Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 86 (1995)

Heft: 21

Artikel: Spezifizieren und Entwickeln mit grafischen Modellen : CIP : eine
konstruktive Entwicklungsmethode flr eingebettete Systeme

Autor: Fierz, Hugo

DOl: https://doi.org/10.5169/seals-902500

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-902500
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Emgebéﬁéte Systéﬁié

CIP ist eine formale Entwicklungsmethode, mit der eingebettete Systeme durch
grafische Modelle ablauffahig spezifiziert werden kénnen. Der Entwicklungsansatz
der Methode geht vom Verhalten der realen Objekte der Umgebung aus und fihrt in
konstruktiven Schritten zum kompositionell definierten Gesamtsystem. Das auf die
Methode zugeschnittene Spezifikationswerkzeug CIP Tool mit grafischen Editoren und
C-Code-Generatoren erlaubt eine effiziente Anwendung der Methode in der Praxis.

Spezifizieren und Entwickeln

mit grafischen Modellen

CIP - eine konstruktive Entwicklungsmethode fiir eingebettete Systeme

Dieser in Heft 17/95 publizierte Artikel wird
nochmals abgedruckt, da bei der elektronischen
Dateniibergabe an die Druckerei eine grossere
Anzahl von Figuren-Beschriftungen verloren-
gegangen sind.
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B Hugo Fierz

In diesem Beitrag wird CIP (Communi-
cating Interacting Processes) als Entwick-
lungsmethode fiir klassische eingebettete
Systeme beschrieben. Der allgemeine An-
wendungsbereich der Methode erstreckt
sich sinngemiss auch auf Systeme, die Teil
eines umfassenderen  Softwaresystems
sind, wie zum Beispiel die Leitprozesse
eines Reglersystems oder die Protokolle
einer bestimmten Schicht eines Kommu-
nikationssystems.

Eingebettete Systeme, englisch Embed-
ded Systems, sind Rechnersysteme, die als
integrierender Bestandteil von Geriten und
Anlagen fiir die Steuerung und Regelung
der umgebenden Prozesse verantwortlich
sind. In der Regel haben derartige Systeme
speziellen Anspriichen hinsichtlich Zuver-
ldssigkeit und Einhalten von Echtzeit-
bedingungen zu geniigen. Das notwendige
ingenieurmassige Arbeiten wird durch die
in der Praxis verbreiteten Case-Werkzeuge
jedoch zuwenig unterstiitzt, da die verwen-
deten Methoden kaum durch formale
Modelle abgestiitzt sind. Das Verhalten
eines Systems kann mit solchen Methoden
erst in der Implementationsphase durch

die kompilierbaren Programme vollstindig
definiert werden. Die Folge sind oft
Produkte, welche die hohen Qualitits-
anforderungen an derartige Systeme nicht
zufriedenstellend erfiillen, was sich unmit-
telbar in unnotig hohen Unterhaltskosten
niederschldgt. Eine entscheidende Verbes-
serung der Softwarequalitdt ist moglich,
wenn bereits in den problemorientierten
Entwicklungsphasen mit formalen Pro-
zessmodellen gearbeitet wird. Weil die
Problemlésungen im Kontext der Anforde-
rungen gefunden werden, entstehen natur-
gemdss weniger logische Fehler. Bekannt-
lich kommen solche Fehler besonders teuer
zu stehen, wenn sie erst am implemen-
tierten System entdeckt werden. Zudem
erlaubt die formalere Arbeitsweise den
Entwicklungsprozess konsequenter durch
Softwarewerkzeuge zu unterstiitzen, was
eine weitere Senkung des Entwicklungsauf-
wandes mit sich bringt.

Eingebettete Systeme

Die Umgebung eines eingebetteten
Systems (ES) besteht aus verschiedenen
Anlageteilen mit eigenem aktivem Verhal-
ten. Bei einfacheren Objekten ist dieses
Verhalten in erster Linie durch deren
physikalische ~Eigenschaften bestimmt.
Komplexere Teile sind oft bereits durch

33



iﬁformatik

Anlage O*—— ES

L =

Bild 1 Eingebettetes System mit Umgebung

lokale Mikroprozessoren gesteuert (SPS,
eingekaufte Produkte) und haben ein Ver-
halten, das wesentlich durch die integrierte
Software bestimmt ist. Damit ein System
durch den Menschen beeinflusst werden
kann, muss die Anlage zusitzlich mit
entsprechenden Bedienungsgeriten ausge-
stattet werden.

Die Koppelung zwischen Anlage und ES
erfolgt tiber geeignete Wandler, die als
Sensoren und Aktoren bezeichnet werden.
Uber Sensorsignale wird das ES iiber
Zustandsinderungen der Anlage infor-
miert, mittels Aktorsignalen kann auf die
Anlage eingewirkt werden. Die allgemeine
Aufgabe eines ES besteht darin, die einzel-
nen Anlagekomponenten so zu beeinflus-
sen, dass ein bestimmtes Gesamtverhalten
der Anlage entsteht.

