
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 87 (1996)

Heft: 19

Artikel: Befreiung aus proprietären Gefängnissen : Erfahrungen mit der
Sanierung von Anwendersystemen

Autor: Sneed, Harry M.

DOI: https://doi.org/10.5169/seals-902365

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-902365
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Software-Reengineering

In den letzten zwei, drei Jahrzehnten haben die Unternehmen enorme Gelder in

eigenentwickelte proprietäre Softwaresysteme investiert. Deren Entwickler sind heute
samt ihrem Wissen über diese Anwendungen längst in Pension oder in andere Firmen

abgewandert. Für jede Firma kommt der Tag, an dem siesich die Frage stellen muss, ob
und wie diese Software-Dinosaurier in die Welt der modernen Softwaresysteme
migriert werden können oder ob von Grund auf neue (eigene oder fremde) Software
entwickelt und installiert werden muss. Der Autor dieses Beitrages schildert seine

Erfahrungen und Erkenntnisse, die er sich beim Reengineering von Mainframe-
Software erworben hat.

Befreiung aus proprietären
Gefängnissen

Erfahrungen mit der Sanierung von Anwendersystemen

Adresse des Autors
Harry M. Sneed, SES Software-Engineering Service

GmbH, D-S5521 Ottobrunn/München

Harry M. Sneed

Ein zentrales Informatikthema unserer
Zeit ist der Übergang von der alten
monolithischen, Mainframe-bezogenen und pro-
zedural orientierten Welt in die neue Welt
der verteilten, vernetzten und objektorientierten

Systeme. Wie können die
schwerfälligen, trägen und mit Altlasten belade-

nen Grossunternehmen einen so gewaltigen

Sprung über die «Gletscherspalte»
(Bild 1) bewältigen? Grundsätzlich gibt es

drei Möglichkeiten:

1. Softwaresanierung
2. Kauf von Standardsoftware und
3. Neuentwicklung des Systems [1]

Die billigste Lösung?

Für Anwender, die vor der Wahl stehen,
wie sie ihre Software restrukturieren sollen,

ist der Kauf von Standardsoftware die

billigste Alternative mit dem geringsten
technischen Risiko. Sie bekommen eine

schlüsselfertige Lösung von der Stange und
müssen sie nur ihren Verhältnissen anpas¬

sen. Es war Barry Boehm, der sagte: «Die

billigste Software ist die Software, die man
nicht entwickeln muss.» Der Haken dabei
ist allerdings der Anpassungsaufwand. Ist

er klein, dann ist diese Alternative
zweifelsohne die günstigste. Ist er aber gross,
dann könnte diese Alternative die teuerste
werden. Kritisch ist also die Schätzung des

Anpassungsaufwandes. Im allgemeinen
dürfte es am besten sein, wenn sich die

Organisation der gekauften Software an-

passt; aber auch das kostet Geld und Zeit,
die man sehr wohl in die Kalkulation
einbeziehen muss.

Die attraktivste Lösung?

Die attraktivste Alternative ist die
Neuentwicklung des Systems. Denn hiermit
glaubt der Anwender alle seine bisher

zurückgehaltenen funktionalen Verbesserungen

verwirklichen zu können. Der Haken

hierbei ist das technische Risiko.
Gerade weil so viele Änderungswünsche
sich gesammelt haben, werden neu entwickelte

Altsysteme besonders komplex. Die
Wahrscheinlichkeit, überhaupt damit fertig
zu werden, steht 50 zu 50.

