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Optimierung

Mit dem Streben, die Regeln der Natur zu verstehen, war auch schon immer der
Wunsch da, ihre Methoden nutzbringend fir menschliche Kreationen anzuwenden.
Seit einigen Jahren ist ein grosses Interesse an derartigen Verfahren festzustellen, vor
allem weil die klassischen Verfahren flr viele Probleme noch keine befriedigende
Lésung bieten. Neben den neuronalen Netzen, die in den lllustrierten fur Schlagzeilen
gesorgt haben, gehoéren die evolutiondren Algorithmen wohl zu den interessantesten
derzeitigen Forschungsgebieten.

Optimieren nach dem Vorbild

der Natur

Evolutiondre Algorithmen

Adresse des Autors:

Tobias Blickle, Dipl.-Ing., Institut fiir Technische
Informatik und Kommunikationsnetze,

ETH Zentrum, 8092 Ziirich.
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B Tobias Blickle

Evolutiondre Algorithmen sind eine
Klasse von probabilistischen Optimie-
rungsverfahren, welche «Ideen» der natiir-
lichen Evolution nutzen. Wegen ihrer Uni-
versalitit und Robustheit eignen sie sich
besonders fiir komplexe Optimierungs-
probleme, bei denen klassische Optimie-
rungsverfahren versagen. Der Artikel stellt
die Arbeitsweise der evolutiondren Algo-
rithmen am Beispiel des Parkierens eines
LKW vor, diskutiert die Vor- und Nach-
teile des Verfahrens und verweist auf
einige interessante Anwendungen.

Optimierungsprobleme  zdhlen schon
fast zum tédglichen Brot des Ingenieurs. In
vielen Bereichen — beim Routen einer
Platine, bei der Ablaufplanung von Pro-
zessen, der Bestimmung von Parametern
einer Regelung, der Modellierung chemi-
scher und physikalischer Vorgidnge oder
in der Bildverarbeitung — trifft man auf
Probleme, die sich mit der Frage umschrei-
ben lassen: Wie sieht die Losung meines
Problems aus, die meine Kostenfunktion
minimiert (oder maximiert) und gleich-
zeitig auch meine Nebenbedingungen ein-
hilt? Die meisten dieser Probleme sind
NP-hart, das heisst, sie gehoren in die
Klasse der schwierigsten Probleme, die die
Informatik kennt. Die Suche nach exakten
Losungen fiir NP-harte Probleme treibt die
erforderliche Rechenzeit jedes Supercom-
puters ins «Unendliche», da die Laufzeit

exponentiell mit der Eingabegrosse an-
steigt. Deshalb wendet man fiir grosse
Optimierungsprobleme sogenannte heuri-
stische Algorithmen an. Diese garantieren
zwar nicht, dass das globale Optimum
gefunden wird, finden dafiir aber in ver-
tretbarer Zeit eine «brauchbare» Losung.
In vielen Fillen geniigt es nidmlich, iiber-
haupt eine Losung zu finden; es muss nicht
immer die denkbar beste sein. Bei der
Verdrahtung einer Platine beispielsweise
ist es wichtiger, ein Layout zu finden, das
alle Pins richtig miteinander verbindet, als
jenes Layout, in dem die Verbindungen
auch noch optimal kurz sind. Fiir viele
Optimierungsprobleme gibt es speziell an-
gepasste Heuristiken. Aber es gibt auch
Optimierungsverfahren wie das «Simula-
ted Annealing» (Simuliertes Erstarren) [1],
die fiir verschiedenste Aufgaben eingesetzt
werden konnen, weil sie relativ unab-
hiingig von der Problemstellung sind. Eine
derartige Ungebundenheit und die Aus-
sicht auf zahlreiche potentielle Anwen-
dungen zeichnen auch die evolutiondren
Algorithmen aus.

