bna
e Py
sl o
A ey
i A | P
Lo Ao il
[e el
VN L
. T . . Mod Lo
’ 1 : 7
! |
bl oot oo] A
T

Bild 4 Verschiedene
Realisierungsvarianten
eines Netzwerk-Con-

Bulletin SEV/VSE 25/96

trollers aus Beispiel 1.2

Computer-aided Design

Obwohl die hier beschriebenen Pro-
blemstellungen schon zum Teil bekannt
oder zumindest unbewusst als Probleme
wahrgenommen worden sind, versucht
man jetzt — da die Werkzeuge fiir untere
Entwurfsebenen zunehmend —ausgereift
sind — verstirkt, deren Losung in Angriff
zu nehmen und die letzte Entwurfsstufe
der Systemebene zu automatisieren.

Im folgenden mochten wir die Vielfalt
von Realisierungsvarianten und Kompo-
nenten vorstellen, die ein Systementwick-
ler gezielt einsetzen sollte. Neben der
Ubersicht werden Faustregeln angegeben,
wann sich welche Realisierungsform be-
ziehungsweise Komponente am besten
einsetzen ldsst. Danach wollen wir uns mit
der automatischen Auswahl der Hardware-
und Softwarekomponenten, der sogenann-
ten Hardware/Software-Partitionierung,
beschiftigen. Sie ist Teil der System-
synthese. Aufgrund von Platzbeschrin-
kungen werden wir uns nur am Rande mit
den Problemen der Spezifikation, Validie-
rung und Entwurfsablaufssteuerung be-
schiftigen.

2. HW/SW-Architekturen

Im folgenden wollen wir die wichtig-
sten typischen Realisierungsformen von
HW/SW-Systemen und deren Komponen-
tenarten klassifizieren. Dabei zeigt es sich,
dass unterschiedliche Komponententypen
auf unterschiedliche Aufgaben und An-
wendungsbereiche zugeschnitten — sind.
Eine Ubersicht soll dem Entwicklungsin-
genieur helfen, die fiir seine Bediirfnisse
notwendigen Komponenten beurteilen und
auswiéhlen zu konnen.

2.1 Komponenten

Zunichst sollen einige Gesichtspunkte
von unterschiedlichen, im Bereich von
Hardware/Software-Systemen verbreite-
ten Prozessortypen dargestellt werden.

2.1.1 Klassifikation von Prozessoren

In eingebetteten Hardware/Software-
Systemen, wie sie zum Beispiel in Auto-
mobilen, Audio- und Videoprodukten der
Telekommunikation eingesetzt werden, ist
zundchst ein geeigneter Prozessortyp fiir
das zu entwerfende System auszuwihlen.
Nach dem heutigen Stand der Technik
kann diese Wahl durch folgende Kriterien
beeinflusst sein:

Vielzweck — anwendungsspezifisch: Fiir
bestimmte Anwendungsgebiete, wie zum
Beispiel fiir die digitale Signalverarbei-
tung, sind anwendungsspezifische Prozes-
soren notig, weil nur sie den geforderten
Leistungsanforderungen gentigen. Digitale
Signalprozessoren (DSP) unterstiitzen bei-
spielsweise Spezialoperationen wie Multi-

19

Elektronik

plizier/Addierinstruktionen in einem Ma-
schinenzyklus und besitzen spezielle
Adressierungsarten sowie heterogene Re-
gistersdtze. Ein anderer Anwendungs-
bereich, der spezielle Architekturen
hervorgebracht hat, ist der Bereich der
Prozesssteuerungen (Embedded Control).
Dort spielen Mikrocontroller-Architektu-
ren, die auf minimale Kontextwechselzei-
ten, minimale Interruptlatenzen oder auf
minimale Kosten optimiert sind (Bitbreite
8 Bit oder 16 Bit, minimale Speicher-
grosse), eine wesentliche Rolle. Sie besit-
zen in den meisten Fillen eine CISC-
Architektur (Complex Instruction Set
Computer) im Gegensatz zu heutigen
Vielzweckrechnern, die fast alle RISC-
(Reduced Instruction Set Computer) oder
superskalare Rechner sind, da bei CISC-
Rechnern im allgemeinen eine wesentlich
hohere Codedichte (d.h. weniger Pro-
grammspeicher) erzielt werden kann.

