
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 86 (1995)

Heft: 25

Artikel: Optimieren nach dem Vorbild der Natur : evolutionäre Algorithmen

Autor: Blickle, Tobias

DOI: https://doi.org/10.5169/seals-902520

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-902520
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Optimierung

Mit dem Streben, die Regeln der Natur zu verstehen, war auch schon immer der
Wunsch da, ihre Methoden nutzbringend für menschliche Kreationen anzuwenden.
Seit einigen Jahren ist ein grosses Interesse an derartigen Verfahren festzustellen, vor
allem weil die klassischen Verfahren für viele Probleme noch keine befriedigende
Lösung bieten. Neben den neuronalen Netzen, die in den Illustrierten für Schlagzeilen

gesorgt haben, gehören die evolutionären Algorithmen wohl zu den interessantesten

derzeitigen Forschungsgebieten.

Optimieren nach dem Vorbild
der Natur
Evolutionäre Algorithmen

Adresse des Autors:
Tobias Blickte, Dipl.-Ing., Institut für Technische
Informatik und Kommunikationsnetze,
ETH Zentrum, 8092 Zürich.

Tobias Blickle

Evolutionäre Algorithmen sind eine
Klasse von probabilistischen
Optimierungsverfahren, welche «Ideen» der
natürlichen Evolution nutzen. Wegen ihrer
Universalität und Robustheit eignen sie sich
besonders für komplexe Optimierungsprobleme,

bei denen klassische
Optimierungsverfahren versagen. Der Artikel stellt
die Arbeitsweise der evolutionären
Algorithmen am Beispiel des Parkierens eines

LKW vor, diskutiert die Vor- und Nachteile

des Verfahrens und verweist auf
einige interessante Anwendungen.

Optimierungsprobleme zählen schon
fast zum täglichen Brot des Ingenieurs. In
vielen Bereichen - beim Routen einer
Platine, bei der Ablaufplanung von
Prozessen, der Bestimmung von Parametern
einer Regelung, der Modellierung chemischer

und physikalischer Vorgänge oder
in der BildVerarbeitung - trifft man auf
Probleme, die sich mit der Frage umschreiben

lassen: Wie sieht die Lösung meines
Problems aus, die meine Kostenfunktion
minimiert (oder maximiert) und gleichzeitig

auch meine Nebenbedingungen
einhält? Die meisten dieser Probleme sind
NP-hart, das heisst, sie gehören in die
Klasse der schwierigsten Probleme, die die
Informatik kennt. Die Suche nach exakten

Lösungen für NP-harte Probleme treibt die
erforderliche Rechenzeit jedes Supercomputers

ins «Unendliche», da die Laufzeit

exponentiell mit der Eingabegrösse
ansteigt. Deshalb wendet man für grosse
Optimierungsprobleme sogenannte
heuristische Algorithmen an. Diese garantieren
zwar nicht, dass das globale Optimum
gefunden wird, finden dafür aber in
vertretbarer Zeit eine «brauchbare» Lösung.
In vielen Fällen genügt es nämlich,
überhaupt eine Lösung zu finden; es muss nicht
immer die denkbar beste sein. Bei der

Verdrahtung einer Platine beispielsweise
ist es wichtiger, ein Layout zu finden, das

alle Pins richtig miteinander verbindet, als

jenes Layout, in dem die Verbindungen
auch noch optimal kurz sind. Für viele
Optimierungsprobleme gibt es speziell an-

gepasste Heuristiken. Aber es gibt auch

Optimierungsverfahren wie das «Simulated

Annealing» (Simuliertes Erstarren) LI I,

die für verschiedenste Aufgaben eingesetzt
werden können, weil sie relativ
unabhängig von der Problemstellung sind. Eine

derartige Ungebundenheit und die Aussicht

auf zahlreiche potentielle Anwendungen

zeichnen auch die evolutionären

Algorithmen aus.