Arbeitsweise evolutionarer
Algorithmen

Die evolutiondren Algorithmen finden
inzwischen in vielen Bereichen Anwen-
dung, und einige davon sind in einem
separaten Kasten vermerkt. Hier soll ihre
Arbeitsweise am Problem des Parkierens
eines LKW erldutert werden [3]. Diese
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I.hformatik

Im folgenden sollen einige Anwen-
dungsbeispiele evolutiondrer Algorith-
men aufgefiihrt werden. Die Liste erhebt
keinen Anspruch auf Vollstindigkeit; sie
soll nur den grossen Einsatzbereich dieser
Optimierungsmethode ~ dokumentieren.
Viele Beispiele sind in [6] gesammelt;
einen guten Uberblick iiber die momen-
tane Forschung und aktuelle Anwendun-
gen geben auch die Tagungsbinde der
beiden wichtigsten Konferenzen iiber
evolutiondre Algorithmen [7; 8].

Operations Research:

— Optimale Ablaufplanung von Prozes-
sen

— Problem des Handlungsreisenden

— Partitionierungsprobleme

Robotik:

— Optimale Trajektorien fiir Roboter-
arme

— Wegeplanung von Robotern

Anwendungsbeispiele evolutionarer Algorithmen

Kiinstliche Intelligenz:

— Steuerung autonomer Fahrzeuge

— Optimierung der Gewichte neuronaler
Netze

— Optimierung der Topologie neurona-
ler Netze

Telekommunikation:

— Optimierung der Netzwerkstruktur

— Optimierung der Nachrichtenvermitt-
lung (Message Routing)

Mikroelektronik:
— Parameteroptimierung digitaler Filter
— Partitionierung digitaler Schaltungen

Allgemeine Optimierungen:
Optimierung einer Pipeline-Steuerung
— Optimierung von physikalisch/chemi-
schen Modellen

Optimierung von Parametern einer
Regelung

Optimierung der Regelbasis von Fuzzy-
Reglern

|

Aufgabe ist sehr anschaulich und dient
deshalb oft als Demonstrationsbeispiel in
der Regelungstechnik. So existieren zum
Beispiel auch Losungen zu diesem Pro-
blem, bei denen die Regelung durch ein
neuronales Netz erfolgt. Die Aufgaben-
stellung lautet dabei wie folgt: Ein LKW
steht an einer beliebigen Position auf
einem Hof und soll innerhalb einer gewis-
sen Zeitspanne riickwirts an eine Lade-
rampe (Position 0,0) eingeparkt werden
(Bild 1). Der LKW fihrt dabei mit kon-
stanter Geschwindigkeit riickwirts. Ge-
sucht ist nun ein Steuerprogramm, das aus
der momentanen Position des LKW (x, y)
relativ zur Laderampe, dem Winkel zwi-
schen Fiihrerhaus und Anhinger (diff) und
dem Winkel des Anhingers bezogen auf
die X-Achse (tang) zu jedem Zeitpunkt den
richtigen Radeinschlag bestimmt und so
den LKW einparkt. Unser Optimierungs-

problem lautet also: Wie muss die Rege-
lungsfunktion aussehen, damit der Fehler
beim Einparken aus einer beliebigen An-
fangsposition minimal ist, unter der Bedin-
gung, dass eine vorgegebene Zeit-
beschrinkung nicht verletzt wird? Es wird
also ein funktionaler Zusammenhang F
zwischen den Eingabegrossen (x, vy, tang,
diff) und der Ausgabegrosse u gesucht, das
heisst

u = F(x,y,tang, diff) (1)

Die Einzelheiten zu dieser Problem-
stellung sind im Kasten «Einparken eines
LKW» beschrieben.

Mittels evolutionirer Algorithmen wird
dieses Problem auf folgende Weise gelost:

Grundlage ist eine Menge (Population)
von moglichen Losungen des Optimie-
rungsproblems (Individuen). Diese Indi-
viduen konnen je nach Aufgabe in ganz

Laderampe

(0,0)

Position

Radeinschlag \7

u(t)

Bild 1 Szenario zum
Riickwartseinparken
eines LKW
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unterschiedlicher Form dargestellt sein.
Fiir die Darstellung von funktionalen Zu-
sammenhingen, wie bei dem hier betrach-
teten Einparkproblem, eignet sich am be-
sten die Baumstruktur. Andere bekannte
Arten und Weisen, die Individuen darzu-
stellen, sind Bitstrings (Zeichenketten
konstanter Linge aus 0 und 1) und Vekto-
ren von reellen Zahlen (fiir die Optimie-
rung von Parametern).