Die CIP-Methode

Dieser Beitrag erldutert den Spezifika-
tionsformalismus und die Entwicklungs-
konzepte der CIP-Methode [1]:

— Operationeller  Spezifikationsformalis-
mus: Das reaktive Verhalten eines ein-
gebetteten Systems wird durch eine
ausfiihrbare Spezifikation formal voll-
standig beschrieben.

— Umgebungsorientierter  Entwicklungs-
ansatz: Die operationelle Spezifikation
wird ausgehend vom Verhalten der rea-
len Objekte der Umgebung in nachvoll-

ziehbaren
funden.

Entwicklungsschritten ~ ge-

An einem einfachen Fallbeispiel wird
zum Schluss gezeigt, wie die vorgestellte
Methode angewendet wird.

Operationelle Spezifikation
eingebetteter Systeme

Der Entwickler eines eingebetteten
Systems (ES) hat grundsitzlich zwei Auf-
gaben zu losen:

— logischrichtige Reaktion des Systems auf
Ereignisse der Umgebung

— Informationsiibertragung zwischen ES
und Umgebung

Diese beiden Aufgaben sollten mog-
lichst unabhiingig voneinander gelost wer-
den. Die logische Problemldsung kann als
invarianter Teil verschiedener Implemen-
tationen eines eingebetteten Systems be-
trachtet werden und wird dementsprechend
in einer hoheren Abstraktionsebene be-
schrieben. Die logische Beschreibung,
welche zum Beispiel das Verhalten der
Steuerung eines Liftsystems festhilt, wird
keine Begriffe aus der Computertechnik
verwenden. Von einer Losung des logischen
Problems kann jedoch nur gesprochen wer-
den, wenn das Verhalten des eingebetteten
Systems formal beschrieben wird. Das
Problem der Informationsiibertragung hin-
gegen ist stark durch die verwendete Hard-
ware gepridgt und muss mit entsprechend
speziellen Techniken gelost werden.

Die vollstindige Separierung der logi-
schen Problemlosung von der Implemen-
tation der Informationsiibertragung bringt
grosse Vorteile im Entwicklungsprozess,
da die beiden Aufgaben unabhingig
voneinander gelost werden konnen. Es
handelt sich hier nicht einfach um die
Zerlegung eines grossen Problems in zwei

Ereignisse

Abstrakte
Maschine

Reaktive Schicht

logisches
Verhalten

Sensoren =+

Bild 2 Abstraktionsebenen eingebetteter Systeme
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kleinere, sondern es wird die Entflechtung
zweier Problemkreise erreicht, welche ver-
schiedenen Abstraktionsebenen angehoren.

Eine operationelle Spezifikation [2] ist
die konstruktive Beschreibung des Verhal-
tens eines Systems durch eine abstrakte
Maschine (Petrinetze [4], Zustandsmaschi-
nen [3], sequentielle Prozesse [5]). Dabei
bedeutet operationell, dass das zugrunde
liegende Modell logisch ablauffihig ist.
Geeignete Softwarewerkzeuge ermogli-
chen, aus so spezifizierten Modellen ablauf-
fihigen Code zu erzeugen, der direkt fiir
Simulationen oder fiir die Implementation
auf dem Zielsystem verwendet werden
kann. Aus denselben Modellen ldsst sich
auch die Dokumentation erzeugen, die den
gleichen formalen Gehalt hat wie der
erzeugte Code.

Der operationelle Spezifikations-
formalismus von CIP

Bei der CIP-Methode wird das System-
verhalten durch kooperierende Zustands-
maschinen spezifiziert. Ein CIP-System
besteht aus asynchron kooperierenden Clu-
stern (true concurrency). Jeder Cluster setzt
sich aus synchron kooperierenden Pro-
zessen zusammen, die als erweiterte
Zustandsmaschinen (Automaten) beschrie-
ben werden. Das mathematische Modell
eines Clusters ist als Produkt dieser Zu-
standsmaschinen definiert und stellt eine
Zustandsmaschine mit mehrdimensionalem
Zustandsraum dar; das heisst, der Zustand
eines Clusters ist durch die Zustinde seiner
Prozesse gegeben.

Durch ein Ereignis aus der Umgebung
wird ein Zustandsiibergang des empfangen-
den Prozesses erzeugt. Der so aktivierte
Prozess kann einen Puls erzeugen und
damit weitere Prozesse des Clusters anstos-
sen, die wiederum mittels Pulsen weitere
Prozesse aktivieren konnen. Die durch
Pulsiibertragung entstehende Kettenreak-
tion ist ununterbrechbar und definiert einen
einzigen Zustandsiibergang des ganzen
Clusters. Mittels Aktionen wirken die akti-
vierten Prozesse auf die Umgebung zuriick.