Abgesehen vom Risiko können auch die
Kosten einer Neuentwicklung schwer
abgeschätzt werden, und zwar nicht wegen
der Realisierung, die man heute mit modernen

Schätzmethoden relativ gut kalkulieren

Bulletin SEV/VSE 19/96 45



Informatik

Bild 1 Sprung über die Gletscherspalte

kann, sondern wegen der Konzipierung. In

grossen Organisationen wird es zunehmend

schwieriger, einen Konsens über die

Funktionalität neuer Softwaresysteme zu
erreichen. Jeder will mitreden und seine

eigenen Vorstellungen einbringen. Da in
der heutigen Datenverarbeitung im Prinzip
alles möglich ist, findet die Diskussion
über den Umfang des neuen Vorhabens
kein Ende - vor allem deshalb, weil jeder
die Schwächen des Vorgängersystems
kennt und jeder meint, das neue System
müsse unermesslich viel besser sein. Die
Neuentwicklung vorhandener Softwaresysteme

hat also dort die besten Chancen, wo
die zusätzliche Funktionalität eingegrenzt
werden kann.

Mit den beiden Alternativen -
Standardsoftware und Neuentwicklung - hat
der Anwender die Wahl zwischen geringem

technischem Risiko und abschätzbaren

Kosten, verbunden mit organisatorischen

Anpassungen, auf der einen Seite

und hohem technischem Risiko mit schwer
abschätzbaren Kosten, aber ohne
organisatorische Anpassung auf der anderen
Seite.

Die Kompromisslösung

Die Alternative «Sanierung» ist ein

Kompromiss zwischen den beiden ersten

Lösungen. Zum einen ist das technische
Risiko geringer und das Ausmass der
Kosten leichter abschätzbar. Zum anderen

ist aber der Nutzen viel geringer. Es gibt
keine neue Funktionalität, der
betriebswirtschaftliche Nutzwert der Software
bleibt konstant. Einzig der technische
Nutzwert steigt. Das Ziel einer Sanierung

ist die technische Überholung eines

Systems. Eine Sanierung kann nur deshalb

so billig sein, weil die Funktionalität eingefroren

wird. Die funktionale Spezifikation
für eine Sanierung ist die Software selbst -
das heisst die Programme und Datenstrukturen

- in ihrem momentanen Zustand. Die
technische Spezifikation bildet die

Transformationsregeln für die Restrukturierung,
Bereinigung und Konvertierung der

Programme, Masken und Datenstrukturen. Es

lässt sich an der Software vieles ändern -
sie kann von einer Sprache in die andere

übersetzt werden, sie kann eine neue
Datenbankschnittstelle erhalten, sie kann

sogar von einer Host- in eine Client-Server-
Architektur versetzt werden; nur eines

ändert sich nicht, die Funktionalität. Denn

nur so ist es möglich, die funktionale
Korrektheit der sanierten Version gegen
die Daten der alten Version zu bestätigen.
Wer die Funktionalität ändert, muss neue

Testdaten schaffen, eine neue Spezifikation

erstellen, und bereits ist man in die Nähe

einer Neuentwicklung gerückt.

Trennung von technischer
und funktionaler Sanierung

Alle Erfahrungen mit Sanierungsprojekten
haben gezeigt, dass der Erfolg nur dann

gesichert ist, wenn zwischen der technischen

und der funktionalen Sanierung
getrennt wird. Zunächst gilt es, die Software
in einen anderen technischen Zustand zu

bringen; anschliessend kann die Software
in eine andere technische Umgebung
migriert werden, zum Beispiel von einer
Netzwerkdatenbank in eine relationale
Datenbank oder von einer Host- in eine

Client-Server-Architektur. Erst wenn die
Software in ihrem neuen technischen
Zustand und in der neuen technischen Umgebung

bestätigt worden ist, kann das zweite

Projekt zur Änderung beziehungsweise
Erweiterung der Funktionalität gestartet werden.

Ein Sanierungsprojekt ist deshalb oft
eine lange Kette wohldefinierter Zwischenschritte,

wobei die Software nach jedem
Schritt in einem produktionsreifen Zustand

zu sein hat. Deshalb bedürfen Sanierungsprojekte

einer sorgfältigen Planung und
einer strengen Überwachung.