Zu Anfang wird die Population mit
zufillig  erzeugten Individuen belebt
(Bild 2), das heisst, es werden irgend-
welche Steuerprogramme aus den gewihl-
ten Funktionen und Argumenten des
LKW-Beispiels gewiirfelt. In diesem Fall
wird also «bei Null» angefangen und kein
Wissen iiber die Losung eingebracht, aus-
ser durch die Wahl des «Befehlssatzes»
(also welche Funktionen und Argumente
zulidssig sind). Die meisten der Individuen
werden das Problem schlecht oder gar nicht
bewiltigen, aber sicherlich werden einige
«besser» sein als andere. Was «besser»
heisst, wird dabei durch die sogenannte
Fitnessfunktion bestimmt, die jedem Indi-
viduum einen Zahlenwert zuordnet, der die
Giite des Individuums beziiglich des Opti-
mierungsproblems angibt. Im Beispiel gibt
die Entfernung des LKW von der Laderam-
pe nach dem Einparkvorgang die Fitness
eines Steuerprogramms (Individuums) an.

Ziel des evolutiondren Algorithmus ist
nun, ein Individuum mit optimaler Fitness
zu finden. Um dies zu erreichen, werden
durch Selektion und Rekombination im-
mer wieder neue Populationen von poten-
tiellen Losungen erzeugt, bis man mit der
Qualitit der Losung des besten Individuums
zufrieden ist und das Abbruchkriterium
erfiillt ist. Durch das Zusammenspiel von
Selektion und Reproduktion erhofft man
sich eine Verbesserung der Fitnesswerte
(und schliesslich die optimale Losung).

Die Selektion soll die mittlere Fitness
der Population verbessern, indem sie durch
ein geeignetes Verfahren gute Individuen
(im Sinne der Fitnessfunktion) haufiger
fir die nichste Population auswihlt als
schlechte. Die Art und Struktur der Indivi-
duen wird dabei nicht veriindert, es werden
nur identische Kopien erzeugt. Dadurch
werden mehr «Testpunkte» (Individuen)
an Stellen im Losungsraum plaziert, die
einen relativ guten Fitnesswert haben. Die
Selektion fiihrt somit zu einer Konzentra-
tion der Population auf untersuchte und
gute Gebiete im Losungsraum. Die Selek-
tionsmethoden gehen im allgemeinen pro-
babilistisch vor; iibliche Selektionsmetho-
den sind zum Beispiel:

— Proportionale Selektion: Die Selektions-

wahrscheinlichkeit eines Individuums
ist proportional zu seiner Fitness.

Bulletin ASE/UCS 25/95



zuféllig erstellte
Anfangs-Population

Selektionsphase

Rekombinationsphase

Bild 2 Ablaufplan eines evolutiondren Algorithmus

— Truncation-Selektion: Nur ein bestimm-
ter Prozentsatz der besten Individuen der
Population tberlebt — was tatsidchlich
eine Art des «survival of the fittest»
bedeutet.

— Tournament-Selektion: Jedes Indivi-
duum der Nachfolgepopulation geht aus
einem Wettkampf zwischen einer be-
stimmten Anzahl von zufillig ausge-
wihlten Individuen hervor.

Die Aufgabe der Rekombination ist,
«inhaltlich» neue Individuen zu erzeugen,
um bessere Losungen zu finden. Auch hier
spielt der Zufall eine grosse Rolle. Mog-
lich sind sowohl ungeschlechtliche als
auch geschlechtliche Rekombinationen.
Bei der ungeschlechtlichen wird durch
Mutation ein Teil der Information (z.B.
Gleichungsstruktur des Individuums bei
Biumen) zufillig gedndert. Bei der ge-
schlechtlichen Rekombination - dem
Kreuzen zweier (oder mehrerer) Indivi-
duen - wird dagegen ein Teil der Informati-
on zwischen den Individuen getauscht. Die
Verénderung der Struktur der Individuen
bedeutet, dass neue «Punkte» im Losungs-
raum durch Individuen besetzt und somit
neue Gebiete im Losungsraum «erforscht»
werden. Normalerweise dndert man nicht
die ganze Population, sondern nur einen
gewissen Prozentsatz. Verschiedene Re-
kombinationsoperatoren (siehe weiter un-
ten) konnen auch gleichzeitig angewendet
werden, und gewdhnlich ist jedem Re-
kombinationsoperator eine Ausfiihrungs-
wahrscheinlichkeit zugeordnet. In den
Bildern 5 bis 9 sind verschiedene Rekom-
binationsarten dargestellt.

