
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 87 (1996)

Heft: 25

Artikel: Hardware/Software-Codesign : Massgeschneiderte elektronische
Systeme : Teil 1 : HW/SW-Architekturen und Spezifikation

Autor: Teich, Jürgen

DOI: https://doi.org/10.5169/seals-902405

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-902405
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Computer-aided Design

Die zunehmende Automatisierung im Bereich des Entwurfs elektronischer Schaltungen

hat dazu geführt, dass man immer komplexere Systeme in immer kürzerer Zeit
mit Hilfe von CAD-Werkzeugen entwickeln kann. Aus Kosten- und Effizienzgründen
bestehen die betrachteten Systeme typischerweise aus einer Kombination von
(programmierbaren) Hardware- und Softwarekomponenten. Unter dem Schlagwort
Hardware/Software-Codesign verbirgt sich das heutige Bestreben, dem Entwurf ganzer,

komplexer Systeme mit Hilfe von CAD-Werkzeugen Herr zu werden. Dieser Artikel
gibt eine einführende Übersicht über die Entwurfsprobleme, mit denen sich dieses

Forschungsgebiet beschäftigt.

Hardware/Software-Codesign: Mass-

geschneiderte elektronische Systeme
Teil 1: HW/SW-Architekturen und Spezifikation

Adresse des Autors
PD Dr.-Ing. Jürgen Teich, Institut für Technische

Informatik und Kommunikationsnetze (TIK)
ETH Zürich, 8092 Zürich

Jürgen Teich

1. Was ist Hardware/Software-
Codesign?

Obwohl der Begriff Hardware/Software-Codesign

als neues Zauberwort in
vieler Munde ist, sind bestimmte
Ausprägungsformen und Problemstellungen der
damit bezeichneten Technik bereits seit

vielen Jahren bekannt. Ein Ingenieur
beispielsweise, der ein neues System entwik-
kelt, das einen Mikroprozessor als

Schaltungsbestandteil enthält, baut zuerst die
Hardware (Platine, ASIC usw.) auf und

programmiert anschliessend die
programmierbaren Komponenten (Software).

1.1 Wachsende Komplexität
Wir betrachten den automatisierten

Entwurf und die Optimierung komplexer
digitaler Systeme, die aus Hardware- und

Softwarekomponenten bestehen,
sogenannte Hardware/Software-Systeme.
Obwohl solche Systeme bereits seit vielen
Jahren von Ingenieuren und Technikern
konzipiert und gebaut werden, ist man sich
heutzutage darüber einig, dass man nur
durch den Einsatz rechnergestützter Ent¬

wurfsmethoden (Computer-aided Design)
die Komplexität moderner Systeme bewältigen

und bessere Entwürfe (Performanz,
Kosten) in kürzerer Zeit schaffen kann.
Dies erklärt das wachsende Interesse der
Industrie und der Forschung an rechnergestützten

Entwurfsmethoden.
Die Komplexität, so wie sie hier

verstanden wird, entsteht nicht nur durch die
Anzahl der Einzelkomponenten, aus denen

ein System zusammengesetzt ist, sondern

vor allem durch Heterogenität. In Zukunft
liegen die Anforderungen gerade bei der

Beherrschung heterogener technischer
Systeme, die sich durch verschiedenartige
Komponenten und Interaktionen auszeichnen

und die für einen ganz bestimmten

Anwendungsbereich zugeschnitten sind,
bei den sogenannten anwendungsspezifischen

Systemen. Solche Anwendungsbereiche

sind unter anderem die Bereiche

Medizintechnik, Prozess- und
Industriesteuerungen, digitale Netzwerke,
Telekommunikation und digitale Signal- und

Bildverarbeitung. Bemerkenswerterweise

lag 1991 der Marktanteil solcher Systeme
bereits bei umgerechnet 31 Milliarden
US-Dollar gegenüber 46,5 Milliarden
US-Dollar für Vielzweckrechner (PC,

Laptops, Workstations) mit einer
Wachstumsrate von 18% gegenüber 10% für
Vielzweckrechner [1],

Ein konkretes Beispiel eines solchen

Systems ist die in Bild 1 dargestellte
integrierte Schaltung, die innerhalb eines

Bulletin SEV/VSE 25/96 17

Elektronik

V
Ueber
tragun

Hardware Software Speicher

Logik

Datenpfad

Datenpfad

Modulation/
Demodulation

Systemmanage

| Sequencer| RAM

DSP

CORE RAM

Kanalkodierung/
Dekodierung

nent & Control

Sprachkodierung

Code

MMI
SIM

^3
-03

Bild 1 Blockdiagramm der Funktion eines zellularen Telefons nach dem GSM-Standard (unten) und

Abbildung der Blöcke auf eine Ein-Chip-Realisierung mit einem DSP-Core (oben)

mobilen Telefongerätes (GSM-Standard)
eingesetzt wird.

Beispiel 1.1

Das Bild 1 aus [2] zeigt ein typisches
heterogenes Hardware/Software-System,
bestehend aus einem Prozessor (DSP),
anwendungsspezifischer Hardware und

Peripherie. Es handelt sich um eine

EinChip-Realisierung des GSM-Standards für
ein zellulares Telefon. Das Bild zeigt die

Zuteilung der einzelnen Segmente eines

Blockdiagramms auf die Architektur. Der
Prozessor wird eingesetzt, um Aufgaben
mit niedrigen bis mittleren Datenraten

(Kodierung/Dekodierung) sowie
Steuerungsfunktionen zu übernehmen. Die
Blöcke, die höhere Rechenleistungen
erfordern (Modulation und Demodulation),
werden in anwendungsspezifischer Hardware

realisiert.
Da solche Systeme meistens in einen

technischen Kontext eingebettet sind,

spricht man auch von eingebetteten Systemen

(Bild 2). Diese sind dazu bestimmt,
Funktionen als Antwort auf bestimmte
Stimuli auszuführen und Daten
informationstechnisch zu verarbeiten. Neben dem

Hardware/Software-Heterogenitätsaspekt
sind bei diesen Systemen auch die Aspekte
mechanisch/elektrisch (Sensoren, Aktoren)

und Analog/Digital (A/D- und
D/AWandler) wichtig.