In den letzten Jahren ist der Autor dieses

Beitrages an einigen Software-Sanierungs-
projekten massgeblich beteiligt gewesen:
zwei bei der Schweizerischen Bankgesellschaft

(SBG), eines bei der Schweizerischen

Kreditanstalt (SKA), eines für ABB-
Henschel und eines für die Wella AG.

Termin- und kostengerecht

Das erste Projekt bei der SBG hatte
das Ziel, 8 Bankapplikationen mit
27 Assembler-Programmen, 169 Cobol-

OO-Cobol

Modularisiertes
Cobol-85

Cobol-85

Optimiertes
OO-Cobol

Cobol-85
Klassen

4. Schleuse; Optimierung

3. Schleuse; Konvertierung

2. Schleuse; Objektbildung

Schleuse; Modularisierung

Bild 2 Evolution der Datenbanktechnik

46 Bulletin ASE/UCS 19/96



Software-Reengineering

68-Programmen, 123 Assembler-Subrou-
tinen, 519 Dateien, 108 Dienstprogrammen
und 8 Zugriffsmodulen - insgesamt
387 000 Lines of Code in Cobol-74/Delta/
JSP mit einer Codasyl-Datenbank - auf
einen anderen Rechner zu migrieren (Bilder

2 und 3). Der Assemblercode musste in
Cobol übersetzt werden. Die Utility-Programme

wurden entweder in Cobol oder in
die Kommandosprache des Zielrechners
übersetzt. Die Zugriffsroutinen wurden

neu geschrieben. Die Dateien wurden
entweder in VSAM- oder in Codasyl-Daten-
banken migriert. Schliesslich wurden die

Cobol-Programme restrukturiert. Dieses

Projekt wurde zwei Monate vor dem

Endtermin, nach genau einem Jahr und

genau zu den geschätzten Kosten erfolgreich

abgeschlossen [2], In einem
Folgeprojekt kam eine weitere Applikation mit
nochmals zehn Cobol-Programmen und
sieben grossen Assembler-Programmen
dazu. Auch dieses Projekt wurde termin-
und kostengerecht abgeschlossen.

Das zweite Projekt bei der SBG hatte
das Ziel, Cobol-74/Delta/JSP-Programme
in Cobol-85 und Codasyl-Datenbanken in
relationale Datenbanken zu migrieren.
Insgesamt waren 18 Datenbanken und 66

Programme betroffen. Auch hier konnte
die Arbeit mit Hilfe von geeigneten
Werkzeugen innerhalb der geplanten sechs

Monate abgeschlossen werden.

Schrittweise, aber sicher

Das dritte Projekt für die ABB-Henschel
hatte das Ziel, 20 Cobol-74-Programme,
die zur Verkabelung von Lokomotiven
dienten, von der IBM-Mainframe auf
einen DEC-VAX-Rechner zu migrieren.
Um dieses Ziel zu erreichen, mussten
die 20 Programme bereinigt und nach

Cobol-85 konvertiert werden. Dies
erforderte viele Zwischenstufen. Zunächst
wurden die Programme restrukturiert. Die
neuen restrukturierten Versionen gingen
zurück in die Produktion auf den IBM-
Computer.

Danach wurden die Programme in Co-
bol-2 übersetzt und wieder auf die IBM-
Mainframe in die Produktion gegeben.
Schliesslich wurden die restrukturierten

Cobol-2-Programme auf der DEC-Anlage
übersetzt und getestet. Jetzt ist geplant,
die Dateizugriffe durch eine relationale
Datenbankschnittstelle zu ersetzen. Das

ABB-Henschel-Projekt ist ein gutes
Beispiel für eine schrittweise Migration.

Das vierte Projekt für die Wella AG
hatte als Ziel, Unisys A12 Line und Cobol-

74-Programme sowie Unisys-DMS-II-Da-
tenbanken und -Dateien auf ein IBM-AS/
400-System zu migrieren. Auch in diesem

Fall mussten die Programme restrukturiert
und bereinigt werden. Die 35 Linc-Pro-

gramme - eine 4GL von Unisys - wurden
in 101-Online-Cobol-Module transformiert.