Chip — Layoutzelle (Core): Ein Prozes-
sor kann entweder als Chip in einem
Gehiduse oder als Layoutzelle (Processor
Core) verfiigbar sein. Falls die Layoutzelle
von einer Firma entworfen wurde und
nicht nach aussen hin verkduflich ist,
spricht man von sogenannten In-house
Cores. Ein Beispiel eines Cores ist in
Bild 7 dargestellt.

Konfigurierbarkeit: Die interne Archi-
tektur eines Prozessors kann entweder fest
(Off-the-Shelf Processor) oder konfigu-
rierbar (ASIP, Application-specific In-
struction Set Processor) sein. Erstere
haben den Vorteil, dass Compiler verfiig-
bar sind; sie haben allerdings auch eine
Menge von Nachteilen: Sie sind entweder
zu teuer (Fliche, Kosten) oder fiir gewisse
Anwendungen nicht einsetzbar. Bei porta-
blen Geriten ist beispielsweise der Lei-
stungsverbrauch des Prozessors entschei-
dend, so dass Standardrealisierungen nicht
eingesetzt werden konnen. ASIP besitzen
im allgemeinen eine Menge generischer
Parameter, die ein Anwender individuell
festlegen kann. Dazu gehoren zum Bei-
spiel die Grosse von-Speichern, die Anzahl
und Wortbreiten der funktionalen Ein-
heiten, der Instruktionssatz, die Anzahl
von Interruptleitungen, Technologiepara-
meter (z. B. Versorgungsspannung, Takt-
rate) und viele andere mehr. Die optimale
Auswahl von Instruktionen und Para-
metern von ASIP fiir bestimmte Anwen-
dungsgebiete ist Gegenstand zahlreicher
Forschungsprogramme, siehe zum Bei-
spiel [4, S, 6].

Die Architekturparameter von Prozes-
soren (insbesondere ASIP) unterscheidet
man nach folgenden Gesichtspunkten:

Datentyp: Festpunkt- oder Fliesspunkt-
arithmetik. Bei ASIP wird fast ausschliess-
lich mit Festpunktarithmetik gerechnet.

20

Codetyp — Mikrocode oder Makrocode:
Bei Mikrocode - gilt fiir die meisten
existierenden Typen von ASIP — benétigen
alle Instruktionen einen Maschinenzyklus,
sieche zum Beispiel [7]. Bei Makrocode
kann eine Instruktion mehrere Zyklen

bendtigen (z.B. bei Einheiten mit
Fliessbandverarbeitung).
Speicherorganisation — Load-Store

oder Mem-Reg: ASIP sind iiblicherweise
Load-Store-Architekturen, das heisst, alle
Maschinenoperationen arbeiten mit Regi-
ster-Operanden, welche iiber einen Load-
Befehl aus dem Speicher geladen (falls sie
nicht bereits dort vorliegen) beziehungs-
weise aus einem Register iiber einen Store-
Befehl in den Speicher abgelegt werden.
ASIP besitzen im allgemeinen keinen
Cache; der Speicher (RAM, ROM, Regi-
ster) wird in den meisten Fillen auf dem
Chip realisiert. Zur Speicherorganisation
gehort auch die Registerstruktur, die ent-
weder heterogen oder homogen sein kann.
Bei homogenen Registersitzen kann im
Prinzip jedes Register universell eingesetzt
werden. Das Bild 5 zeigt eine Architektur
mit heterogenem Registersatz.

Instruktionsformat — vertikal oder hori-
zontal (bei VLIW-Maschinen [8, 9]): Alle
uns bekannten ASIP-Typen besitzen ein
vertikales Instruktionsformat.

Besonderheiten: Im weiteren besitzen
ASIP hiufig eine Reihe weiterer Beson-
derheiten wie beispielsweise spezielle
arithmetische Einheiten, besondere Adres-
sierungsarten, Unterstiitzung von Schlei-
fenkonstrukten (z. B. Zero-Overhead Loo-
ping) usw.