Das grosse Interesse am systematischen
Entwurf von eingebetteten Systemen ist
zurückzuführen auf

- Fortschritte in den Schlüsseltechnologien

(Mikroelektronik, formale Methoden).

Dadurch ergibt sich eine

- steigende Vielfalt von Anwendungen
und Leistungsanforderungen, verbunden

mit

- der Notwendigkeit, Entwurfs- und
Testkosten zu senken.

Um die Entwicklung in diesem Bereich

genauer zu verstehen, führt man sich
sinnvollerweise die historische Entwicklung

kurz vor Augen. Insgesamt lassen
sich drei Abschnitte erkennen:

- Nachdem die Zahl der Objekte in den

unteren Entwurfsebenen (Geometrie,
physikalische Ebene) aufgrund des

Zeitaufwandes und der Fehleranfälligkeit
ohne Automatisierung nicht mehr
handhabbar war, wurden in der Industrie und
in der Forschung Modelle und Methoden

für die Schaltungssimulation,
Plazierung und Verdrahtung entwickelt.

- In einem weiteren Schritt wurden dann
auch höhere Abstraktionsebenen in die

Automatisierung einbezogen, wie zum
Beispiel die Simulation von Schaltungen

auf Logikebene oder die
Logiksynthese.

- Neue Anforderungen bezüglich der

Systemkomplexität, der Zeitspanne
zwischen Produktidee und Markteinführung

sowie der Zuverlässigkeit und
Güte führen nun zur Entwurfsautomatisierung

auf der noch abstrakteren
Systemebene.

Bild 2 Schematische Darstellung eines

eingebetteten Systems

Auf der Systemebene besteht eine
zentrale Aufgabe darin, eine Aufteilung
der Funktionalität in Hardware- und
Softwarekomponenten vorzunehmen, die
sogenannte Hardware/Software-Partitionie-
rung.

Beispiel 1.2

Ein Netzwerk-Controller soll entworfen
werden, der einen Speicher mit einer
seriellen Schnittstelle koppelt (Bild 3 aus

[3]). Seine Aufgabe besteht darin, Daten
über die serielle Schnittstelle zu senden
und zu empfangen und dabei ein bestimmtes

Protokoll einzuhalten (z. B. CS/CD für
Ethernet). Dabei ist die maximale
Datenübertragungszeit rmax (in ns) für ein Kilobyte

an Daten einzuhalten. Das System ist
ferner einer Kostenschranke Kmm (in Franken)

unterworfen und soll nicht mehr als

Pmax (in mW) Leistung verbrauchen.
Offensichtlich muss man zunächst die
Entscheidung treffen, welche Aufgaben in
Software und welche Aufgaben in Hardware

realisiert werden. Eine exemplarische

Aufteilung ist in Bild 3 dargestellt.
In den meisten Fällen erfolgt die Hard-

ware/Software-Partitionierung durch
Abschätzung von Kosten und Performanz-

anforderungen nach dem jeweiligen
Erfahrungswissen des Entwicklungsingenieurs.
Da diese Entwurfsentscheidung auf groben
Schätzungen beruht, ist keine Gewähr
geleistet, dass das realisierte System alle
Entwurfsbeschränkungen erfüllt
beziehungsweise dass es in einer gewünschten
Hinsicht optimal ist. Solche Systeme sind
meist in mindestens einer Eigenschaft
unter- oder überdimensioniert, wie das

folgende Beispiel zeigt.

Beispiel 1.3

Das Bild 4 zeigt verschiedene Lösungen
zur Realisierung des Netzwerk-Controllers
aus Beispiel 1.2. Die Menge von
Entwurfsbeschränkungen kennzeichnet hier einen
dreidimensionalen Entwurfsraum mit den
Achsen Datenübertragungszeit/kByte T,

Kosten K und Leistungsverbrauch P. Ein
mit der Entwicklung beauftragter
Softwareingenieur konstruierte ein System mit
einem Mikroprozessor und erhielt ein
System mit den durch den Entwurfspunkt P\
gekennzeichneten Eigenschaften.
Offensichtlich erfüllt diese Lösung zwar die

Kostenanforderungen, aber nicht die

Datenratenbeschränkung. Ein Hardwareingenieur

entwickelte eine dedizierte

integrierte Schaltung, deren
Eigenschaften durch den Punkt P2 dargestellt
sind. Offensichtlich erfüllt diese Realisierung

die Performanzanforderungen und
Leistungsverbrauchsanforderungen, nicht
aber die Kosten. Die Schaltung wurde
überdimensioniert. Der Punkt P4 entspricht

18 Bulletin ASE/UCS 25/96

Computer-aided Design

einer gemischten Hardware/Software-Lösung

gemäss der Partitionierung in Bild 3.

Viele Lösungen, bei denen die Hard-

ware/Software-Partitionierung ad hoc
bestimmt wurde, erfüllen die
Entwurfsbeschränkungen nicht oder sind suboptimal.

