Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 87 (1996)

Heft: 19

Artikel: Befreiung aus proprietaren Gefangnissen : Erfahrungen mit der
Sanierung von Anwendersystemen

Autor: Sneed, Harry M.

DOl: https://doi.org/10.5169/seals-902365

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-902365
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Software-Reengineeriﬁé

In den letzten zwei, drei Jahrzehnten haben die Unternehmen enorme Gelder in
eigenentwickelte proprietare Softwaresysteme investiert. Deren Entwickler sind heute
samt ihrem Wissen Uber diese Anwendungen langst in Pension oder in andere Firmen
abgewandert. Fir jede Firma kommt der Tag, an dem sie sich die Frage stellen muss, ob
und wie diese Software-Dinosaurier in die Welt der modernen Softwaresysteme
migriert werden kénnen oder ob von Grund auf neue (eigene oder fremde) Software
entwickelt und installiert werden muss. Der Autor dieses Beitrages schildert seine
Erfahrungen und Erkenntnisse, die er sich beim Reengineering von Mainframe-

Software erworben hat.

Befreiung aus proprietdren
Gefangnissen

Erfahrungen mit der Sanierung von Anwendersystemen

Adresse des Autors
Harry M. Sneed, SES Software-Engineering Service
GmbH, D-85521 Ottobrunn/Miinchen

Bulletin SEV/VSE 19/96

B Harry M. Sneed

Ein zentrales Informatikthema unserer
Zeit ist der Ubergang von der alten mono-
lithischen, Mainframe-bezogenen und pro-
zedural orientierten Welt in die neue Welt
der verteilten, vernetzten und objektorien-
tierten Systeme. Wie konnen die schwer-
filligen, trdgen und mit Altlasten belade-
nen Grossunternehmen einen so gewal-
tigen Sprung iiber die «Gletscherspalte»
(Bild 1) bewiltigen? Grundsitzlich gibt es
drei Moglichkeiten:

1. Softwaresanierung
2. Kauf von Standardsoftware und
3. Neuentwicklung des Systems [1]

Die billigste Losung?

Fiir Anwender, die vor der Wahl stehen,
wie sie ihre Software restrukturieren sol-
len, ist der Kauf von Standardsoftware die
billigste Alternative mit dem geringsten
technischen Risiko. Sie bekommen eine
schliisselfertige Losung von der Stange und
miissen sie nur ihren Verhiltnissen anpas-

sen. Es war Barry Boehm, der sagte: «Die
billigste Software ist die Software, die man
nicht entwickeln muss.» Der Haken dabei
ist allerdings der Anpassungsaufwand. Ist
er klein, dann ist diese Alternative zwei-
felsohne die giinstigste. Ist er aber gross,
dann konnte diese Alternative die teuerste
werden. Kritisch ist also die Schitzung des
Anpassungsaufwandes. Im allgemeinen
diirfte es am besten sein, wenn sich die
Organisation der gekauften Software an-
passt; aber auch das kostet Geld und Zeit,
die man sehr wohl in die Kalkulation
einbeziehen muss.

Die attraktivste Losung?

Die attraktivste Alternative ist die Neu-
entwicklung des Systems. Denn hiermit
glaubt der Anwender alle seine bisher
zuriickgehaltenen funktionalen Verbesse-
rungen verwirklichen zu konnen. Der Ha-
ken hierbei ist das technische Risiko.
Gerade weil so viele Anderungswiinsche
sich gesammelt haben, werden neu entwik-
kelte Altsysteme besonders komplex. Die
Wabhrscheinlichkeit, iiberhaupt damit fertig
zu werden, steht 50 zu 50.