Beispiel 2.1

Bild 5 zeigt eine aus einem Operations-
werk und einem Steuerwerk bestehende
ASIP-Architektur. Eine besondere Eigen-

schaft des Datenpfads sind einige beson-
dere Verbindungswege sowie eine gekop-
pelte Multiplizier/Addier-Einheit (MUL-
ADD). Es handelt sich um eine Load-
Store-Architektur mit Festpunktarithmetik
und vertikalem Mikrocode sowie hetero-
genem Registersatz (Adressregister Al,
A2, AR, Datenregister R1, R2, MR). Das
Steuerwerk dekodiert im Instruktions-
dekoder die Befehlsworte. Als periphere
Komponenten sind A/D(Analog/Digital)-
und D/A(Digital/Analog)-Wandler, Timer,
serielle Schnittstellen oder ein DMA-Con-
troller (Direct Memory Access) konfigu-
rierbar.

2.1.2 Klassifikation von Hardware-
komponenten

Als Hardwarekomponenten betrachtet
man zum einen anwendungsspezifische
integrierte Schaltungen (ASIC). Diese in
VLSI (Very Large Scale Integration) reali-
sierten Komponenten konnen in verschie-
denen Technologien ausgefiihrt sein.
Heutzutage kann man auf einem ASIC
gemischt digital/analoge Schaltungen rea-
lisieren und verschiedene Technologien
koppeln (z. B. Bi-CMOS). Als Realisie-
rungsformen unterscheidet man unter
anderem Full Custom (vollkundenspezi-
fisch), Standardzellen und Gate-Array-
Entwiirfe.

Zum anderen gibt es eine Menge von
Peripheriebausteinen, zum Beispiel DMA-
Bausteine, Interrupt-Controller, Busarbi-
ter, Pulsweitenmodulatoren, Bausteine se-
rieller Schnittstellen, die niitzliche Schnitt-
stellen zur Kopplung von Prozessoren und
ASIC und zur Aussenwelt eines Systems
(Sensoren, Aktoren) ermdglichen.

Schliesslich hat man ebenfalls den
Markt fiir programmierbare Logikbau-
steine (z. B. FPGA, PLA) erkannt. Solche

Steuerwerk

___________ e R s R S
'
'
'
|

'
) Verbindungslr :
Register- ~ struktur | !
struktur ~{ Ap A2 3 !
' ! '
'
' : - '
: ki
i h Instruftionssatz 1
| : ’ '
| | Daten- ! i
, icher A B i ‘ !
A e 5 & ! Dekoder - Sequencer 5
! . = -
! Speicher- L \ALY, . ¥
! struktur Wil S e) 4\ '
| il o (o) ! e)
i o ' rogramm-
| funktionale) nga 4
i Einheiten ! i)
| T l
' ! ‘
| : '
' : '
' : '
' : '
I '
' t '
! ' Versorgungsspannung Vpp :
' ’ Taktperiode T |
< 1
T g b P e e D A S R G e R R g
| | D/A- A/D l I Timer DMA l | JTAG | I SERIEL | Peripherieeinheiten '
|
' i

Bild 5 Beispiel einer ASIP-Architektur

Bulletin ASE/UCS 25/96

SOFTWARE-

programmierbar

> Kosten

Spezialprozessoren:
DSP, Microcontroller

> Flexibilitat

> Performanz

> Time-to-Market

Vielzweckprozessoren:
RISC, CISC

DSP, Microcontroller

> Leistungsverbrauch

Core-basierte Spezialprozessoren:]

Application-Specific Instruction Set Processors
ASIP

Pljogrammicrbaré Logik:

S

|
|

) Integrierte Schaltungen:
: ASIC, Systolic Array

1

| _ Anwender denkt an

HARDWARE

Bild 6

Bausteine erlauben die Implementierung
von Logikfunktionen und Zustandsma-
schinen durch Programmierung und bieten
daher eine ausgezeichnete Moglichkeit,
ein System durch Umprogrammierung der
Hardware flexibel an andere Systeme zu
koppeln (z. B. Realisierung eines flexiblen
Kommunikationsbausteins).

2.1.3 Wann welche Komponente?

ASIP stellen offensichtlich beziiglich
Flexibilitit und Performanz die Nahtstelle
von der Softwareseite zur Hardwareseite
her. Aus Kostengriinden ist ein ASIP oft
nur ein «abgespeckter» Prozessor und
damit giinstiger als ein Vielzweckprozes-
sor, aber aufgrund seiner (wenn auch
beschrinkten) Programmierbarkeit immer
noch flexibler als dedizierte Hardware.