Aus diesen Beispielen sollte deutlich

geworden sein, dass automatische
Syntheseverfahren von heterogenen Systemen
unbedingt erforderlich sind, damit die

Systementwicklung mit dem Technologiefortschritt

Schritt halten kann und der

Entwurf effizienter Systeme möglich ist.

1.2 Problemstellungen
Die Silbe «Co» im Wort Codesign

(deutsch: Co-Entwurf) erlaubt zahlreiche

Interpretationen, die zusammen gesehen
die wichtigsten Problemstellungen dieses

Forschungsgebietes umfassen.

• Complexity (Komplexität der betrachteten

Systeme): Wie bereits erwähnt, zeichnet

sich die Komplexität in unserem

Zusammenhang vor allem durch die Hete-

rogenität der betrachteten Komponenten
aus.
• Concurrent Design: HW/SW-Codesign
nutzt die Synergie von Hardware und Software

durch einen gemeinsamen Entwurf
aus.

K

Bild 3 Netzwerk-Controller:

Exemplarische
Partitionierung der zu

implementierenden
Funktionalität in Hardware

und Software

• Co-Specification (Spezifikation:
heterogen/homogen): Offensichtlich besteht ein

grosses Problem darin, wie man ein
komplexes Hardware/Software-System spezifiziert.

• Co-Synthesis: Hierunter versteht man
das gemeinsame Synthetisieren von Hardware

und Software, wobei das Problem der

Entwurfsraumexploration von gemischten
Lösungsformen sowie die Optimierung im
Vordergrund stehen.

• Correctness: Aufgrund der Heterogeni-
tät der Komponenten ist die Validierung
eines Entwurfs auf Korrektheit (Simulation,

Verifikation) schwierig, da
existierende Werkzeuge entweder nur auf
Hardware- oder nur auf Softwarebereiche

zugeschnitten sind. Die Probleme der

Kopplung von Simulatoren und des Beweisens

von Systemeigenschaften sind mit den

Problemen der Spezifikation verwandt.

• Coordination: Schliesslich zielt man
im Bereich des Hardware/Software-

Codesigns auf eine Automatisierung der
Entwurfsabläufe. Dazu gehört die Kopplung

existierender Werkzeuge, die Verwaltung

von Versionen sowie die Möglichkeit,
den Entwurfsprozess über grafische
Benutzeroberflächen zu steuern usw.

Bild 4 Verschiedene

Realisierungsvarianten
eines Netzwerk-Controllers

aus Beispiel 1.2

Obwohl die hier beschriebenen

Problemstellungen schon zum Teil bekannt
oder zumindest unbewusst als Probleme

wahrgenommen worden sind, versucht
man jetzt - da die Werkzeuge für untere
Entwurfsebenen zunehmend ausgereift
sind - verstärkt, deren Lösung in Angriff
zu nehmen und die letzte Entwurfsstufe
der Systemebene zu automatisieren.

Im folgenden möchten wir die Vielfalt
von Realisierungsvarianten und Komponenten

vorstellen, die ein Systementwickler

gezielt einsetzen sollte. Neben der
Übersicht werden Faustregeln angegeben,
wann sich welche Realisierungsform
beziehungsweise Komponente am besten
einsetzen lässt. Danach wollen wir uns mit
der automatischen Auswahl der Hardware-
und Softwarekomponenten, der sogenannten

Hardware/Software-Partitionierung,
beschäftigen. Sie ist Teil der
Systemsynthese. Aufgrund von Platzbeschränkungen

werden wir uns nur am Rande mit
den Problemen der Spezifikation, Validierung

und Entwurfsablaufssteuerung
beschäftigen.

2. HW/SW-Architekturen

Im folgenden wollen wir die wichtigsten

typischen Realisierungsformen von
HW/SW-Systemen und deren Komponentenarten

klassifizieren. Dabei zeigt es sich,
dass unterschiedliche Komponententypen
auf unterschiedliche Aufgaben und

Anwendungsbereiche zugeschnitten sind.
Eine Übersicht soll dem Entwicklungsingenieur

helfen, die für seine Bedürfnisse

notwendigen Komponenten beurteilen und
auswählen zu können.

2.1 Komponenten
Zunächst sollen einige Gesichtspunkte

von unterschiedlichen, im Bereich von
Hardware/Software-Systemen verbreiteten

Prozessortypen dargestellt werden.

2.1.1 Klassifikation von Prozessoren
In eingebetteten Hardware/Software-

Systemen, wie sie zum Beispiel in
Automobilen, Audio- und Videoprodukten der
Telekommunikation eingesetzt werden, ist
zunächst ein geeigneter Prozessortyp für
das zu entwerfende System auszuwählen.
Nach dem heutigen Stand der Technik
kann diese Wahl durch folgende Kriterien
beeinflusst sein:

Vielzweck - anwendungsspezifisch: Für
bestimmte Anwendungsgebiete, wie zum
Beispiel für die digitale Signalverarbeitung,

sind anwendungsspezifische Prozessoren

nötig, weil nur sie den geforderten
Leistungsanforderungen genügen. Digitale
Signalprozessoren (DSP) unterstützen
beispielsweise SpezialOperationen wie Multi-

ges Interface

-Q

Bulletin SEV/VSE 25/96 19

Elektronik

plizier/Addierinstruktionen in einem

Maschinenzyklus und besitzen spezielle
Adressierungsarten sowie heterogene
Registersätze. Ein anderer Anwendungsbereich,

der spezielle Architekturen
hervorgebracht hat, ist der Bereich der

Prozesssteuerungen (Embedded Control).
Dort spielen Mikrocontroller-Architektu-
ren, die auf minimale Kontextwechselzeiten,

minimale Interruptlatenzen oder auf
minimale Kosten optimiert sind (Bitbreite
8 Bit oder 16 Bit, minimale Speicher-
grösse), eine wesentliche Rolle. Sie besitzen

in den meisten Fällen eine CISC-
Architektur (Complex Instruction Set

Computer) im Gegensatz zu heutigen
Vielzweckrechnern, die fast alle RISC-
(Reduced Instruction Set Computer) oder

superskalare Rechner sind, da bei CISC-
Rechnern im allgemeinen eine wesentlich
höhere Codedichte (d. h. weniger
Programmspeicher) erzielt werden kann.