Abgesehen vom Risiko konnen auch die
Kosten einer Neuentwicklung schwer ab-
geschitzt werden, und zwar nicht wegen
der Realisierung, die man heute mit moder-
nen Schitzmethoden relativ gut kalkulieren

45

informatik

Alte Technologie
Transaktionsorientiert
Mainframe
Batch
3GL

Bild 1 Sprung Gber die Gletscherspalte

kann, sondern wegen der Konzipierung. In
grossen Organisationen wird es zuneh-
mend schwieriger, einen Konsens iiber die
Funktionalitdt neuer Softwaresysteme zu
erreichen. Jeder will mitreden und seine
eigenen Vorstellungen einbringen. Da in
der heutigen Datenverarbeitung im Prinzip
alles moglich ist, findet die Diskussion
iber den Umfang des neuen Vorhabens
kein Ende — vor allem deshalb, weil jeder
die Schwichen des Vorgingersystems
kennt und jeder meint, das neue System
miisse unermesslich viel besser sein. Die
Neuentwicklung vorhandener Softwaresy-
steme hat also dort die besten Chancen, wo
die zusitzliche Funktionalitit eingegrenzt
werden kann.

Mit den beiden Alternativen — Stan-
dardsoftware und Neuentwicklung — hat
der Anwender die Wahl zwischen gerin-
gem technischem Risiko und abschitz-
baren Kosten, verbunden mit organisato-
rischen Anpassungen, auf der einen Seite
und hohem technischem Risiko mit schwer
abschitzbaren Kosten, aber ohne organi-
satorische Anpassung auf der anderen
Seite.

Die Kompromisslosung

Die Alternative «Sanierung» ist ein
Kompromiss zwischen den beiden ersten
Losungen. Zum einen ist das technische
Risiko geringer und das Ausmass der
Kosten leichter abschitzbar. Zum anderen
ist aber der Nutzen viel geringer. Es gibt
keine neue Funktionalitit, der betriebs-
wirtschaftliche Nutzwert der Software
bleibt konstant. Einzig der technische
Nutzwert steigt. Das Ziel einer Sanierung

46

Neue Technologie
Objektorientiert
Client/Server
Case

4GL

ist die technische Uberholung eines
Systems. Eine Sanierung kann nur deshalb
so billig sein, weil die Funktionalitdt einge-
froren wird. Die funktionale Spezifikation
fiir eine Sanierung ist die Software selbst —
das heisst die Programme und Datenstruk-
turen — in ihrem momentanen Zustand. Die
technische Spezifikation bildet die Trans-
formationsregeln fiir die Restrukturierung,
Bereinigung und Konvertierung der Pro-
gramme, Masken und Datenstrukturen. Es
ldsst sich an der Software vieles dndern —
sie kann von einer Sprache in die andere
tibersetzt werden, sie kann eine neue Da-
tenbankschnittstelle erhalten, sie kann so-
gar von einer Host- in eine Client-Server-
Architektur versetzt werden; nur eines
dndert sich nicht, die Funktionalitit. Denn
nur so ist es moglich, die funktionale
Korrektheit der sanierten Version gegen
die Daten der alten Version zu bestitigen.
Wer die Funktionalitdt dndert, muss neue

Testdaten schaffen, eine neue Spezifikati-
on erstellen, und bereits ist man in die Nihe
einer Neuentwicklung geriickt.

Trennung von technischer
und funktionaler Sanierung

Alle Erfahrungen mit Sanierungsprojek-
ten haben gezeigt, dass der Erfolg nur dann
gesichert ist, wenn zwischen der techni-
schen und der funktionalen Sanierung ge-
trennt wird. Zunichst gilt es, die Software
in einen anderen technischen Zustand zu
bringen; anschliessend kann die Software
in eine andere technische Umgebung mi-
griert werden, zum Beispiel von einer
Netzwerkdatenbank in eine relationale Da-
tenbank oder von einer Host- in eine
Client-Server-Architektur. Erst wenn die
Software in ihrem neuen technischen Zu-
stand und in der neuen technischen Umge-
bung bestitigt worden ist, kann das zweite
Projekt zur Anderung beziehungsweise Er-
weiterung der Funktionalitdt gestartet wer-
den. Ein Sanierungsprojekt ist deshalb oft
eine lange Kette wohldefinierter Zwischen-
schritte, wobei die Software nach jedem
Schritt in einem produktionsreifen Zustand
zu sein hat. Deshalb bediirfen Sanierungs-
projekte einer sorgfiltigen Planung und
einer strengen Uberwachung.