Ein ASIC ist oft zu teuer, nicht flexibel
genug oder bedarf einer zu hohen Entwick-
lungszeit. Die Nahtstelle zwischen Soft-
warewelt und Hardwarewelt von der Hard-
wareseite her bilden die programmierbaren
Logikbausteine (Bild 6). Der Anwender
denkt dabei an Hardware, obwohl er den
FPGA-Baustein programmiert. FPGA be-
sitzen als Hardware-Realisierungsvariante
die Flexibilitit von Softwarelosungen bei
hoher Performanz. Allerdings sind die
Performanz und die Auslastung der Res-
sourcen lange nicht so hoch wie bei ASIC,
insbesondere nicht wie bei VLSI-Rechen-
feldern (Systolic Arrays) [10]. Deshalb
liegt der Anwendungsbereich von pro-
grammierbarer Logik vornehmlich bei der
Realisierung von «kleinen Inseln» eines
komplexen Systems, die hohe Flexibili-
tits- und Performanzanforderungen erfiil-
len miissen.

2.2 Realisierungsformen von HW/SW-
Systemen

Die oben beschriebenen Komponenten
kénnen nun entweder als Ein-Chip-System,
Ein-Platinen-System oder Mehr-Platinen-

Bulletin SEV/VSE 25/96

Spezialisierungsformen und Kriterien fiir Hardware/Software-Entscheidungen

System entworfen werden, denn die mei-
sten Komponenten werden von Halbleiter-
herstellern bereits neben der iiblichen
Form eines ASIC in einem Gehéuse auch
als Layout in Form einer Makrozelle fiir
den VLSI-Entwurf angeboten.

Beispiel 2.2

Bild 7 zeigt eine physikalische Sicht
einer Ein-Chip-Realisierung. Der Chip
enthilt einen Prozessor als Makrozelle
(Core) sowie eine Menge von auf der
Chipfldche integrierten programmierbaren
Logik-, Speicher- und Peripherieblocken
(z. B. Timer, D/A- und A/D-Wandler). Bei
einigen Anbietern sind die einzelnen Kom-
ponenten in Anzahl und Grosse individuell
konfigurierbar.

Andere Realisierungsformen von hier
betrachteten ~ Hardware/Software-Syste-
men sind Ein- und Mehr-Platinen-Ent-
wiirfe. Jede Realisierungsform hat ihre
Vor- und Nachteile:

Ein-Chip-Realisierungen haben den
Vorteil, dass sie aufgrund ihres relativ
geringen Gewichts und ihrer kleinen Gros-
se gut in mobilen Geriten und unabhingi-
gen Systemen eingesetzt werden konnen.
Gegeniiber Vielzweckkomponenten kon-
nen sie auch auf geringen Leistungsver-
brauch optimiert werden. Ein Nachteil
dieser Realisierungsform sind die relativ
hohen Kosten bei kleinen Stiickzahlen.
Folglich werden sie bisher vor allem da
eingesetzt, wo Massenproduktionen zu
erwarten sind (bestes Beispiel: Mobiltele-
fon, Videotelefon).

Gegeniiber Ein-Chip-Losungen bieten
sich Ein-Platinen-Entwiirfe beziehungs-
weise Mehr-Platinen-Entwiirfe dann an,
wenn das zu realisierende System nicht auf
einen Chip passt, wenn niedrige Stiickzah-
len die Verwendung von Standardkompo-
nenten kostengiinstiger machen und/oder
falls eine gewisse Flexibilitit beziiglich zu

Computer-aided Deslg'h'

erwartender Anderungen erforderlich ist.
Ausserdem sind die Fertigungszeiten fiir
einen Platinenentwurf erfahrungsgemiss
niedriger als jene fiir einen Chip. Nachteil
dieser Varianten sind ein zu erwartender
Performanzverlust aufgrund ldangerer Ver-
drahtungswege zwischen den Komponen-
ten und ein hoherer Leistungs- und Platz-
verbrauch.

Mebhr-Platinen-Entwiirfe werden im all-
gemeinen so konzipiert, dass sie erweiter-
bar beziehungsweise skalierbar sind. Sie
sind dadurch im allgemeinen leicht wart-
bar und fehlertolerant.