Chip - Layoutzelle (Core): Ein Prozessor

kann entweder als Chip in einem
Gehäuse oder als Layoutzelle (Processor
Core) verfügbar sein. Falls die Layoutzelle
von einer Firma entworfen wurde und

nicht nach aussen hin verkäuflich ist,
spricht man von sogenannten In-house
Cores. Ein Beispiel eines Cores ist in
Bild 7 dargestellt.

Konfigurierbarkeit: Die interne Architektur

eines Prozessors kann entweder fest

(Off-the-Shelf Processor) oder konfigurierbar

(ASIP, Application-specific
Instruction Set Processor) sein. Erstere
haben den Vorteil, dass Compiler verfügbar

sind; sie haben allerdings auch eine

Menge von Nachteilen: Sie sind entweder

zu teuer (Fläche, Kosten) oder für gewisse
Anwendungen nicht einsetzbar. Bei portablen

Geräten ist beispielsweise der

Leistungsverbrauch des Prozessors entscheidend,

so dass Standardrealisierungen nicht
eingesetzt werden können. ASIP besitzen
im allgemeinen eine Menge generischer
Parameter, die ein Anwender individuell
festlegen kann. Dazu gehören zum
Beispiel die Grösse von Speichern, die Anzahl
und Wortbreiten der funktionalen
Einheiten, der Instruktionssatz, die Anzahl

von Interruptleitungen, Technologieparameter

(z. B. Versorgungsspannung, Taktrate)

und viele andere mehr. Die optimale
Auswahl von Instruktionen und
Parametern von ASIP für bestimmte
Anwendungsgebiete ist Gegenstand zahlreicher

Forschungsprogramme, siehe zum
Beispiel [4, 5, 6].

Die Architekturparameter von Prozessoren

(insbesondere ASIP) unterscheidet

man nach folgenden Gesichtspunkten:
Datentyp: Festpunkt- oder Fliesspunkt-

arithmetik. Bei ASIP wird fast ausschliesslich

mit Festpunktarithmetik gerechnet.

Codetyp - Mikrocode oder Makrocode:
Bei Mikrocode - gilt für die meisten
existierenden Typen von ASIP - benötigen
alle Instruktionen einen Maschinenzyklus,
siehe zum Beispiel [7]. Bei Makrocode
kann eine Instruktion mehrere Zyklen
benötigen (z. B. bei Einheiten mit
FliessbandVerarbeitung).

Speicherorganisation - Load-Store
oder Mem-Reg: ASIP sind üblicherweise
Load-Store-Architekturen, das heisst, alle

Maschinenoperationen arbeiten mit
Register-Operanden, welche über einen Load-
Befehl aus dem Speicher geladen (falls sie

nicht bereits dort vorliegen) beziehungsweise

aus einem Register über einen Store-
Befehl in den Speicher abgelegt werden.
ASIP besitzen im allgemeinen keinen
Cache; der Speicher (RAM, ROM, Register)

wird in den meisten Fällen auf dem

Chip realisiert. Zur Speicherorganisation
gehört auch die Registerstruktur, die
entweder heterogen oder homogen sein kann.
Bei homogenen Registersätzen kann im
Prinzip jedes Register universell eingesetzt
werden. Das Bild 5 zeigt eine Architektur
mit heterogenem Registersatz.

Instruktionsformat - vertikal oder
horizontal (bei VLIW-Maschinen [8, 9]): Alle
uns bekannten ASIP-Typen besitzen ein
vertikales Instruktionsformat.

Besonderheiten: Im weiteren besitzen
ASIP häufig eine Reihe weiterer
Besonderheiten wie beispielsweise spezielle
arithmetische Einheiten, besondere

Adressierungsarten, Unterstützung von Schlei-
fenkonstrukten (z. B. Zero-Overhead
Looping) usw.

Beispiel 2.1

Bild 5 zeigt eine aus einem Operationswerk

und einem Steuerwerk bestehende

ASIP-Architektur. Eine besondere Eigen¬

schaft des Datenpfads sind einige besondere

Verbindungswege sowie eine gekoppelte

Multiplizier/Addier-Einheit (MUL-
ADD). Es handelt sich um eine Load-
Store-Architektur mit Festpunktarithmetik
und vertikalem Mikrocode sowie heterogenem

Registersatz (Adressregister AI,
A2, AR, Datenregister RI, R2, MR). Das

Steuerwerk dekodiert im Instruktionsdekoder

die Befehlsworte. Als periphere
Komponenten sind A/D(Analog/Digital)-
und D/A(Digital/Analog)-Wandler, Timer,
serielle Schnittstellen oder ein DMA-Controller

(Direct Memory Access) konfigurierbar.