In den letzten Jahren ist der Autor dieses
Beitrages an einigen Software-Sanierungs-
projekten massgeblich beteiligt gewesen:
zwei bei der Schweizerischen Bankgesell-
schaft (SBG), eines bei der Schweizeri-
schen Kreditanstalt (SKA), eines fiir ABB-
Henschel und eines fiir die Wella AG.

Termin- und kostengerecht

Das erste Projekt bei der SBG hatte
das Ziel, 8 Bankapplikationen mit
27 Assembler-Programmen, 169 Cobol-

Klassen

Modularisiertes
Cobol-85

Cobol-85

Cobol-85

2. Schleuse; Objektbildung

| 1. Schleuse; Modularisierung

Optimiertes
OO-Cobol

OO-Cobol

4. Schleuse; Optimierung

3. Schleuse; Konvertierung

Bild 2 Evolution der Datenbanktechnik

Bulletin ASE/UCS 19/96

68-Programmen, 123 Assembler-Subrou-
tinen, 519 Dateien, 108 Dienstprogrammen
und 8 Zugriffsmodulen - insgesamt
387 000 Lines of Code in Cobol-74/Delta/
JSP mit einer Codasyl-Datenbank — auf
einen anderen Rechner zu migrieren (Bil-
der 2 und 3). Der Assemblercode musste in
Cobol iibersetzt werden. Die Utility-Pro-
gramme wurden entweder in Cobol oder in
die Kommandosprache des Zielrechners
tibersetzt. Die Zugriffsroutinen wurden
neu geschrieben. Die Dateien wurden ent-
weder in VSAM- oder in Codasyl-Daten-
banken migriert. Schliesslich wurden die
Cobol-Programme restrukturiert. Dieses
Projekt wurde zwei Monate vor dem
Endtermin, nach genau einem Jahr und
genau zu den geschitzten Kosten erfolg-
reich abgeschlossen [2]. In einem Folge-
projekt kam eine weitere Applikation mit
nochmals zehn Cobol-Programmen und
sieben grossen Assembler-Programmen
dazu. Auch dieses Projekt wurde termin-
und kostengerecht abgeschlossen.

Das zweite Projekt bei der SBG hatte
das Ziel, Cobol-74/Delta/JSP-Programme
in Cobol-85 und Codasyl-Datenbanken in
relationale Datenbanken zu migrieren. Ins-
gesamt waren 18 Datenbanken und 66
Programme betroffen. Auch hier konnte
die Arbeit mit Hilfe von geeigneten Werk-
zeugen innerhalb der geplanten sechs
Monate abgeschlossen werden.

Schrittweise, aber sicher

Das dritte Projekt fiir die ABB-Henschel
hatte das Ziel, 20 Cobol-74-Programme,
die zur Verkabelung von Lokomotiven
dienten, von der IBM-Mainframe auf
einen DEC-VAX-Rechner zu migrieren.
Um dieses Ziel zu erreichen, mussten
die 20 Programme bereinigt und nach
Cobol-85 konvertiert werden. Dies er-
forderte viele Zwischenstufen. Zunichst
wurden die Programme restrukturiert. Die
neuen restrukturierten Versionen gingen
zuriick in die Produktion auf den IBM-
Computer.

Danach wurden die Programme in Co-
bol-2 iibersetzt und wieder auf die IBM-
Mainframe in die Produktion gegeben.
Schliesslich wurden die restrukturierten
Cobol-2-Programme auf der DEC-Anlage
libersetzt und getestet. Jetzt ist geplant,
die Dateizugriffe durch eine relationale
Datenbankschnittstelle zu ersetzen. Das
ABB-Henschel-Projekt ist ein gutes Bei-
spiel fiir eine schrittweise Migration.