Bei unserer Aufgabe, den LKW optimal
zu parkieren, sind die Individuen als Bdume
dargestellt, und so ldsst sich das Kreuzen
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durch Austauschen zufilliger Teilbdume
zwischen den Individuen realisieren (Bild 7).

Das Zusammenspiel dieser beiden Haupt-
akteure — Selektion und Rekombination —
fiihrt mit der Zeit (Generationen) zu immer
«besseren» Individuen. Die Losung des
LKW-Problems wurde mit einer Popula-
tionsgrosse von 500 Individuen versucht,
sie gelang nach 11 Generationen. Die gefun-
dene Regelfunktion lautet:

u= PLUS[MINUS[PLUS[MINUS
[PLUS[diff,diff],IFLTZ[x,x,tang]],
IFLTZ[MUL[tang.diff] MINUS[diff,tang],y]],
MINUS[MUL[tang,x],y]],IFLTZ[MUL[tang,diff],
MINUS[diff,tang],PLUS[tang,y]]] 2)

wobei u das Ergebnis, das heisst der Radein-
schlag ist, der ausgefiihrt wird, wenn der
LKW an der Stelle (x, y) auf dem Hof steht
und die Winkel tang bzw. diff sind. Bild 3
zeigt die Losung als Baumstruktur. Diese
Funktion ist natiirlich nicht «die» Losung,
denn es gibt sehr viele Losungen fiir das
Problem, und ldsst man das Problem mehr-
mals durch einen evolutiondren Algorith-
mus losen, wird man sehr wahrscheinlich
jedesmal eine andere Losung erhalten, oft
genug sogar gar keine.

Vom «gemeinen Nutzen»
evolutionérer Algorithmen

Bei den evolutiondren Algorithmen han-
delt es sich also um eine Art «Black-Box»-
Optimierung: das Grundgertist der Selektion

Optimieruné
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Bild 4 Einparkvorgang mit der Ldsung aus Bild 3

und Rekombination bleibt konstant und ist
unabhingig von der Optimierungsaufga-
be. Fiir eine bestimmte Aufgabe miissen
im wesentlichen zwei Dinge angepasst
werden: die Fitnessfunktion und die Re-
prasentation der Losung.

Die Fitnessfunktion ist der einzige
Mechanismus, tiber den der evolutionire
Algorithmus Informationen tiber die Qua-
litdt seiner momentanen Population erhlt.
Dies hat den Vorteil, dass man auch sehr
komplexe (unstetige, nicht differenzier-
bare oder abschnittsweise definierte)
Funktionen optimieren kann. Einzige Vor-
aussetzung ist, dass man zu jedem mog-
lichen Individuum (Punkt im Ldsungs-
raum) den Fitnesswert ermitteln kann. Das
bedeutet aber auch, dass der sensitive
Punkt dieses Optimierungsverfahrens in

Bild 3 Eine Losung des

H‘ 9

Einparkproblems
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Einparken eines LKW

Der LKW soll von jeder Position des
Hofes aus riickwirts an die Laderampe
(Position (0,0)) eingeparkt werden, wo-
bei der LKW mit konstanter Geschwin-
digkeit riickwirts fihrt. Zustandsvaria-
blen des Systems sind die Position des
Anhiéngers (x, y) und die Winkel diff und
tang (Bild 2). Die Stellgrosse ist der
Einschlagwinkel des Lenkrades u. Es
soll ein funktionaler Zusammenhang F
bestimmt werden, so dass zu jeder Posi-
tion der richtige Lenkradeinschlag u
erfolgt. Zum Bestimmen der Qualitit der