2.1.2 Klassifikation von
Hardwarekomponenten

Als Hardwarekomponenten betrachtet

man zum einen anwendungsspezifische
integrierte Schaltungen (ASIC). Diese in
VLSI (Very Large Scale Integration)
realisierten Komponenten können in verschiedenen

Technologien ausgeführt sein.

Heutzutage kann man auf einem ASIC
gemischt digital/analoge Schaltungen
realisieren und verschiedene Technologien
koppeln (z. B. Bi-CMOS). Als
Realisierungsformen unterscheidet man unter
anderem Full Custom (vollkundenspezi-
fisch), Standardzellen und Gate-Array-
Entwürfe.

Zum anderen gibt es eine Menge von
Peripheriebausteinen, zum Beispiel DMA-
Bausteine, Interrupt-Controller, Busarbiter,

Pulsweitenmodulatoren, Bausteine
serieller Schnittstellen, die nützliche Schnittstellen

zur Kopplung von Prozessoren und
ASIC und zur Aussenwelt eines Systems
(Sensoren, Aktoren) ermöglichen.

Schliesslich hat man ebenfalls den

Markt für programmierbare Logikbausteine

(z. B. FPGA, PLA) erkannt. Solche

Bild 5 Beispiel einer ASIP-Architektur

20 Bulletin ASE/UCS 25/96

Computer-aided Design

SOFTWARE-
programmierbar

> Kosten

> Performanz

> Time-to-Market

Vielzweckprozessoren:

RISC, CISC

Spezialprozessoren:

DSP, Microcontroller

Core-basierte Spezialprozessoren:

DSP, Microcontroller

Application-Specific Instruction Set Processors:

ASIP

Programmierbare Logik:
PAL, FPGA

Integrierte Schaltungen:

ASIC, Systolic Array

> Flexibilität

> Leistungsverbrauch

Anwender denkt an

HARDWARE

Bild 6 Spezialisierungsformen und Kriterien für Hardware/Software-Entscheidungen

Bausteine erlauben die Implementierung
von Logikfunktionen und Zustandsma-
schinen durch Programmierung und bieten
daher eine ausgezeichnete Möglichkeit,
ein System durch Umprogrammierung der
Hardware flexibel an andere Systeme zu

koppeln (z. B, Realisierung eines flexiblen
Kommunikationsbausteins).

2.1.3 Wann welche Komponente?
ASIP stellen offensichtlich bezüglich

Flexibilität und Performanz die Nahtstelle

von der Softwareseite zur Hardwareseite
her. Aus Kostengründen ist ein ASIP oft
nur ein «abgespeckter» Prozessor und
damit günstiger als ein Vielzweckprozes-
sor, aber aufgrund seiner (wenn auch

beschränkten) Programmierbarkeit immer
noch flexibler als dedizierte Hardware.

Ein ASIC ist oft zu teuer, nicht flexibel
genug oder bedarf einer zu hohen
Entwicklungszeit. Die Nahtstelle zwischen
Softwarewelt und Hardwarewelt von der
Hardwareseite her bilden die programmierbaren
Logikbausteine (Bild 6). Der Anwender
denkt dabei an Hardware, obwohl er den

FPGA-Baustein programmiert. FPGA
besitzen als Hardware-Realisierungsvariante
die Flexibilität von Softwarelösungen bei

hoher Performanz. Allerdings sind die
Performanz und die Auslastung der

Ressourcen lange nicht so hoch wie bei ASIC,
insbesondere nicht wie bei VLSI-Rechen-
feldern (Systolic Arrays) [10]. Deshalb

liegt der Anwendungsbereich von
programmierbarer Logik vornehmlich bei der

Realisierung von «kleinen Inseln» eines

komplexen Systems, die hohe Flexibili-
täts- und Performanzanforderungen erfüllen

müssen.

2.2 Realisierungsformen von HW/SW-
Systemen

Die oben beschriebenen Komponenten
können nun entweder als Ein-Chip-System,
Ein-Platinen-System oder Mehr-Platinen-

System entworfen werden, denn die meisten

Komponenten werden von Halbleiterherstellern

bereits neben der üblichen
Form eines ASIC in einem Gehäuse auch
als Layout in Form einer Makrozelle für
den VLSI-Entwurf angeboten.

Beispiel 2.2

Bild 7 zeigt eine physikalische Sicht
einer Ein-Chip-Realisierung. Der Chip
enthält einen Prozessor als Makrozelle
(Core) sowie eine Menge von auf der

Chipfläche integrierten programmierbaren
Logik-, Speicher- und Peripherieblöcken
(z. B. Timer, D/A- und A/D-Wandler). Bei

einigen Anbietern sind die einzelnen
Komponenten in Anzahl und Grösse individuell
konfigurierbar.

Andere Realisierungsformen von hier
betrachteten Hardware/Software-Systemen

sind Ein- und Mehr-Platinen-Ent-
würfe. Jede Realisierungsform hat ihre
Vor- und Nachteile:

Ein-Chip-Realisierungen haben den

Vorteil, dass sie aufgrund ihres relativ
geringen Gewichts und ihrer kleinen Grösse

gut in mobilen Geräten und unabhängigen

Systemen eingesetzt werden können.

Gegenüber Vielzweckkomponenten können

sie auch auf geringen Leistungsverbrauch

optimiert werden. Ein Nachteil
dieser Realisierungsform sind die relativ
hohen Kosten bei kleinen Stückzahlen.