Arbeitsweise evolutionärer
Algorithmen

Die evolutionären Algorithmen finden
inzwischen in vielen Bereichen Anwendung,

und einige davon sind in einem

separaten Kasten vermerkt. Hier soll ihre
Arbeitsweise am Problem des Parkierens
eines LKW erläutert werden [3]. Diese

Bulletin SEV/VSE 25/95 21



Informatik

Anwendungsbeispiele evolutionärer Algorithmen

Im folgenden sollen einige
Anwendungsbeispiele evolutionärer Algorithmen

aufgeführt werden. Die Liste erhebt
keinen Anspruch auf Vollständigkeit; sie

soll nur den grossen Einsatzbereich dieser

Optimierungsmethode dokumentieren.
Viele Beispiele sind in [6] gesammelt;
einen guten Überblick über die momentane

Forschung und aktuelle Anwendungen

geben auch die Tagungsbände der
beiden wichtigsten Konferenzen über
evolutionäre Algorithmen [7; 8].

Operations Research:

- Optimale Ablaufplanung von Prozessen

- Problem des Handlungsreisenden

- Partitionierungsprobleme

Robotik:

- Optimale Trajektorien für Roboterarme

- Wegeplanung von Robotern

Künstliche Intelligenz:

- Steuerung autonomer Fahrzeuge

- Optimierung der Gewichte neuronaler
Netze

- Optimierung der Topologie neuronaler

Netze

Telekommunikation:

- Optimierung der Netzwerkstruktur

- Optimierung der Nachrichtenvermittlung

(Message Routing)

Mikroelektronik:
- Parameteroptimierung digitaler Filter

- Partitionierung digitaler Schaltungen

Allgemeine Optimierungen:
- Optimierung einer Pipeline-Steuerung

- Optimierung von physikalisch/chemischen

Modellen

- Optimierung von Parametern einer

Regelung

- Optimierung der Regelbasis von Fuzzy-
Reglern

Aufgabe ist sehr anschaulich und dient
deshalb oft als Demonstrationsbeispiel in
der Regelungstechnik. So existieren zum
Beispiel auch Lösungen zu diesem
Problem, bei denen die Regelung durch ein

neuronales Netz erfolgt. Die Aufgabenstellung

lautet dabei wie folgt: Ein LKW
steht an einer beliebigen Position auf
einem Hof und soll innerhalb einer gewissen

Zeitspanne rückwärts an eine

Laderampe (Position 0,0) eingeparkt werden

(Bild 1). Der LKW fährt dabei mit
konstanter Geschwindigkeit rückwärts.
Gesucht ist nun ein Steuerprogramm, das aus

der momentanen Position des LKW (x, y)
relativ zur Laderampe, dem Winkel
zwischen Führerhaus und Anhänger (diff) und
dem Winkel des Anhängers bezogen auf
die X-Achse (tang) zu jedem Zeitpunkt den

richtigen Radeinschlag bestimmt und so
den LKW einparkt. Unser Optimierungs¬

problem lautet also: Wie muss die
Regelungsfunktion aussehen, damit der Fehler
beim Einparken aus einer beliebigen
Anfangsposition minimal ist, unter der Bedingung,

dass eine vorgegebene
Zeitbeschränkung nicht verletzt wird? Es wird
also ein funktionaler Zusammenhang F
zwischen den Eingabegrössen (x, y, tang,
diff) und der Ausgabegrösse u gesucht, das

heisst

u F(x,y, tang, diff) (1)

Die Einzelheiten zu dieser Problemstellung

sind im Kasten «Einparken eines

LKW» beschrieben.
Mittels evolutionärer Algorithmen wird

dieses Problem auf folgende Weise gelöst:
Grundlage ist eine Menge (Population)

von möglichen Lösungen des

Optimierungsproblems (Individuen). Diese
Individuen können je nach Aufgabe in ganz

unterschiedlicher Form dargestellt sein.
Für die Darstellung von funktionalen
Zusammenhängen, wie bei dem hier betrachteten

Einparkproblem, eignet sich am
besten die Baumstruktur. Andere bekannte
Arten und Weisen, die Individuen
darzustellen, sind Bitstrings (Zeichenketten
konstanter Länge aus 0 und 1) und Vektoren

von reellen Zahlen (für die Optimierung

von Parametern).
Zu Anfang wird die Population mit

zufällig erzeugten Individuen belebt

(Bild 2), das heisst, es werden
irgendwelche Steuerprogramme aus den gewählten

Funktionen und Argumenten des

LKW-Beispiels gewürfelt. In diesem Fall
wird also «bei Null» angefangen und kein
Wissen über die Lösung eingebracht, ausser

durch die Wahl des «Befehlssatzes»