¥
diff
tang

RR reelle Zufallszahl

Als Programmparameter werden vor-
gegeben:
- Populationsgrosse: 500
— Tournament-Selektion: mit Gruppen-
grosse 10
— Kreuzungswahrscheinlichkeit 90%
- keine Mutation

PLUS(a,b): Addition a+b

MINUS(a,b): Subtraktion a-b

DIV(a,b): (geschiitzte) Division a/b
MUL(a,b): Multiplikation a*b

ATG(a,b): ArcTan(b/a)

IFLTZ(a,b,c): Wenn (a < 0) gib b zuriick, sonst ¢

Terminale (Variablen und Konstanten) des Baumes sind:

X momentane x-Position des LKW-Anhidngers

momentane y-Position des LKW-Anhiingers
momentaner Winkel zwischen Fiithrerhaus und Anhénger
momentaner Winkel zwischen Anhédnger und x-Achse

Funktion F (also der Fitness des Indivi-
duums) wird der LKW von acht verschie-
denen Positionen gestartet und die Summe
der Entfernungen nach dem Einparken
aller acht Testfille gebildet. Das Problem
gilt als gelost, wenn diese Summe unter
einer vorgegebenen Schranke liegt und
die vorgegebene maximale Zeit fiir den
Einparkvorgang  nicht  iiberschritten
wurde.

Folgende Operatoren wurden gewiihlt,
aus denen die Funktion aufgebaut wer-
den kann:

Die Losung nach 11 Generationen (es
wurden 5401 Individuen erzeugt) zeigt
Bild 3. Wie man sieht, besitzt die Losung
links beginnend die algebraische Struk-
tur von Formel 2. Eine aus der Losung
von Bild 3 resultierende Einparksequenz
zeigt Bild 4.

papelale] [ [ [ [

el [ [ [ [

Bild 5 Mutation bei Vektoren

Ein zuféllig ausgewahltes Element des Vektors wird
verandert.

Bild 6 Mutation bei Baumen

Ein zuféllig ausgewahlter Teilbaum wird durch
einen beliebigen, zuféllig erzeugten Teilbaum
ersetzt.
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der Fitnessfunktion liegt; diese «richtig» zu
formulieren, stellt bei der Anwendung evo-
lutiondrer Algorithmen oft die grosste
Schwierigkeit dar. Meist ist es ndmlich nicht
einfach, alle Informationen tiber die Qualitit
einer Losung in einem einzigen Zahlenwert
zu konzentrieren. Beispielsweise stellt sich
die Frage, wie «ungiiltige» Individuen, das
heisst Individuen, die eine Nebenbindung
verletzt haben, bewertet werden sollen.
Hiufig geschieht das durch eine Art «Be-
strafungsfunktion», die ungiiltigen Indivi-
duen die schlechtestmogliche Fitness zu-
weist. Dies birgt einige Nachteile, denn der
evolutiondre Algorithmus hat keine Infor-
mation dariiber, wie weit das ungiiltige
Individuum von einer zulidssigen Losung
entfernt ist. Dementsprechend werden auch
alle ungiiltigen Losungen untereinander
gleich behandelt, was unter Umstdnden den
Optimierungsprozess stark verlangsamen
kann. Die Fitnessfunktion sollte also — das
kann man generell sagen — soviel Informa-
tion wie moglich enthalten und moglichst
graduell und kontinuierlich aufgebaut sein.