Folglich werden sie bisher vor allem da

eingesetzt, wo Massenproduktionen zu
erwarten sind (bestes Beispiel: Mobiltelefon,

Videotelefon).
Gegenüber Ein-Chip-Lösungen bieten

sich Ein-Platinen-Entwürfe beziehungsweise

Mehr-Platinen-Entwürfe dann an,

wenn das zu realisierende System nicht auf
einen Chip passt, wenn niedrige Stückzahlen

die Verwendung von Standardkomponenten

kostengünstiger machen und/oder
falls eine gewisse Flexibilität bezüglich zu

erwartender Änderungen erforderlich ist.
Ausserdem sind die Fertigungszeiten für
einen Platinenentwurf erfahrungsgemäss
niedriger als jene für einen Chip. Nachteil
dieser Varianten sind ein zu erwartender
Performanzverlust aufgrund längerer
Verdrahtungswege zwischen den Komponenten

und ein höherer Leistungs- und
Platzverbrauch.

Mehr-Platinen-Entwürfe werden im
allgemeinen so konzipiert, dass sie erweiterbar

beziehungsweise skalierbar sind. Sie

sind dadurch im allgemeinen leicht wartbar

und fehlertolerant.

3. Spezifikation von HW/SW-

Systemen

Die Spezifikation von Hardware/Software-Systemen

stellt aufgrund der Hetero-
genität der Komponenten ein grosses
Problem dar, denn bekannte
Spezifikationsformen sind stark auf einen
Anwendungsbereich (z. B. kontrollflussdominant
oder datenflussdominant) beziehungsweise

entweder auf die Modellierung von
Hardware (z. B. VHDL, Verilog) oder die

Modellierung von Software zugeschnitten.
Im allgemeinen unterscheidet man an

Spezifikationsformen Berechnungsmodelle
und Spezifikationssprachen.

Berechnungsmodelle besitzen eine formale,
mathematische Struktur (z. B. Petri-Netze,
endliche Automaten). Spezifikationssprachen

sind im wesentlichen Programmiersprachen.

Manche Sprachen vermögen
ein oder mehrere Modelle auszudrücken.

Einige Sprachen besitzen keine formale
Semantik.

3.1 (Formale) Bereehnungsmodelle
Ein Kontrollflussmodell, wie beispielsweise

das Modell des endlichen Automaten,

im weiteren FSM (Finite State Machine)

genannt, repräsentiert ein System als

Bild 7 Physikalische Sicht einer Ein-Chip-
Realisierung eines Hardware/Software-Systems

Quelle: Texas Instruments, cDSP

Bulletin SEV/VSE 25/96 21

Elektronik

eine Menge von Zuständen und Zustands-

übergängen. Ein kontrollflussdominantes
Modell ist am besten zur Modellierung von
Steuerungsaufgaben geeignet, wie sie

beispielsweise in reaktiven Echtzeitsystemen
vorkommen. Hierzu zählen auch erweiterte,

hierarchische Automatenmodelle, wie
zum Beispiel Statecharts [11],

Datenflussmodelle basieren auf Daten-

flussgraphen, in denen Aktoren als Knoten
und deren Datenabhängigkeiten als Kanten

dargestellt sind. Solche Modelle sind am
besten zur Modellierung transformationa-
ler Systeme geeignet, wie sie beispielsweise

in der digitalen Signalverarbeitung
vorkommen. Dort werden Daten einer Reihe

von Transformationen unterworfen. Dazu

gehört auch das bekannte Modell des

Synchronen Datenfluss-Graphen [12], im
folgenden SDF-Modell genannt.

3.2 Spezifikationssprachen
Programmiersprachen drücken meist

heterogene Modelle aus, die gleichzeitig
datenfluss- sowie kontrollflussorientiert
sein können. Grundsätzlich unterscheidet

man zwei Arten von Sprachen: imperative
und deklarative Sprachen.

Imperative Programmiersprachen, wie
beispielsweise C und Pascal, besitzen ein

Ausführungsmodell, in dem Anweisungen
in der Reihenfolge ausgeführt werden, wie
sie im Programmtext erscheinen (Control-
driven). Lisp und Prolog hingegen sind
deklarative Sprachen. Für diese Sprachen
ist charakteristisch, dass sie keine explizite

Ausführungsreihenfolge spezifizieren.
Das Ziel der Berechnung wird durch eine

Menge von Funktionen oder logische
Regeln ausgedrückt.

Imperative Programmiersprachen wie C
bieten den Vorteil, dass komplexe
Datenstrukturen wie Verbundtypen (Arrays,
Records usw.) leicht modelliert werden kön-

Bild 8 Modellarchitektur im Framework CodeSign

nen. Prozeduren und Funktionen erlauben
die Bildung von Hierarchie. Im weiteren
besitzen diese Sprachen zahlreiche
Kontrollstrukturen wie Sequenzen von
Anweisungen, Verzweigungen (z. B. IF, CASE),
Schleifenkonstrukte (WHILE, FOR.
REPEAT) und Unterprogrammaufrufe. Auch
haben imperative Programme den Vorteil,
dass sie weitverbreitet sind und durch

Compilierung auf einem Mikrocomputer
direkt ausgeführt werden können. Sie eignen

sich folglich gut zur funktionalen
Simulation von Verhalten, das später in
Software oder in Hardware verfeinert werden

soll. Die meisten programmierbaren
Rechnerarchitekturen, darunter die meisten

Mikroprozessoren, werden in imperativen

Programmiersprachen programmiert.
Imperative Programmiersprachen haben

jedoch den Nachteil, dass sie nebenläufige
Operationen nicht beschreiben können. Da
Hardware inhärent parallel arbeitet, sind

Programmiersprachen mit sequentiellem
Programmfluss wie C (u. a. auch wegen
fehlender Modellierbarkeit zeitlichen
Verhaltens) nur zur Spezifikation und Simulation

funktionalen Verhaltens geeignet.
Diese Probleme führten zur Einführung

zahlreicher neuer Programmiersprachen,
damnter Occam, ADA, Parallel C und
VHDL [13], VHDL hat sich dabei als

Hardwarebeschreibungssprache durchgesetzt.