Das vierte Projekt fiir die Wella AG
hatte als Ziel, Unisys A12 Linc und Cobol-
74-Programme sowie Unisys-DMS-II-Da-
tenbanken und -Dateien auf ein IBM-AS/
400-System zu migrieren. Auch in diesem

Bulletin SEV/VSE 19/96

Fall mussten die Programme restrukturiert
und bereinigt werden. Die 35 Linc-Pro-
gramme — eine 4GL von Unisys — wurden
in 101-Online-Cobol-Module transfor-
miert. Die 80 Cobol-74-Programme wur-
den in 80 strukturierte Cobol-85-Program-
me konvertiert. Obwohl dieses Projekt eine
zweimonatige Verzogerung hatte, war das
Ergebnis ein Erfolg. Die Programme liefen
mit geringen Anlaufproblemen in der
neuen AS/400-Umgebung. Die Verzoge-
rung des Projekts ist darauf zuriick-
zufithren, dass die Werkzeuge fiir dieses
Projekt in dem Projekt selbst entwickelt

".‘S.Ac')ftware-Reengmeerlné

ob sie noch mit den urspriinglichen Assem-
bler-Programmen funktional dquivalent
waren.

Forderungen an Sanierungs-
projekte

Folgende Lehre kann aus diesen und
anderen Sanierungsprojekten gezogen wer-
den: Die Aussichten auf Erfolg sind in
Sanierungsprojekten viel grosser als in
Entwicklungsprojekten, vorausgesetzt, die
Ziele bleiben bescheiden.

Evolution der Datenbanktechnik
Epoche Datenbankarchitektur Eigenschaften
1960er Jahre Flache Dateien Datenhaltung
Hierarchische und
1970er Jahre ~ hetzartige Datenhaltung
~ Datenbanken Datenstrukturierung
~ (Ims, Codasyl) %
~ Relationale
1980er Jahre Datenbanken nggggﬁgﬁaﬂierung
(DB2,Oracle, Ingres, - Datenzugriff
_Sybase, ODBC) 9
R T . Datenhaltun
Objektorientierte ¢ g
1990er Jahre Datenbanken - Datenstrukturierung
(Poet, Gemstone) Datenzugriff
, ety Datenmanipulation

Bild3 Cobol-Upgrading

werden mussten, das heisst es gab ein
Entwicklungsprojekt in dem Sanierungs-
projekt, und Entwicklungsprojekte, vor -
allem die Entwicklung von Softwarewerk-
zeugen, sind schwer kalkulierbar.

Das fiinfte Projekt — fiir die SKA — hatte
das Ziel, CICS/DLI/Assembler-Program-
me in Cobol-2 zu migrieren. Dieses Projekt
ist nach sechs Monaten erfolgreich beendet
worden. Auch hier waren mehrere Zwi-
schenstufen vorgesehen. Erst wurde der
Assembler-Code durch das Tool ASM-
Recon in Cobol-74-Code iibersetzt. In der
zweiten Stufe wurde der Cobol-74-Code
durch das Tool Cobol-Recon-74 restruktu-
riert. In der dritten Stufe wurde der Cobol-
74-Code durch das Tool Cobol-Recon-85
in Cobol-85 umgesetzt. Nach jeder Stufe
wurden die Programme daraufhin getestet,

1. Die Reengineering-Werkzeuge miissen
vor dem Beginn des Sanierungsprojek-
tes fertig ausgetestet sein.

2. Die Sanierung muss stufenweise erfol-
gen, wobei jede Stufe validiert werden
muss.

3. Die technische Sanierung muss von
der funktionalen Sanierung getrennt
werden; erst wird technisch saniert,
dann wird funktional erweitert.

4. Die Sanierungsarbeit muss in wohl-
definierten Metriken, zum Beispiel
Datenelementen, Modulen, Anweisun-
gen und Codezeilen, messbar sein.

5. Die Testdaten miissen schon in der
alten Umgebung aufgebaut, auf ihren
Testdeckungseffekt gepriift und dann
erst in die neue Umgebung {ibertragen
werden.

47

ihformatik

6. Die sanierten Programme miissen un-
bedingt in bezug auf ihre Testiiber-
deckung gemessen werden.

7. Die Testpfade der alten Programme
miissen mit den Testpfaden der sanier-
ten Programme und die Testergebnisse
der alten Programme mit jenen der
sanierten Programme verglichen wer-
den, um funktionale Aquivalenz festzu-
stellen.