Der zweite wesentliche Punkt bei der
«Problemanpassung» besteht in der Wahl

der Codierung eines Individuums (Bit-
string, Vektor, Baum oder sonstige Daten-
struktur). Bereits die Wahl einer geeigne-
ten Datenstruktur kann den Suchprozess
erheblich vereinfachen. Automatisch geht
damit die Definition der Rekombinations-
operatoren fiir Mutation und Kreuzung
einher. Aus informationstheoretischen
Uberlegungen dachte man lange Zeit, dass
die besten Ergebnisse erzielt wiirden,
wenn jedes Problem auf einen Bitstring
abgebildet wird. Damit werden aber unter
Umsténden recht komplizierte Zwischen-
stufen notig, um die Information zwischen
Codierungsraum (Bitstrings) und Losungs-
raum (also der Problemstellung) umzufor-
men. Ausserdem ist jetzt die Fitnessfunk-
tion tatsidchlich die einzige Schnittstelle
zwischen Optimierungsmethode und Pro-
blemstellung. Oft ldsst sich ein Problem
aber besonders elegant und natiirlich mit
einer anderen Datenstruktur darstellen, wie
beispielsweise die Regelungsfunktion fiir
den zu parkenden LKW durch einen Baum.
«Problemwissen» kann so nutzbringend in
den Optimierungprozess eingebaut wer-
den. Viele erfolgreiche Anwendungen evo-
lutionédrer Algorithmen beruhen auf diesem
Prinzip [4; 5]. Héufig kann man den
Rekombinationsoperator so gestalten, dass
nur zuldssige Losungen erzeugt werden.
Die Schwierigkeiten der diskutierten
Bestrafungsfunktionen konnen auf diese
Weise umgangen werden.

Hat man diese beiden Schritte fiir ein
spezifisches Optimierungsproblem gelost,
kann das Verfahren direkt angewendet
werden.

Schattenseiten

Die Vorteile der evolutioniren Algorith-
men haben leider auch ihren Preis. Es
handelt sich um ein probabilistisches Ver-
fahren, und man kann im allgemeinen
keine Angaben iiber die Konvergenzge-
schwindigkeit des Verfahrens (Komple-
xitdt des evolutioniren Algorithmus) und
iiber die Qualitdt der Losung machen. Zwar
kann man zeigen, dass bei beliebig langer
Rechenzeit und  bestimmten  Selek-
tionsmethoden das Optimum gefunden
werden kann, aber diese Erkenntnis ist eher
von akademischem Interesse.

Ein weiterer Nachteil ist die bendtigte
hohe Rechenleistung und der grosse Spei-
cherbedarf. Da man eine Population von
Individuen hat, muss man die ganze Popu-
lation speichern, und je nach Problem-
stellung kann ein einzelnes Individuum
schon einige Kilobyte Speicherplatz be-
legen. Eine typische Population kann 1000
und mehr Individuen haben, so dass man
schnell einige Megabyte Speicherplatz be-
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Kiinstliche Welten

Eine besonders spektakuldre An-
wendung evolutiondrer Algorithmen
stammt von Karl Sims, der bei Thin-
king Machines arbeitet. Er hat mit
genetischen Algorithmen kiinstliche
Kreaturen erzeugt, die schwimmen
oder springen oder sich auf einen
Lichtpunkt zubewegen konnen. Die
Kreaturen sind aus quaderidhnlichen
Elementen aufgebaut, die tber «Ge-
lenke» miteinander verbunden und
mit «Beriihrungssensoren» ausgestat-
tet sind. Die Sensoren und Aktoren
werden durch ein kiinstliches neurona-
les Netz gesteuert. Der Bauplan fiir die
Kreatur und die Topologie des neuro-
nalen Netzes wird in einer graphen-
dhnlichen Datenstruktur gespeichert,
die von einem genetischen Algo-
rithmus kontrolliert wird. Die Krea-
turen «leben» in einer dreidimensio-
nalen Welt, in der die «iiblichen»
physikalischen Gesetze gelten. Durch
Optimierung der Kreaturen beziiglich
der Schwimm- bzw. Springeigen-
schaften konnten tatsdchlich schwim-
mende bzw. springende Kreaturen
«geziichtet» werden. Einige der Krea-
turen sahen dabei wirklichen Lebe-
wesen sehr dhnlich, wihrend andere
vollig neue «Lebensformen» dar-
stellten.

legt. Ausserdem miissen in jeder Genera-
tion die Fitnesswerte von praktisch allen
Individuen neu berechnet werden, was sehr
aufwendig sein kann. Im LKW-Beispiel
miissen fiir jedes Individuum acht vollstin-
dige Einparkvorgidnge simuliert werden, da
von acht unterschiedlichen Positionen auf
dem Hof gestartet wird, und jede Simula-
tion besteht aus bis zu 3000 Simulations-
schritten.