3. Spezifikation von HW/SW-
Systemen

Die Spezifikation von Hardware/Soft-
ware-Systemen stellt aufgrund der Hetero-
genitidt der Komponenten ein grosses
Problem dar, denn bekannte Spezifika-
tionsformen sind stark auf einen Anwen-
dungsbereich (z. B. kontrollflussdominant
oder datenflussdominant) beziehungswei-
se entweder auf die Modellierung von
Hardware (z. B. VHDL, Verilog) oder die
Modellierung von Software zugeschnitten.

Im allgemeinen unterscheidet man an
Spezifikationsformen Berechnungsmodel-
le und Spezifikationssprachen. Berech-
nungsmodelle besitzen eine formale, ma-
thematische Struktur (z. B. Petri-Netze,
endliche Automaten). Spezifikationsspra-
chen sind im wesentlichen Programmier-
sprachen. Manche Sprachen vermogen
ein oder mehrere Modelle auszudriicken.
Einige Sprachen besitzen keine formale
Semantik.

3.1 (Formale) Berechnungsmodelle
Ein Kontrollflussmodell, wie beispiels-
weise das Modell des endlichen Automa-
ten, im weiteren FSM (Finite State Machi-
ne) genannt, reprasentiert ein System als

Bild 7 Physikalische Sicht einer Ein-Chip-
Realisierung eines Hardware/Software-Systems

Quelle: Texas Instruments, cDSP

21

Elektronik

eine Menge von Zustéinden und Zustands-
tibergiingen. Ein kontrollflussdominantes
Modell ist am besten zur Modellierung von
Steuerungsaufgaben geeignet, wie sie bei-
spielsweise in reaktiven Echtzeitsystemen
vorkommen. Hierzu zdhlen auch erweiter-
te, hierarchische Automatenmodelle, wie
zum Beispiel Statecharts [11].
Datenflussmodelle basieren auf Daten-
flussgraphen, in denen Aktoren als Knoten
und deren Datenabhingigkeiten als Kanten
dargestellt sind. Solche Modelle sind am
besten zur Modellierung transformationa-
ler Systeme geeignet, wie sie beispielswei-
se in der digitalen Signalverarbeitung vor-
kommen. Dort werden Daten einer Reihe
von Transformationen unterworfen. Dazu
gehort auch das bekannte Modell des
Synchronen Datenfluss-Graphen [12], im
folgenden SDF-Modell genannt.

3.2 Spezifikationssprachen

Programmiersprachen driicken meist
heterogene Modelle aus, die gleichzeitig
datenfluss- sowie kontrollflussorientiert
sein konnen. Grundsitzlich unterscheidet
man zwei Arten von Sprachen: imperative
und deklarative Sprachen.

Imperative Programmiersprachen, wie
beispielsweise C und Pascal, besitzen ein
Ausfiihrungsmodell, in dem Anweisungen
in der Reihenfolge ausgefiihrt werden, wie
sie im Programmtext erscheinen (Control-
driven). Lisp und Prolog hingegen sind
deklarative Sprachen. Fiir diese Sprachen
ist charakteristisch, dass sie keine expli-
zite Ausfiihrungsreihenfolge spezifizieren.
Das Ziel der Berechnung wird durch eine
Menge von Funktionen oder logische Re-
geln ausgedriickt.

Imperative Programmiersprachen wie C
bieten den Vorteil, dass komplexe Daten-
strukturen wie Verbundtypen (Arrays, Re-
cords usw.) leicht modelliert werden kon-