Die 80 Cobol-74-Programme wurden

in 80 strukturierte Cobol-85-Program-
me konvertiert. Obwohl dieses Projekt eine

zweimonatige Verzögerung hatte, war das

Ergebnis ein Erfolg. Die Programme liefen
mit geringen Anlaufproblemen in der

neuen AS/400-Umgebung. Die Verzögerung

des Projekts ist darauf
zurückzuführen, dass die Werkzeuge für dieses

Projekt in dem Projekt selbst entwickelt

Bild 3 Cobol-Upgrading

werden mussten, das heisst es gab ein

Entwicklungsprojekt in dem Sanierungsprojekt,

und Entwicklungsprojekte, vor
allem die Entwicklung von Softwarewerkzeugen,

sind schwer kalkulierbar.
Das fünfte Projekt - für die SKA - hatte

das Ziel, CICS/DLl/Assembler-Program-
me in Cobol-2 zu migrieren. Dieses Projekt
ist nach sechs Monaten erfolgreich beendet

worden. Auch hier waren mehrere
Zwischenstufen vorgesehen. Erst wurde der
Assembler-Code durch das Tool ASM-
Recon in Cobol-74-Code übersetzt. In der
zweiten Stufe wurde der Cobol-74-Code
durch das Tool Cobol-Recon-74 restrukturiert.

In der dritten Stufe wurde der Cobol-
74-Code durch das Tool Cobol-Recon-85
in Cobol-85 umgesetzt. Nach jeder Stufe
wurden die Programme daraufhin getestet,

ob sie noch mit den ursprünglichen
Assembler-Programmen funktional äquivalent
waren.

Forderungen an Sanierungsprojekte

Folgende Lehre kann aus diesen und
anderen Sanierungsprojekten gezogen werden:

Die Aussichten auf Erfolg sind in

Sanierungsprojekten viel grösser als in

Entwicklungsprojekten, vorausgesetzt, die

Ziele bleiben bescheiden.

1. Die Reengineering-Werkzeuge müssen

vor dem Beginn des Sanierungsprojektes

fertig ausgetestet sein.

2. Die Sanierung muss stufenweise erfolgen,

wobei jede Stufe validiert werden

muss.
3. Die technische Sanierung muss von

der funktionalen Sanierung getrennt
werden; erst wird technisch saniert,
dann wird funktional erweitert.

4. Die Sanierungsarbeit muss in
wohldefinierten Metriken, zum Beispiel
Datenelementen, Modulen, Anweisungen

und Codezeilen, messbar sein.

5. Die Testdaten müssen schon in der
alten Umgebung aufgebaut, auf ihren

Testdeckungseffekt geprüft und dann

erst in die neue Umgebung übertragen
werden.

Epoche

Evolution der Datenbanktechnik

Datenbankarchitektur Eigenschaften

1960er Jahre

1970er Jahre

1980er Jahre

1990er Jahre

Flache Dateien
(Sam, Isam, VSAM)

t
Hierarchische und
netzartige
Datenbanken
(Ims, Codasyl)

T
Relationale
Datenbanken
(DB2,Oracle, Ingres,
Sybase, ODBC)

t
Objektorientierte
Datenbanken
(Poet, Gemstone)

Datenhaltung

Datenhaltung
Datenstrukturierung

Datenhaltung
Datenstrukturierung
Datenzugriff

Datenhaltung
Datenstrukturierung
Datenzugriff
Datenmanipulation

Bulletin SEV/VSE 19/96 47



Informatik

6. Die sanierten Programme müssen

unbedingt in bezug auf ihre Testüberdeckung

gemessen werden.
7. Die Testpfade der alten Programme

müssen mit den Testpfaden der sanierten

Programme und die Testergebnisse
der alten Programme mit jenen der
sanierten Programme verglichen werden,

um funktionale Äquivalenz
festzustellen.