(also welche Funktionen und Argumente
zulässig sind). Die meisten der Individuen
werden das Problem schlecht oder gar nicht
bewältigen, aber sicherlich werden einige
«besser» sein als andere. Was «besser»

heisst, wird dabei durch die sogenannte
Fitnessfunktion bestimmt, die jedem
Individuum einen Zahlenwert zuordnet, der die
Güte des Individuums bezüglich des

Optimierungsproblems angibt. Im Beispiel gibt
die Entfernung des LKW von der Laderampe

nach dem Einparkvorgang die Fitness
eines Steuerprogramms (Individuums) an.

Ziel des evolutionären Algorithmus ist

nun, ein Individuum mit optimaler Fitness

zu finden. Um dies zu erreichen, werden
durch Selektion und Rekombination
immer wieder neue Populationen von potentiellen

Lösungen erzeugt, bis man mit der
Qualität der Lösung des besten Individuums
zufrieden ist und das Abbruchkriterium
erfüllt ist. Durch das Zusammenspiel von
Selektion und Reproduktion erhofft man
sich eine Verbesserung der Fitnesswerte
(und schliesslich die optimale Lösung).

Die Selektion soll die mittlere Fitness
der Population verbessern, indem sie durch
ein geeignetes Verfahren gute Individuen
(im Sinne der Fitnessfunktion) häufiger
für die nächste Population auswählt als

schlechte. Die Art und Struktur der Individuen

wird dabei nicht verändert, es werden

nur identische Kopien erzeugt. Dadurch
werden mehr «Testpunkte» (Individuen)
an Stellen im Lösungsraum plaziert, die
einen relativ guten Fitnesswert haben. Die
Selektion führt somit zu einer Konzentration

der Population auf untersuchte und

gute Gebiete im Lösungsraum. Die
Selektionsmethoden gehen im allgemeinen pro-
babilistisch vor; übliche Selektionsmethoden

sind zum Beispiel:

- Proportionale Selektion: Die
Selektionswahrscheinlichkeit eines Individuums
ist proportional zu seiner Fitness.

22 Bulletin ASE/UCS 25/95



Optimierung

Bild 2 Ablaufplan eines evolutionären Algorithmus

- Truncation-Selektion: Nur ein bestimmter

Prozentsatz der besten Individuen der

Population überlebt - was tatsächlich
eine Art des «survival of the fittest»
bedeutet.

- Tournament-Selektion: Jedes Indivi¬
duum der Nachfolgepopulation geht aus

einem Wettkampf zwischen einer
bestimmten Anzahl von zufällig
ausgewählten Individuen hervor.

Die Aufgabe der Rekombination ist,
«inhaltlich» neue Individuen zu erzeugen,
um bessere Lösungen zu finden. Auch hier

spielt der Zufall eine grosse Rolle. Möglich

sind sowohl ungeschlechtliche als

auch geschlechtliche Rekombinationen.
Bei der ungeschlechtlichen wird durch
Mutation ein Teil der Information (z. B.

Gleichungsstruktur des Individuums bei

Bäumen) zufällig geändert. Bei der

geschlechtlichen Rekombination - dem

Kreuzen zweier (oder mehrerer) Individuen

- wird dagegen ein Teil der Information

zwischen den Individuen getauscht. Die
Veränderung der Struktur der Individuen
bedeutet, dass neue «Punkte» im Lösungsraum

durch Individuen besetzt und somit

neue Gebiete im Lösungsraum «erforscht»
werden. Normalerweise ändert man nicht
die ganze Population, sondern nur einen

gewissen Prozentsatz. Verschiedene

Rekombinationsoperatoren (siehe weiter
unten) können auch gleichzeitig angewendet
werden, und gewöhnlich ist jedem
Rekombinationsoperator eine
Ausführungswahrscheinlichkeit zugeordnet. In den

Bildern 5 bis 9 sind verschiedene
Rekombinationsarten dargestellt.

Bei unserer Aufgabe, den LKW optimal
zu parkieren, sind die Individuen als Bäume

dargestellt, und so lässt sich das Kreuzen

durch Austauschen zufälliger Teilbäume
zwischen den Individuen realisieren (Bild 7).