Diesem Problem kann man mit einer
Parallelisierung des Algorithmus aller-
dings teilweise begegnen. Das geschieht
folgendermassen: Man spaltet die Popula-
tion in mehrere Teilpopulationen auf und
ordnet jeder Teilpopulation einen eigenen
Prozessor zu. Bei lokaler Selektion inner-
halb der Teilpopulationen und beschrink-
ter Rekombination der Teilpopulationen
untereinander bendtigt man nur wenig
Kommunikation zwischen den Prozes-
soren, so dass man einen fast linearen
Speed-up erhilt. Die Praxis zeigt, dass der
Speed-up sogar oft superlinear ist, also
schneller ansteigt als es der zusitzlichen
Rechenleistung entspriiche. Erkldren ldsst
sich dies nur durch die Andersartigkeit des
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0pt|m|erung

Bild 7 Kreuzung mit
Baumen (genetisches
Programmieren)

Je ein Teilbaum wird
zuféllig ausgewahlt,
und dann werden die
Teilbdume zwischen den
Eltern getauscht, um die
Kinder zu erhalten.

Kreuzung
" d.h.Tauschen der markierten Teilbaume

parallelen und des sequentiellen Algorith-
mus. Das Konzept der Teilpopulationen
verhindert nédmlich zuverlidssiger als das
der Gesamtpopulation, dass ein evolutio-
nirer Algorithmus wihrend der Suche in
einem lokalen Optimum steckenbleibt.

Ein anderes Problem stellen die vielen
Parameter des Verfahrens dar:

— die Grosse der Population

- die maximale Anzahl der Generationen

— die Auswabhl der genetischen Operatoren

— die Wahrscheinlichkeiten, mit denen die
genetischen  Operatoren  angewendet
werden

So hat man bei der Selektion die Wahl
zwischen vielen unterschiedlichen Selek-
tionsmethoden, die meistens selbst noch
einen oder mehrere Parameter haben. Ahn-
liches gilt fiir die Rekombination, wo man
Mutationswahrscheinlichkeiten und Muta-
tionsarten sowie Kreuzungswahrschein-
lichkeiten und Kreuzungsmethoden festzu-
legen hat. Bevor man eine Losung fiir sein
Problem findet, muss man deshalb oft
durch langwieriges Ausprobieren die fiir
das Problem geeignete Parametereinstel-

lung finden. Die inzwischen gesammelten
Erfahrungen haben sich aber gliicklicher-
weise zu einigen Faustregeln verdichtet, und
in jlingster Zeit gibt es auch héufiger
analytische Untersuchungen von evolutio-
ndren Algorithmen, die es ermoglichen,
Einstellungen fiir die Parameter abzuleiten.

Evolutiondre Algorithmen
als Oberbegriff

Der Begriff evolutiondre Algorithmen
ist eigentlich ein Oberbegriff zu einer
Vielzahl unterschiedlicher Algorithmen.
Und tatsichlich stellt ja jede neue Wahl
einer Fitnessfunktion und einer Codie-
rungsform einen «neuen» Algorithmus
dar. Einige wichtige Unterklassen evolu-
tiondrer Algorithmen sind

Evolutionsstrategien

genetische Algorithmen

— evolutiondres Programmieren und
— genetisches Programmieren

Die unterschiedlichen Bezeichnungen
sind zum Teil historisch, zum Teil sachlich
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Bild 8 Kreuzung mit Bitstrings (genetische Algorithmen)
Die Strings der Eltern werden an der gleichen Stelle durchschnitten, und die Teilstiicke werden ausgetauscht.

Eltern

Bild 9 Kreuzung mit
reellwertigen Vektoren
(Evolutionsstrategien)

[ x1 x| [ xn |

[ [r2]]

In diesem Beispiel der

[ ]

intermedidren Vererbung
entsteht nur ein Nach-
komme. Der Wert ergibt
sich aus der Mittelung der
Werte der Eltern. Oft wird

‘ (x1+y1)/2 ’ (x2+y2)/2 ‘ (x3+y3)/2 ‘

fir jedes Vektorelement

‘ kil ein neues Elternteil

Kind

bestimmt, so dass hier an
der Kreuzung n+1
Individuen beteiligt sind.