8. Der Regressionstest ist der

Hauptressourcenfresser, die Transformation
des Codes und der Daten muss
weitgehend automatisiert werden.

9. Die Kosten der Sanierungsprojekte
dürfen einen Drittel der Neuentwicklungskosten

nicht überschreiten.
10. Die Qualität der Software darf nicht

das Hauptziel sein. Das Hauptziel ist
die neue Umgebung, denn eine echte

Qualitätssteigerung ist schwer
nachweisbar und vor allem schwer zu
erreichen.

Schlussbemerkung

Zum Schluss ist zu Punkt 10 folgendes
zu sagen. Ursprünglich wurde propagiert,
dass Softwaresanierung beziehungsweise
-restrukturierung ein Mittel zur Steigerung
der Softwarequalität sei [3], Leider konnte
dieser Anspruch niemals erfüllt werden,
weil niemand in der Lage ist, Softwarequalität

zu definieren. Es wird sich deshalb

niemand einzig um der Qualität willen auf
ein Sanierungsprojekt einlassen. Es geht in

jedem Fall um andere Ziele. Man will die

Umgebung der Software auswechseln, oder

man will von einer veralteten in eine
moderne Umgebung umsiedeln. Ob die
Software danach besser wird, ist ein sekundäres

Ziel. Es ist schön, gut strukturierte
oder gar objektorientierte Programme zu
haben, aber dies ist nicht das entscheidende

Kriterium. Wesentlich für die
Entscheidungsträger ist die Tatsache, dass ihre

Programme in einer leicht portierbaren
Sprache, in einer offenen Umgebung mit
flexiblen Datenbankschnittstellen laufen

und dass ihre Datenstrukturen in einer
normierten Form mit einer normierten
Notation gespeichert sind. Softwaresanierung

ist ein erprobtes Mittel, um sich aus
den proprietären Gefängnissen der Hersteller

zu befreien.

Literatur
[1] H.Sneed: Economics of Software Reengineering

in Journal of Software Maintenance, 3(1991)3.
[2] H. Sneed: Bank Application Reengineering &

Conversion at the Union Bank of Switzerland. Proc.

of Int. Conference on Software Maintenance,
Sorrento, Italy, Oct. 1991.

[3] H.Sneed: Software-Sanierung, Rudolf-Müller-Verlag,

Köln, 1991.

Les systèmes «propriétaires»;
des chaînes à rompre
Expériences faites dans l'assainissement des systèmes d'utilisateur

Ces vingt à trente dernières années, les entreprises ont investi des sommes énormes
dans le développement de leurs propres systèmes dits «propriétaires». Aujourd'hui, il
y a longtemps que les concepteurs de ces systèmes ont changé d'entreprise ou pris leur
retraite. Le jour viendra pour chaque société de se demander quand son dinosaure

logiciel pourra enfin migrer vers le monde des systèmes logiciels modernes ou s'il faut
développer et installer un nouveau logiciel (développé par l'utilisateur ou acheté à

l'extérieur). L'auteur de l'article fait part de ses expériences et des connaissances

acquises dans le redéveloppement de logiciel pour Mainframe.

JL achbuch- &
Dok pientenservice

IlBlSIII
• alle Normen/Vorschriften (weltweit)

& "k ft: s

• jedes Buch aus jedem Verlag

• DIN TB/DIN Katalog etc.

K. Marbet Industriestrasse 7 3178 Bösingen

Tel. 031 747 58 57 Fax 031 747 58 54

Technische BeSchichtungen
Chemie-Korrosionsschutz

• Elektrische Isolationen
• Antihaft-/Gleitbeschichtungen
• Hochtemperatur-Beschichtungen

EPOSlNT
Kunststoffwerk, CH-8505 Pfyn/TG

Telefon 052 765 21 21, Fax 052 765 18 12

Verlangen Sie unsere Dokumentation

48 Bulletin ASE/UCS 19/96


	Befreiung aus proprietären Gefängnissen : Erfahrungen mit der Sanierung von Anwendersystemen