Das Zusammenspiel dieser beiden
Hauptakteure - Selektion und Rekombination -
führt mit der Zeit (Generationen) zu immer
«besseren» Individuen. Die Lösung des

LKW-Problems wurde mit einer Popula-
tionsgrösse von 500 Individuen versucht,
sie gelang nach 11 Generationen. Die gefundene

Regelfunktion lautet:

u= PLUS [MINUS [PLUS [MINUS
[PLUS [diff.diff] ,IFLTZ[x,x,tang] ],

IFLTZ[MUL[tang,diff],MINUS [diff,tang],y]],
MINUS[MUL[tang,x],y]],IFLTZ[MUL[tang,diff],
MINUS [diff,tang],PLUS [tang,y ] ] ] (2)

wobei u das Ergebnis, das heisst der Radeinschlag

ist, der ausgeführt wird, wenn der

LKW an der Stelle (x, y) auf dem Hof steht

und die Winkel tang bzw. diff sind. Bild 3

zeigt die Lösung als Baumstruktur. Diese

Funktion ist natürlich nicht «die» Lösung,
denn es gibt sehr viele Lösungen für das

Problem, und lässt man das Problem mehrmals

durch einen evolutionären Algorithmus

lösen, wird man sehr wahrscheinlich

jedesmal eine andere Lösung erhalten, oft

genug sogar gar keine.

Vom «gemeinen Nutzen»
evolutionärer Algorithmen

Bei den evolutionären Algorithmen handelt

es sich also um eine Art «Black-Box»-
Optimierung: das Grundgerüst der Selektion

Bild 3 Eine Lösung des

Einparkproblems

40

Bild 4 Einparkvorgang mit der Lösung aus Bild 3

und Rekombination bleibt konstant und ist

unabhängig von der Optimierungsaufgabe.
Für eine bestimmte Aufgabe müssen

im wesentlichen zwei Dinge angepasst
werden: die Fitnessfunktion und die

Repräsentation der Lösung.
Die Fitnessfunktion ist der einzige

Mechanismus, über den der evolutionäre

Algorithmus Informationen über die Qualität

seiner momentanen Population erhält.
Dies hat den Vorteil, dass man auch sehr

komplexe (unstetige, nicht differenzierbare

oder abschnittsweise definierte)
Funktionen optimieren kann. Einzige
Voraussetzung ist, dass man zu jedem
möglichen Individuum (Punkt im Lösungsraum)

den Fitnesswert ermitteln kann. Das

bedeutet aber auch, dass der sensitive
Punkt dieses Optimierungsverfahrens in

Bulletin SEV/VSE 25/95 23



Informatik

Einparken eines LKW

Der LKW soll von jeder Position des

Hofes aus rückwärts an die Laderampe
(Position (0,0)) eingeparkt werden, wobei

der LKW mit konstanter Geschwindigkeit

rückwärts fährt. Zustandsvaria-
blen des Systems sind die Position des

Anhängers (x, y) und die Winkel diff und

tang (Bild 2). Die Stellgrösse ist der

Einschlagwinkel des Lenkrades u. Es

soll ein funktionaler Zusammenhang F
bestimmt werden, so dass zu jeder Position

der richtige Lenkradeinschlag u

erfolgt. Zum Bestimmen der Qualität der

PLUS(a,b):
MINUS(a.b):
DIV(a,b):
MUL(a,b):
ATG(a,b):
IFLTZ(a,b,c):

Terminale (Variablen
x

y
diff
tang
RR

Als Programmparameter werden
vorgegeben:

- Populationsgrösse: 500

- Tournament-Selektion: mit Gruppen-
grösse 10

- Kreuzungswahrscheinlichkeit 90%

- keine Mutation

Funktion F (also der Fitness des

Individuums) wird der LKW von acht verschiedenen

Positionen gestartet und die Summe
der Entfernungen nach dem Einparken
aller acht Testfälle gebildet. Das Problem

gilt als gelöst, wenn diese Summe unter
einer vorgegebenen Schranke liegt und
die vorgegebene maximale Zeit für den

Einparkvorgang nicht überschritten
wurde.