8. Der Regressionstest ist der Haupt-
ressourcenfresser, die Transformation
des Codes und der Daten muss weit-
gehend automatisiert werden.

9. Die Kosten der Sanierungsprojekte
diirfen einen Drittel der Neuentwick-
lungskosten nicht iiberschreiten.

10. Die Qualitit der Software darf nicht
das Hauptziel sein. Das Hauptziel ist
die neue Umgebung, denn eine echte
Qualititssteigerung ist schwer nach-
weisbar und vor allem schwer zu
erreichen.

Schlusshemerkung

Zum Schluss ist zu Punkt 10 folgendes
zu sagen. Urspriinglich wurde propagiert,
dass Softwaresanierung beziehungsweise
-restrukturierung ein Mittel zur Steigerung
der Softwarequalitit sei [3]. Leider konnte
dieser Anspruch niemals erfiillt werden,
weil niemand in der Lage ist, Softwarequa-
litdt zu definieren. Es wird sich deshalb

niemand einzig um der Qualitit willen auf
ein Sanierungsprojekt einlassen. Es geht in
jedem Fall um andere Ziele. Man will die
Umgebung der Software auswechseln, oder
man will von einer veralteten in eine
moderne Umgebung umsiedeln. Ob die
Software danach besser wird, ist ein sekun-
ddres Ziel. Es ist schon, gut strukturierte
oder gar objektorientierte Programme zu
haben, aber dies ist nicht das entschei-
dende Kriterium. Wesentlich fiir die Ent-
scheidungstriger ist die Tatsache, dass ihre
Programme in einer leicht portierbaren
Sprache, in einer offenen Umgebung mit
flexiblen Datenbankschnittstellen laufen

und dass ihre Datenstrukturen in einer
normierten Form mit einer normierten
Notation gespeichert sind. Softwaresanie-
rung ist ein erprobtes Mittel, um sich aus
den proprietiren Gefingnissen der Herstel-
ler zu befreien.

Literatur

[1] H. Sneed: Economics of Software Reenginee-
ring in Journal of Software Maintenance, 3(1991)3.

[2] H. Sneed: Bank Application Reengineering &
Conversion at the Union Bank of Switzerland. Proc.
of Int. Conference on Software Maintenance, Sor-
rento, ltaly, Oct. 1991.

[3] H. Sneed: Software-Sanierung, Rudolf-Mul-
ler-Verlag, Koln, 1991.

Les systémes «propriétaires»:
des chaines a rompre

Expériences faites dans I'assainissement des systémes d'utilisateur

Ces vingt a trente dernicres années, les entreprises ont investi des sommes énormes
dans le développement de leurs propres systemes dits «propriétaires». Aujourd’hui, il
y a longtemps que les concepteurs de ces systemes ont changé d’entreprise ou pris leur
retraite. Le jour viendra pour chaque société de se demander quand son dinosaure
logiciel pourra enfin migrer vers le monde des systemes logiciels modernes ou s’il faut
développer et installer un nouveau logiciel (développé par I'utilisateur ou acheté a
I'extérieur). L’auteur de I'article fait part de ses expériences et des connaissances
acquises dans le redéveloppement de logiciel pour Mainframe.

achbuch- &

Dok@émentenservice

Technische Beschichtungen \

@® Chemie-Korrosionsschutz
@® Elektrische Isolationen

® Antihaft-/Gleitbeschichtungen

e alle Normen/Vorschriften (weltweit) ® Hochtemperatur-Beschichtungen
¢ jedes Buch aus jedem Verlag

e DIN TB/ DIN Katalog etc.

EPOSINT

Kunststoffwerk, CH-8505 Pfyn/TG
Telefon 052 765 2121, Fax 052 7651812

K. Marbet Industriestrasse 7 3178 Bdsingen
Tel. 031 7475857 Fax 031 747 58 54

Verlangen Sie unsere Dokumentation

48 Bulletin ASE/UCS 19/96

	Befreiung aus proprietären Gefängnissen : Erfahrungen mit der Sanierung von Anwendersystemen