bedingt. In den 70er Jahren wurden unab-
hingig voneinander in Deutschland und
den USA Optimierungsverfahren auf der
Basis der natiirlichen Evolution entwickelt.
Die genetischen Algorithmen wurden von
John Holland in den USA zum erstenmal
fiir sogenannte Klassifizierungssysteme
(classifier systems) angewendet. Die Indi-
viduen werden dabei als Bitstrings repri-
sentiert, als Selektionsmethode wird pro-
portionale Selektion eingesetzt, und der
wesentliche Rekombinationsoperator ist
die (zweigeschlechtliche) Kreuzung [2].
Demgegeniiber sind die Evolutionsstrate-
gien von Hans-Paul Schwefel und Ingo
Rechenberg zur Parameteroptimierung
entwickelt worden und arbeiten dement-
sprechend mit reellwertigen Vektoren als
Individuen. Sie verwendeten hauptsichlich

eine Art Truncation-Selektion und Muta-
tionsoperatoren.

Inzwischen verwischen sich die Unter-
schiede, und die Ideen aus den unter-
schiedlichen Bereichen werden immer
mehr zusammengefiihrt. Trotzdem halten
sich die alten Bezeichnungen, und fiir
erfolgreiche neue Varianten der evolutio-
ndren Algorithmen wird auch mal ein
neuer Name eingefiihrt, wie zum Beispiel
«genetisches Programmieren». Das Ver-
fahren unterscheidet sich von den «geneti-
schen Algorithmen» dadurch, dass die
Individuen als Bédume dargestellt sind.
Unser Fallbeispiel, der gut geparkte LKW,
fillt also eigentlich unter die Kategorie
«genetisches Programmieren». Das gene-
tische Programmieren ist eben dieser
Baumstruktur wegen so erfolgreich, sie

Algorithmes évolutionnaires

intéressants de la recherche actuelle.

Optimiser a I'exemple de la nature

L’ambition de comprendre les régles de la nature est toujours allée de pair avec le
désir d’appliquer ses méthodes de maniere utile aux créations humaines. Depuis
quelques années on constate un grand intérét a de tel procédés, surtout parce que les
procédés classiques n’offrent encore aucune solution satisfaisante a nombre de
problemes. Outre les réseaux neuronaux qui ont fait les gros titres des illustrés, les
algorithmes évolutionnaires appartiennent certainement aux domaines des plus
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ermoglicht es ndmlich, ganze Computer-
programme als Optimierungsaufgabe zu
betrachten, denn Computerprogramme las-
sen sich elegant als Biume codieren. Damit
ldsst sich fiir eine ganze Problemklasse ein
Losungsprogramm finden, und eine Instanz
des Problems kann dann durch das gefun-
dene Losungsprogramm gelost werden. Da
das Losungsprogramm selbst keine «Gene-
tik» mehr enthilt, entfallen alle Nachteile der
evolutiondren Algorithmen (z.B. hohe Re-
chenzeit und hoher Speicherbedarf). Das ist
ein wesentlicher Unterschied zu den anderen
Varianten der evolutiondren Algorithmen
und zu den meisten anderen Optimierungs-
verfahren, wo fiir jede Probleminstanz ein
neuer Optimierungslauf notwendig ist.

Fazit

Evolutiondre Algorithmen sind ein robu-
stes, universell einsetzbares probabilisti-
sches Optimierungsverfahren. Die benotig-
te hohe Rechenleistung ist vor allem dann
gerechtfertigt, wenn wenig Wissen tiber die
Losung eines Problems vorhanden ist oder
wenn man so viel wie moglich vom
vorhandenen Wissen in den evolutiondren
Algorithmus einbringt, um die eingesetzte
Rechenleistung sinnvoll zu nutzen. Ob-
wohl das Verfahren sehr einfach zu be-
schreiben, zu implementieren und «intui-
tiv» zu verstehen ist, sollte die Analogie
zur Natur nicht zu eng gesehen werden.
Zumindest nicht solange man die evolutio-
ndren Algorithmen zur Optimierung ein-
setzt. Dann sollte man zur Analyse und
Optimierung des Verfahrens auf mathema-
tische und statistische Analysemethoden
zuriickgreifen.
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