Folgende Operatoren wurden gewählt,
aus denen die Funktion aufgebaut werden

kann:

Die Lösung nach 11 Generationen (es

wurden 5401 Individuen erzeugt) zeigt
Bild 3. Wie man sieht, besitzt die Lösung
links beginnend die algebraische Struktur

von Formel 2. Eine aus der Lösung
von Bild 3 resultierende Einparksequenz
zeigt Bild 4.

Addition a+b
Subtraktion a-b
(geschützte) Division a/b

Multiplikation a*b
ArcTan(b/a)
Wenn (a < 0) gib b zurück, sonst c

und Konstanten) des Baumes sind:

momentane x-Position des LKW-Anhängers
momentane y-Position des LKW-Anhängers
momentaner Winkel zwischen Führerhaus und Anhänger
momentaner Winkel zwischen Anhänger und x-Achse
reelle Zufallszahl

x1 x2 x3 x4 xn

L
'

x1 x2 x3' x4 xn

Bild 5 Mutation bei Vektoren

Ein zufällig ausgewähltes Element des Vektors wird
verändert.

(And)

(Not) (DO)

DO) (D1)

Bild 6 Mutation bei Bäumen

Ein zufällig ausgewählter Teilbaum wird durch
einen beliebigen, zufällig erzeugten Teilbaum
ersetzt.

der Fitnessfunktion liegt; diese «richtig» zu
formulieren, stellt bei der Anwendung
evolutionärer Algorithmen oft die grösste

Schwierigkeit dar. Meist ist es nämlich nicht
einfach, alle Informationen über die Qualität
einer Lösung in einem einzigen Zahlenwert
zu konzentrieren. Beispielsweise stellt sich
die Frage, wie «ungültige» Individuen, das

heisst Individuen, die eine Nebenbindung
verletzt haben, bewertet werden sollen.

Häufig geschieht das durch eine Art
«Bestrafungsfunktion», die ungültigen Individuen

die schlechtestmögliche Fitness
zuweist. Dies birgt einige Nachteile, denn der
evolutionäre Algorithmus hat keine
Information darüber, wie weit das ungültige
Individuum von einer zulässigen Lösung
entfernt ist. Dementsprechend werden auch

alle ungültigen Lösungen untereinander

gleich behandelt, was unter Umständen den

Optimierungsprozess stark verlangsamen
kann. Die Fitnessfunktion sollte also - das

kann man generell sagen - soviel Information

wie möglich enthalten und möglichst
graduell und kontinuierlich aufgebaut sein.

Der zweite wesentliche Punkt bei der

«Problemanpassung» besteht in der Wahl

der Codierung eines Individuums (Bit-
string, Vektor, Baum oder sonstige
Datenstruktur). Bereits die Wahl einer geeigneten

Datenstruktur kann den Suchprozess
erheblich vereinfachen. Automatisch geht
damit die Definition der Rekombinationsoperatoren

für Mutation und Kreuzung
einher. Aus informationstheoretischen
Überlegungen dachte man lange Zeit, dass

die besten Ergebnisse erzielt würden,
wenn jedes Problem auf einen Bitstring
abgebildet wird. Damit werden aber unter
Umständen recht komplizierte Zwischenstufen

nötig, um die Information zwischen
Codierungsraum (Bitstrings) und Lösungsraum

(also der Problemstellung) umzuformen.

Ausserdem ist jetzt die Fitnessfunktion

tatsächlich die einzige Schnittstelle
zwischen Optimierungsmethode und
Problemstellung. Oft lässt sich ein Problem
aber besonders elegant und natürlich mit
einer anderen Datenstruktur darstellen, wie
beispielsweise die Regelungsfunktion für
den zu parkenden LKW durch einen Baum.
«Problemwissen» kann so nutzbringend in
den Optimierungprozess eingebaut werden.

Viele erfolgreiche Anwendungen
evolutionärer Algorithmen beruhen auf diesem

Prinzip [4; 5], Häufig kann man den

Rekombinationsoperator so gestalten, dass

nur zulässige Lösungen erzeugt werden.
Die Schwierigkeiten der diskutierten
Bestrafungsfunktionen können auf diese
Weise umgangen werden.