nen. Prozeduren und Funktionen erlauben
die Bildung von Hierarchie. Im weiteren
besitzen diese Sprachen zahlreiche Kon-
trollstrukturen wie Sequenzen von Anwei-
sungen, Verzweigungen (z. B. IF, CASE),
Schleifenkonstrukte (WHILE, FOR, RE-
PEAT) und Unterprogrammaufrufe. Auch
haben imperative Programme den Vorteil,
dass sie weitverbreitet sind und durch
Compilierung auf einem Mikrocomputer
direkt ausgefiihrt werden konnen. Sie eig-
nen sich folglich gut zur funktionalen
Simulation von Verhalten, das spiter in
Software oder in Hardware verfeinert wer-
den soll. Die meisten programmierbaren
Rechnerarchitekturen, darunter die mei-
sten Mikroprozessoren, werden in impera-
tiven Programmiersprachen programmiert.
Imperative Programmiersprachen haben
jedoch den Nachteil, dass sie nebenldufige
Operationen nicht beschreiben konnen. Da
Hardware inhdrent parallel arbeitet, sind
Programmiersprachen mit sequentiellem
Programmfluss wie C (u. a. auch wegen
fehlender Modellierbarkeit zeitlichen Ver-
haltens) nur zur Spezifikation und Simula-
tion funktionalen Verhaltens geeignet.
Diese Probleme fiihrten zur Einfithrung
zahlreicher neuer Programmiersprachen,
darunter Occam, ADA, Parallel C und
VHDL [13]. VHDL hat sich dabei als
Hardwarebeschreibungssprache — durchge-
setzt. Zahlreiche verschiedene Kommuni-
kationsmechanismen wie das sogenannte
Message Passing in CSP [14], der Rendez-
vous-Mechanismus in ADA und die Kom-
munikation {iber globalen Speicher kénnen
in VHDL modelliert werden. Wihrend die
oben genannte Sprachen sehr allgemein
sind, soll hier erwihnt werden, dass zur
Spezifikation von reaktiven Echtzeitsyste-
men weitere Sprachen entwickelt wurden,
darunter SDL, Esterel [15], Lustre [16],
Lucid [17] und Signal [18]. Diese Spra-

Datenflussgraphen

System Modelle

Andere Formalismen
Klassenbibliothek
Kernel

Objektorientierte

Time Petri-Netze

Statecharts

Bild 8

22

Modellarchitektur im Framework CodeSign

chen erméglichen nicht nur die Synthese
von Hardware ausgehend von einer Ver-
haltensspezifikation, sondern bieten ele-
gante formale Verifikationsmethoden zur
Uberpriifung der Korrektheit. Einige der
obigen Sprachen bezeichnet man als syn-
chron, was der Vorstellung entspricht,
dass die Antwort eines Systems auf exter-
ne Ereignisse ohne zeitliche Verzogerung
erfolgt.

3.3 Entwurfspraktiken

In heutigen Systemen zur Spezifikation
von Hardware/Software-Systemen tau-
chen nun verschiedene Modelle und Spezi-
fikationssprachen auf, und zwar oft in
einer gemischten Form.

Ptolemy [19] von der UC Berkeley
erlaubt die Modellierung verschiedener
Klassen von Datenflussgraphen, wobei die
Funktionalitit der Knoten in einer Pro-
grammiersprache (C++) beschrieben wird.
Aus der Sicht des Berechnungsmodells
sind die implementierten Knoten auf der
Ebene der Eingabe hierarchisch, das
heisst, ein Knoten kann wieder durch einen
Datenflussgraphen auf niederer Ebene be-
schrieben sein.

Eine gute Ubersicht iiber hierarchische,
nebenldufige Automaten gibt der Artikel
[11] von Harel. Als Entwurfssysteme zum
Entwurf von hierarchischen, nebenldufi-
gen Zustandsmaschinen existieren die
Werkzeuge Statemate und Speedcharts.
Beide bieten Moglichkeiten zur Codegene-
rierung, zum Beispiel in VHDL, Verilog
und C.

3.3.1 Spezifikation in CodeSign

Schliesslich mochten wir stichwortartig
die Philosophie der Spezifikation im
Framework CodeSign der ETH Ziirich
beschreiben: In CodeSign dienen objekt-
orientierte, zeitbehaftete Petri-Netze dazu,
Systeme zu beschreiben. Die Modellarchi-
tektur ist in Bild 8 beschrieben.

Der Ansatz baut auf einem formalen
Berechnungsmodell (High-Level-Petri-
Netze, erweitert um objektorientierte Me-
chanismen) auf. Durch Abstraktion und
Verfeinerung konnen komplexe Systeme
modelliert und schrittweise zu einer Im-
plementierung verfeinert werden. Dabei
wird die Verfeinerung durch Uberschrei-
ben von Komponenten durch Komponen-
ten mit hoherem Detaillierungsgrad er-
reicht.