Zahlreiche verschiedene
Kommunikationsmechanismen wie das sogenannte
Message Passing in CSP [14], der Rendez-
vous-Mechanismus in ADA und die
Kommunikation über globalen Speicher können
in VHDL modelliert werden. Während die
oben genannte Sprachen sehr allgemein
sind, soll hier erwähnt werden, dass zur
Spezifikation von reaktiven Echtzeitsystemen

weitere Sprachen entwickelt wurden,
darunter SDL, Esterei [15], Lustre [16],
Lucid [17] und Signal [18], Diese Spra¬

chen ermöglichen nicht nur die Synthese

von Hardware ausgehend von einer
Verhaltensspezifikation, sondern bieten
elegante formale Verifikationsmethoden zur
Uberprüfung der Korrektheit. Einige der

obigen Sprachen bezeichnet man als

synchron, was der Vorstellung entspricht,
dass die Antwort eines Systems auf externe

Ereignisse ohne zeitliche Verzögerung
erfolgt.

3.3 Entwurfspraktiken
In heutigen Systemen zur Spezifikation

von Hardware/Software-Systemen
tauchen nun verschiedene Modelle und
Spezifikationssprachen auf, und zwar oft in
einer gemischten Form.

Ptolemy [19] von der UC Berkeley
erlaubt die Modellierung verschiedener
Klassen von Datenflussgraphen, wobei die
Funktionalität der Knoten in einer
Programmiersprache (C++) beschrieben wird.
Aus der Sicht des Berechnungsmodells
sind die implementierten Knoten auf der
Ebene der Eingabe hierarchisch, das

heisst, ein Knoten kann wieder durch einen

Datenflussgraphen auf niederer Ebene
beschrieben sein.

Eine gute Übersicht über hierarchische,
nebenläufige Automaten gibt der Artikel
[11] von Harel. Als Entwurfssysteme zum
Entwurf von hierarchischen, nebenläufigen

Zustandsmaschinen existieren die

Werkzeuge Statemate und Speedcharts.
Beide bieten Möglichkeiten zur Codegene-
rierung, zum Beispiel in VHDL, Verflog
und C.

3.3.1 Spezifikation in CodeSign
Schliesslich möchten wir stichwortartig

die Philosophie der Spezifikation im
Framework CodeSign der ETH Zürich
beschreiben: In CodeSign dienen
objektorientierte, zeitbehaftete Petri-Netze dazu,

Systeme zu beschreiben. Die Modellarchitektur

ist in Bild 8 beschrieben.

Der Ansatz baut auf einem formalen
Berechnungsmodell (High-Level-Petri-
Netze, erweitert um objektorientierte
Mechanismen) auf. Durch Abstraktion und

Verfeinerung können komplexe Systeme
modelliert und schrittweise zu einer

Implementierung verfeinert werden. Dabei
wird die Verfeinerung durch Überschreiben

von Komponenten durch Komponenten

mit höherem Detaillierungsgrad
erreicht.

Spezielle Formalismen wie
Zustandsmaschinen (FSM) oder verschiedene

Typen von Datenflussgraphen lassen sich
dank Objektorientiertheit für den Anwender

in einem dem Formalismus
spezifischen Editor darstellen, werden aber im
System einheitlich als Petri-Netz
repräsentiert.

22 Bulletin ASE/UCS 25/96

Computer-aided Design

Ctesa: DWjControler v. 0

Bild 9 Bildschirmauszug des Frameworks CodeSign

Dargestellt ist die Simulation eines Telefons. Die Zustandsmaschine für die Wiederwahlfunktion des Telefons

ist im Statechart-Formalismus (abgerundetes Rechteck) dargestellt; sie kommuniziert mit dem Petri-

Netz, welches die Umgebung darstellt.

Beispiel 3.1
Das Bild 9 zeigt einen Bildschirmauszug

des CodeSign-Editors. Gezeigt ist die

Modellierung eines Telefons und von dessen

Umgebung. Während das Verhalten
der Umgebung mittels eines
konventionellen Petri-Netzes beschrieben ist,
möchte der Entwicklungsingenieur die

Zustandsmaschine des Telefons in der

gewohnten Darstellung eines Zustands-

diagramms (z. B. als Statechart) eingeben.
Die Statechart-Umgebung ist in Bild 9 als

abgerundetes Rechteck zu erkennen.

Die Erweiterung des Systems auf einen

neuen Formalismus basiert in CodeSign
auf Graphgrammatiken, bei denen der

Benutzer eine Menge elementarer Komponenten

kreiert und durch eine Menge von
Zusammensetzungsregeln beschreibt, wie
diese Komponenten dann zusammengesetzt

werden können und interagieren.
Da alle Komponenten Instanzen einer

Klasse sind, folgt, dass jeder Formalismus,
der aus einer Menge von Komponenten
aufgebaut ist, ebenfalls objektorientiert ist.
Als spezielle Formalismen wurden bisher
die Modelle SDF, FSM und Statecharts

implementiert. Die objektorientierten Vorteile

der Wiederverwendung von Code

sowie der Abstraktion und Verfeinerung
des Petri-Netz-Kerns können damit auf
alle neu kreierten Formalismen angewendet

werden. Ein weiterer Vorteil des

Ansatzes ist die Wahrung eines formalen
Modells.