Hat man diese beiden Schritte für ein

spezifisches Optimierungsproblem gelöst,
kann das Verfahren direkt angewendet
werden.

Schattenseiten

Die Vorteile der evolutionären Algorithmen

haben leider auch ihren Preis. Es
handelt sich um ein probabilistisches
Verfahren, und man kann im allgemeinen
keine Angaben über die Konvergenzgeschwindigkeit

des Verfahrens (Komplexität

des evolutionären Algorithmus) und
über die Qualität der Lösung machen. Zwar
kann man zeigen, dass bei beliebig langer
Rechenzeit und bestimmten
Selektionsmethoden das Optimum gefunden
werden kann, aber diese Erkenntnis ist eher

von akademischem Interesse.
Ein weiterer Nachteil ist die benötigte

hohe Rechenleistung und der grosse
Speicherbedarf. Da man eine Population von
Individuen hat, muss man die ganze Population

speichern, und je nach Problemstellung

kann ein einzelnes Individuum
schon einige Kilobyte Speicherplatz
belegen. Eine typische Population kann 1000
und mehr Individuen haben, so dass man
schnell einige Megabyte Speicherplatz be-

24 Bulletin ASE/UCS 25/95



Optimierung

Künstliche Welten

Eine besonders spektakuläre
Anwendung evolutionärer Algorithmen
stammt von Karl Sims, der bei Thinking

Machines arbeitet. Er hat mit
genetischen Algorithmen künstliche
Kreaturen erzeugt, die schwimmen
oder springen oder sich auf einen

Lichtpunkt zubewegen können. Die
Kreaturen sind aus quaderähnlichen
Elementen aufgebaut, die über
«Gelenke» miteinander verbunden und

mit «Berührungssensoren» ausgestattet

sind. Die Sensoren und Aktoren
werden durch ein künstliches neuronales

Netz gesteuert. Der Bauplan für die

Kreatur und die Topologie des neuronalen

Netzes wird in einer
graphenähnlichen Datenstruktur gespeichert,
die von einem genetischen
Algorithmus kontrolliert wird. Die Kreaturen

«leben» in einer dreidimensionalen

Welt, in der die «üblichen»

physikalischen Gesetze gelten. Durch

Optimierung der Kreaturen bezüglich
der Schwimm- bzw. Springeigenschaften

konnten tatsächlich schwimmende

bzw. springende Kreaturen

«gezüchtet» werden. Einige der Kreaturen

sahen dabei wirklichen
Lebewesen sehr ähnlich, während andere

völlig neue «Lebensformen»
darstellten.

Bild 7 Kreuzung mit
Bäumen (genetisches
Programmieren)

Je ein Teilbaum wird
zufällig ausgewählt,
und dann werden die
Teilbäume zwischen den

Eltern getauscht, um die
Kinder zu erhalten.

Kreuzung
d.h.Tauschen der markierten Teilbäume

legt. Ausserdem müssen in jeder Generation

die Fitnesswerte von praktisch allen
Individuen neu berechnet werden, was sehr

aufwendig sein kann. Im LKW-Beispiel
müssen für jedes Individuum acht vollständige

Einparkvorgänge simuliert werden, da

von acht unterschiedlichen Positionen auf
dem Hof gestartet wird, und jede Simulation

besteht aus bis zu 3000 Simulationsschritten.

Diesem Problem kann man mit einer

Parallelisierung des Algorithmus
allerdings teilweise begegnen. Das geschieht
folgendermassen: Man spaltet die Population

in mehrere Teilpopulationen auf und
ordnet jeder Teilpopulation einen eigenen
Prozessor zu. Bei lokaler Selektion innerhalb

der Teilpopulationen und beschränkter

Rekombination der Teilpopulationen
untereinander benötigt man nur wenig
Kommunikation zwischen den Prozessoren,

so dass man einen fast linearen

Speed-up erhält. Die Praxis zeigt, dass der

Speed-up sogar oft superlinear ist, also

schneller ansteigt als es der zusätzlichen

Rechenleistung entspräche. Erklären lässt

sich dies nur durch die Andersartigkeit des

parallelen und des sequentiellen Algorithmus.

Das Konzept der Teilpopulationen
verhindert nämlich zuverlässiger als das

der Gesamtpopulation, dass ein evolutionärer

Algorithmus während der Suche in
einem lokalen Optimum steckenbleibt.