Spezielle Formalismen wie Zustands-
maschinen (FSM) oder verschiedene Ty-
pen von Datenflussgraphen lassen sich
dank Objektorientiertheit fiir den Anwen-
der in einem dem Formalismus spezi-
fischen Editor darstellen, werden aber im
System einheitlich als Petri-Netz repri-
sentiert.

Bulletin ASE/UCS 25/96

Class: Telephone E=mn——

—— = Project:

Class Ulsw Edn Componenl Window
Keyboardv:.0 K
Mggmmvn -

- Code Sign E===—
ﬂls Browse Tools u"ndnw Help

ﬁﬁ@mm&l
Code Sign 0.9 (¢) ETH Zurich

Pro]ects resources:Petrimultiply.0.class
Reading Class from :ProjectsresourcesiPetriadd.0.class |
Reading Class from |
Projectsiresources:Petritwo_a_plus_b_sqr.0.class
Reading Class from
‘Projectsiresources.Petriresource_top.0.class,

Lot

RN

101
Class: Dial_Controler v: 0 :Projects:Tel

Bild 9 Bildschirmauszug des Frameworks CodeSign

Dargestellt ist die Simulation eines Telefons. Die Zustandsmaschine fur die Wiederwahlfunktion des Tele-
fons ist im Statechart-Formalismus (abgerundetes Rechteck) dargestellt; sie kommuniziert mit dem Petri-

Netz, welches die Umgebung darstellt.

Beispiel 3.1

Das Bild 9 zeigt einen Bildschirmaus-
zug des CodeSign-Editors. Gezeigt ist die
Modellierung eines Telefons und von des-
sen Umgebung. Wihrend das Verhalten
der Umgebung mittels eines konven-
tionellen Petri-Netzes beschrieben ist,
mochte der Entwicklungsingenieur die
Zustandsmaschine des Telefons in der
gewohnten Darstellung eines Zustands-
diagramms (z. B. als Statechart) eingeben.
Die Statechart-Umgebung ist in Bild 9 als
abgerundetes Rechteck zu erkennen.

Die Erweiterung des Systems auf einen
neuen Formalismus basiert in CodeSign
auf Graphgrammatiken, bei denen der
Benutzer eine Menge elementarer Kompo-
nenten kreiert und durch eine Menge von
Zusammensetzungsregeln beschreibt, wie
diese Komponenten dann zusammenge-
setzt werden konnen und interagieren.

Da alle Komponenten Instanzen einer
Klasse sind, folgt, dass jeder Formalismus,
der aus einer Menge von Komponenten
aufgebaut ist, ebenfalls objektorientiert ist.
Als spezielle Formalismen wurden bisher
die Modelle SDF, FSM und Statecharts
implementiert. Die objektorientierten Vor-
teile der Wiederverwendung von Code
sowie der Abstraktion und Verfeinerung
des Petri-Netz-Kerns konnen damit auf
alle neu kreierten Formalismen angewen-
det werden. Ein weiterer Vorteil des An-
satzes ist die Wahrung eines formalen
Modells.

Zurzeit beschiftigt sich unsere Gruppe
an der ETH Ziirich mit Problemen der

Bulletin SEV/VSE 25/96

Kopplung verschiedener Formalismen.
Zum einen betrifft dies die zurzeit recht
aufwendige Simulation der unterliegenden
Petri-Netz-Modelle. Zum anderen arbeitet
die Gruppe an effizienten Analysever-
fahren, die Eigenschaften von Formalis-
men ausnutzen, um Systemeigenschaften
effizienter beweisen zu konnen als unter
der Annahme eines allgemeinen Petri-
Netzes.

Fragen im Zusammenhang mit der Auf-
teilung einer Spezifikation in Software-
und Hardwarekomponenten (Hardware/
Software-Partitionierung) und Fragen der
Optimierung von Hardware/Software-Sy-
stemen wollen wir im zweiten Teil be-
schreiben (folgt in Bulletin 3/97).

Literatur

[1] K. P. Juliussen and E. Juliussen: The 6% an-
nual computer industry almanac 1993, 1993.

[2] G. Goossens et al.: Integration of medium-
throughput signal processing algorithms on flexible

Computer-aided Design

instruction-set architectures. Journ. VLS| Signal
Proc., 9(1995)1, pp. 49-65

[3] R Gupta: Co-Synthesis of Hardware and
Software for Digital Embedded Systems. PhD thesis,
Stanford University, Department of Electrical Engi-
neering, December 1992.