Zurzeit beschäftigt sich unsere Gruppe
an der ETH Zürich mit Problemen der

Kopplung verschiedener Formalismen.
Zum einen betrifft dies die zurzeit recht

aufwendige Simulation der unterliegenden
Petri-Netz-Modelle. Zum anderen arbeitet
die Gruppe an effizienten Analyseverfahren,

die Eigenschaften von Formalismen

ausnutzen, um Systemeigenschaften
effizienter beweisen zu können als unter
der Annahme eines allgemeinen Petri-
Netzes.

Fragen im Zusammenhang mit der
Aufteilung einer Spezifikation in Software-
und Hardwarekomponenten (Hardware/
Software-Partitionierung) und Fragen der

Optimierung von Hardware/Software-Systemen

wollen wir im zweiten Teil
beschreiben (folgt in Bulletin 3/97).

Literatur

[1] K. P. Juliussen and f. Müssen: The 6th

annual computer industry almanac 1993, 1993.

[2] G. Goossens et al.: Integration of medium-

throughput signal processing algorithms on flexible

instruction-set architectures. Journ. VLSI Signal
Proc., 9(1995)1, pp. 49-65

[3] R. Gupta: Co-Synthesis of Hardware and

Software for Digital Embedded Systems. PhD thesis,
Stanford University, Department of Electrical
Engineering, December 1992.

[4] l.-J. Huang and A. Despain: Generating
instruction sets and microarchitectures from applications.

Proc. IEEE/ACM Int. Conf. Comp.-Aided
Design, pp. 391-396, San Jose (Calif., USA), Nov. 1994.

[5] J. Van Praet, G. Goossens, D. Lanneer and
H. De Man: Instruction set definition and instruction
selection for ASIPs. Proc. of the 7th International
Symposium on High-Level Synthesis, pp. 11-16, Nia-

gara-on-the-Lake (Ontario, Canada), May 1994.

[6] C. Liem, T. May and P. Paulin: Instruction-
set matching and selection for DSP and ASIP code

generation. Proc. Europ. Design and Test Conf.,

pp. 31-37, Paris (France), Feb. 1994.

[7] D. Lanneer, M. Cornero, G. Goossens and
H. De Man: Data routing: a paradigm for efficient
data-path synthesis and code generation. Proc. 7th

ACM/IEEE Int. Symp. on High-Level Synthesis, pp. 17

to 22, Niagara-on-the-Lake (Ont., Canada), May
1994.

[8] S. Davidson, D. Landskov, B. D. Shriver and
P.W. Mallett: Some experiments in local microcode

compaction for horizontal machines. IEEE Trans, on

Computers, C-30(1981)7, pp. 460-477.
[9] J. R. Ellis: Bulldog - A compiler for VLIW

architectures. MIT Press, Cambridge, 1986.

[10] J. Teich: A Compiler for Application-Specific
Processor Arrays. Shaker (Reihe Elektrotechnik).

Zugl, Saarbrücken, Univ. Diss, ISBN 3-86111-701-0,
Aachen, Germany, 1993.

[11] D. Harel: Statecharts: A visual formalism for
complex systems. Science of Computer
Programming, 8,1987.

[12] E. A. Lee and D.G. Messerschmitt: Synchronous

dataflow. Proc. of the IEEE, 75(1987)9, pp. 1235

to 1245.

[13] IEEE Standard VHDL Language Reference
Manual. IEEE, IEEE Std. 1076-1987, 1987.

[14] C. A. R. Hoare: Communicating Sequential
Processes. Prentice Hall, Englewood Cliffs, NJ, 1985.

[15] G. Berry and G. Gonthier: The Esterel
synchronous programming language: Design, semantics,

implementation. Science of Computer
Programming, 19(1992)2, pp. 87-152.

[16] N. Halbwachs, P.Caspi, P.Raymond and
D. Pilaud: The synchronous data flow programming
language Lustre. Proc. of the IEEE, 79(1989)9.

[17] E.A.Ashcroft: Proving assertions about
parallel programs. Journ. of Computer and Systems

Science, 10(1975)1, pp. 110-135.

[18] A. Benveniste and P. Le Guernic: Hybrid
dynamical systems theory and the Signal language.
IEEE Trans, on Automatic Control, 35(1990)5, pp. 535

to 546.

[19] i. Buck, S. Ha, E. A. Lee and D.G.

Messerschmitt: Ptolemy: A framework for simulating and

prototyping heterogeneous systems. International
Journ. on Comp. Simulation, (1991)4, pp. 155-182.

Hardware/Software-Codesign
L'automatisation croissante dans le domaine de la conception de circuits

électroniques a fait que l'on peut développer des systèmes toujours plus complexes
dans un temps toujours plus court à l'aide d'outils CAD. Pour des raisons d'efficacité
et de frais les systèmes considérés sont constitués en règle générale d'une
combinaison de composants logiciels et matériels (programmables). Sous le slogan
Hardware/Software-Codesign se cache l'objectif d'aujourd'hui de réaliser la

conception de systèmes complexes entiers à l'aide d'outils CAD. La première partie
de cet article donne un aperçu d'introduction des problèmes de conception dont

s'occupe ce secteur de la recherche.

Bulletin SEV/VSE 25/96 23

	Hardware/Software-Codesign : Massgeschneiderte elektronische Systeme : Teil 1 : HW/SW-Architekturen und Spezifikation