Ein anderes Problem stellen die vielen
Parameter des Verfahrens dar:

- die Grösse der Population

- die maximale Anzahl der Generationen

- die Auswahl der genetischen Operatoren

- die Wahrscheinlichkeiten, mit denen die

genetischen Operatoren angewendet
werden

So hat man bei der Selektion die Wahl
zwischen vielen unterschiedlichen
Selektionsmethoden, die meistens selbst noch
einen oder mehrere Parameter haben.
Ähnliches gilt für die Rekombination, wo man
Mutationswahrscheinlichkeiten und
Mutationsarten sowie Kreuzungswahrscheinlichkeiten

und Kreuzungsmethoden festzulegen

hat. Bevor man eine Lösung für sein

Problem findet, muss man deshalb oft
durch langwieriges Ausprobieren die für
das Problem geeignete Parametereinstel¬

lung finden. Die inzwischen gesammelten
Erfahrungen haben sich aber glücklicherweise

zu einigen Faustregeln verdichtet, und

in jüngster Zeit gibt es auch häufiger
analytische Untersuchungen von evolutionären

Algorithmen, die es ermöglichen,
Einstellungen für die Parameter abzuleiten.

Evolutionäre Algorithmen
als Oberbegriff

Der Begriff evolutionäre Algorithmen
ist eigentlich ein Oberbegriff zu einer
Vielzahl unterschiedlicher Algorithmen.
Und tatsächlich stellt ja jede neue Wahl
einer Fitnessfunktion und einer
Codierungsform einen «neuen» Algorithmus
dar. Einige wichtige Unterklassen
evolutionärer Algorithmen sind

- Evolutionsstrategien

- genetische Algorithmen
- evolutionäres Programmieren und

- genetisches Programmieren

Die unterschiedlichen Bezeichnungen
sind zum Teil historisch, zum Teil sachlich

Bulletin SEV/VSE 25/95 25



Informatik

Eltern

1 0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0 0

1 ' } r

0 1 1 0 1 1 0 0 1 1 0 1 0 1 0 1 0 0

Kinder

Bild 8 Kreuzung mit Bitstrings (genetische Algorithmen)

Die Strings der Eltern werden an der gleichen Stelle durchschnitten, und die Teilstücke werden ausgetauscht.

bedingt. In den 70er Jahren wurden
unabhängig voneinander in Deutschland und
den USA Optimierungsverfahren auf der
Basis der natürlichen Evolution entwickelt.
Die genetischen Algorithmen wurden von
John Holland in den USA zum erstenmal
für sogenannte Klassifizierungssysteme
(classifier systems) angewendet. Die
Individuen werden dabei als Bitstrings
repräsentiert, als Selektionsmethode wird
proportionale Selektion eingesetzt, und der

wesentliche Rekombinationsoperator ist
die (zweigeschlechtliche) Kreuzung [2],
Demgegenüber sind die Evolutionsstrategien

von Hans-Paul Schwefel und Ingo
Rechenberg zur Parameteroptimierung
entwickelt worden und arbeiten
dementsprechend mit reellwertigen Vektoren als

Individuen. Sie verwendeten hauptsächlich

Bild 9 Kreuzung mit
reellwertigen Vektoren

(Evolutionsstrategien)

In diesem Beispiel der
intermediären Vererbung
entsteht nur ein
Nachkomme, Der Wert ergibt
sich aus der Mittelung der
Werte der Eltern. Oft wird
für jedes Vektorelement
ein neues Elternteil
bestimmt, so dass hier an
der Kreuzung n+1

Individuen beteiligt sind.

eine Art Truncation-Selektion und

Mutationsoperatoren.