[4] I-). Huang and A. Despain: Generating in-
struction sets and microarchitectures from applica-
tions. Proc. IEEE/ACM Int. Conf. Comp.-Aided De-
sign, pp. 391-396, San Jose (Calif., USA), Nov. 1994.

[5] J. Van Praet, G. Goossens, D.Lanneer and
H. De Man: Instruction set definition and instruction
selection for ASIPs. Proc. of the 7™ International
Symposium on High-Level Synthesis, pp. 11-16, Nia-
gara-on-the-Lake (Ontario, Canada), May 1994.

[6] C Liem, T. May and P. Paulin: Instruction-
set matching and selection for DSP and ASIP code
generation. Proc. Europ. Design and Test Conf.,
pp. 31-37, Paris (France), Feb. 1994,

[7] D. Lanneer, M. Cornero, G. Goossens and
H. De Man: Data routing: a paradigm for efficient
data-path synthesis and code generation. Proc. 7"
ACMIIEEE Int. Symp. on High-Level Synthesis, pp. 17
to 22, Niagara-on-the-Lake (Ont, Canada), May
1994,

[8] S. Davidson, D. Landskov, B.D. Shriver and
P.W. Mallett: Some experiments in local microcode
compaction for horizontal machines. IEEE Trans. on
Computers, C-30(1981)7, pp. 460-477.

[9] J. R. Ellis: Bulldog - A compiler for VLIW
architectures. MIT Press, Cambridge, 1986.

[10] J. Teich: A Compiler for Application-Speci-
fic Processor Arrays. Shaker (Reihe Elektrotechnik).
Zugl. Saarbriicken, Univ. Diss, ISBN 3-86111-701-0,
Aachen, Germany, 1993.

[11] D. Harel: Statecharts: A visual formalism for
complex systems. Science of Computer Pro-
gramming, 8, 1987.

[12] E A. Lee and D.G. Messerschmitt: Synchro-
nous dataflow. Proc. of the IEEE, 75(1987)9, pp. 1235
to 1245.

[13] IEEE Standard VHDL Language Reference
Manual. |EEE, IEEE Std. 1076-1987, 1987.

[14] C A R. Hoare: Communicating Sequential
Processes. Prentice Hall, Englewood Cliffs, NJ, 1985.

[15] G. Berry and G. Gonthier: The Esterel syn-
chronous programming language: Design, seman-
tics, implementation. Science of Computer Pro-
gramming, 19(1992)2, pp. 87-152.

[16] N. Halbwachs, P. Caspi, P. Raymond and
D. Pilaud: The synchronous data flow programming
language Lustre. Proc. of the IEEE, 79(1989)9.

?17] E. A. Ashcroft: Proving assertions about
parallel programs. Journ. of Computer and Systems
Science, 10(1975)1, pp. 110-135.

[18] A. Benveniste and P. Le Guernic: Hybrid
dynamical systems theory and the Signal language.
IEEE Trans. on Automatic Control, 35(1990)5, pp. 535
to 546.

[19] J. Buck, S. Ha, E. A Lee and D.G. Messer-
schmitt: Ptolemy: A framework for simulating and
prototyping heterogeneous systems. International
Journ. on Comp. Simulation, (1991)4, pp. 155-182.

s’occupe ce secteur de la recherche.

Hardware/Software-Codesign

L’automatisation croissante dans le domaine de la conception de circuits
électroniques a fait que 'on peut développer des systemes toujours plus complexes
dans un temps toujours plus court a I’aide d’outils CAD. Pour des raisons d’efficacité
et de frais les systemes considérés sont constitués en regle générale d’une
combinaison de composants logiciels et matériels (programmables). Sous le slogan
Hardware/Software-Codesign se cache l'objectif d’aujourd’hui de réaliser la
conception de systemes complexes entiers a I’aide d’outils CAD. La premiére partie
de cet article donne un apercu d’introduction des problémes de conception dont

23

	Hardware/Software-Codesign : Massgeschneiderte elektronische Systeme : Teil 1 : HW/SW-Architekturen und Spezifikation