Inzwischen verwischen sich die
Unterschiede, und die Ideen aus den
unterschiedlichen Bereichen werden immer
mehr zusammengeführt. Trotzdem halten
sich die alten Bezeichnungen, und für
erfolgreiche neue Varianten der evolutionären

Algorithmen wird auch mal ein

neuer Name eingeführt, wie zum Beispiel
«genetisches Programmieren». Das
Verfahren unterscheidet sich von den «genetischen

Algorithmen» dadurch, dass die
Individuen als Bäume dargestellt sind.
Unser Fallbeispiel, der gut geparkte LKW,
fällt also eigentlich unter die Kategorie
«genetisches Programmieren». Das
genetische Programmieren ist eben dieser

Baumstruktur wegen so erfolgreich, sie

ermöglicht es nämlich, ganze
Computerprogramme als Optimierungsaufgabe zu
betrachten, denn Computerprogramme lassen

sich elegant als Bäume codieren. Damit
lässt sich für eine ganze Problemklasse ein

Lösungsprogramm finden, und eine Instanz
des Problems kann dann durch das gefundene

Lösungsprogramm gelöst werden. Da
das Lösungsprogramm selbst keine «Genetik»

mehr enthält, entfallen alle Nachteile der

evolutionären Algorithmen (z.B. hohe
Rechenzeit und hoher Speicherbedarf). Das ist
ein wesentlicher Unterschied zu den anderen

Varianten der evolutionären Algorithmen
und zu den meisten anderen Optimierungsverfahren,

wo für jede Probleminstanz ein

neuer Optimierungslauf notwendig ist.

Fazit

Evolutionäre Algorithmen sind ein robustes,

universell einsetzbares probabilisti-
sches Optimierungsverfahren. Die benötigte

hohe Rechenleistung ist vor allem dann

gerechtfertigt, wenn wenig Wissen über die

Lösung eines Problems vorhanden ist oder

wenn man so viel wie möglich vom
vorhandenen Wissen in den evolutionären

Algorithmus einbringt, um die eingesetzte
Rechenleistung sinnvoll zu nutzen.
Obwohl das Verfahren sehr einfach zu
beschreiben, zu implementieren und «intuitiv»

zu verstehen ist, sollte die Analogie
zur Natur nicht zu eng gesehen werden.
Zumindest nicht solange man die evolutionären

Algorithmen zur Optimierung
einsetzt. Dann sollte man zur Analyse und

Optimierung des Verfahrens auf mathematische

und statistische Analysemethoden
zurückgreifen.

Literatur
[1 ] J. Bernasconi: Simulated Annealing - eine

Optimierungsmethode aus der statistischen Mechanik.

Bulletin SEV/VSE 79(1988)21, S. 1295-1299.
[2] David Goldberg: Genetic Algorithms in

Search, Optimization and Machine Learning. Addi-
son-Wesley Publishing Company, 1989.

[3] John Koza: Genetic Programming. The MIT
Press, 1992.

[4j Zbigniew Michalewicz: Genetic Algorithms +

Data Structures Evolution Programs. Artificial
Intelligence. Springer, Berlin, 1992.

[5] Lawrence Davis: Handbook of Genetic
Algorithms. Van Nostrand Reinhold, New York, 1991.

[6] Thomas Bäck, Frank Hoffmeister, Hans-Paul
Schwefel: Applications of Evolutionary Algorithms.
Technical Report Sys. 2/92. System Analysis Research

Group, Department of Computer Science, University
of Dortmund, D-44221 Dortmund, ISSN 0941-4568.

[7] Larry L. Eshelman (Ed): Proceedings of the
Sixth International Conference on Genetic
Algorithms (ICGA6), Morgan Kaufmann Publishers, San

Francisco, 1995.

[8] Yuval Davidor, Hans-Paul Schwefel, Reinhard
Manner (Eds): Parallel Problem Solving from Nature -
PPSN III. Lecture Notes in Computer Science 866,

Springer-Verlag, Berlin, 1994.

Optimiser à l'exemple de la nature
Algorithmes évolutionnaires

L'ambition de comprendre les règles de la nature est toujours allée de pair avec le

désir d'appliquer ses méthodes de manière utile aux créations humaines. Depuis
quelques années on constate un grand intérêt à de tel procédés, surtout parce que les

procédés classiques n'offrent encore aucune solution satisfaisante à nombre de

problèmes. Outre les réseaux neuronaux qui ont fait les gros titres des illustrés, les

algorithmes évolutionnaires appartiennent certainement aux domaines des plus
intéressants de la recherche actuelle.

26 Bulletin ASE/UCS 25/95


	Optimieren nach dem Vorbild der Natur : evolutionäre Algorithmen