Die Prozesse der verschiedenen Cluster
konnen iiber Datenstrome asynchron kom-
munizieren. Asynchrone Kommunikation
bedeutet im CIP-Formalismus, dass die
Schreib- und die Leseaktion einer Uber-
tragung zeitlich getrennt in zwei verschie-
denen Clustertransitionen ausgefiihrt werden.

Prozesse:
Erweiterte Zustandsmaschinen

Prozesse werden als erweiterte Zu-
standsmaschinen spezifiziert: Mit Transi-
tionsstrukturen und durch die in den Tran-
sitionen ausgefiihrten Operationen kann in
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Bild 3 CIP-System mit zwei Clustern

zwei verschiedenen Abstraktionsebenen
Funktionalitdt spezifiziert werden. Die
Transitionsstruktur beschreibt die Koope-
ration mit anderen Prozessen und mit den
Objekten der Umgebung; mit den Opera-
tionen wird die lokale algorithmische Funk-
tionalitdt definiert.

Die in Bild 4 abgebildete Transitions-
struktur definiert das Verhalten des Prozes-
ses Einnehmer eines Verkaufsautomaten.
Der Prozess befindet sich immer in einem

der durch Kreise dargestellten Zustinde.
Das externe Ereignis Muenze oder die Pulse
abbruch und verkauft konnen einen Zu-
standsiibergang auslosen. In jeder Transi-
tion ist es moglich, die Aktion Auswurfund
einen neuen Puls zu erzeugen.

Fiir algorithmische Belange kdnnen in
jedem Prozess statische Variablen und
Datentypen fiir Ereignisse, Pulse, Aktionen
und Meldungen deklariert werden. Die
Algorithmen werden mittels Operationen

PROCESS Einnehmer
EVENTS
BetragErhalten Muenze: tWert
verkauft Muenze
begieRt <—Q<—> INPULSES
Auswurf abbruch
op4 T op2 verkauft: tWert
Muenze OUTPULSES
bezahlt start
op3 bezahlt
abbruch op2 bedient
ACTIONS
Sugwyt Auswurf: tWert
Muenze Muenze
start  — g VARIABLES
betrag: tBetrag
unbeschaeftigt  op1 einnehmend o
OPERATIONS USER TYPES
op1 {SELFbetrag = IN.wert;} typdef int tBetrag;
op2 {SELF.betrag = SELF.betrag + IN.wert;} typedef struct{
op3 {ACTION.wert = SELF.betrag;} int wert;
op4 {ACTION.wert = SELF.betrag - IN.wert;} HWert;
SWITCH swi
CONDITION einnehmend
(SELF.betrag + IN.wert < Auswahl.preis())
CONDITION BetragErhalten
ElLSE ;

Bild 4 Prozess Einnehmer eines Verkaufsautomaten
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Eingebettete Systeme

spezifiziert, die in den Zustandsiibergingen
ausgefiihrt werden.

Im grau markierten Zustand einnehmend
des Prozesses Einnehmer in Bild 4 sind fiir
das Ereignis Muenze zwei Transitionen
moglich (Nondeterminismus). Durch ent-
sprechende Bedingungen des zugeordneten
Switch swl wird das Prozessverhalten
eindeutig. Die Bedingungen eines solchen
Switch konnen von den Daten des Ereignis-
ses und den Werten der eigenen Variablen
sowie von den Zustinden und Variablen
anderer Prozesse desselben Clusters abhén-
gen (siehe Zustandsinspektion).

Variablen, Datentypen, Operationen und
Bedingungen werden in CIP in der Pro-
grammiersprache C oder C++ formu-
liert. Die Code-Fragmente werden im gene-
rierten C-Code «inline» eingebunden. Vom
theoretischen Standpunkt aus wire es scho-
ner, eine eigene funktionale Sprache zu
verwenden. In der Praxis hat sich jedoch die
Niitzlichkeit des pragmatischen Ansatzes
mit ANSI-C bzw. C++ eindeutig bestitigt,
erlaubt er doch problemlos Funktionen,
Datentypen und Objektklassen bestehender
Bibliotheken zu verwenden.

Eingebettete Systeme haben im allge-
meinen einen hybriden Charakter, indem
die Erfassung des Anlageverhaltens teils
tiber diskrete Sensoren, teils durch quasi-
kontinuierliche Abtastung erfolgt. Fiir die
Regelung der abgetasteten Vorgidnge wer-
den in CIP datentragende Abtastereignisse
und Stellaktionen verwendet; die regel-
technischen Algorithmen werden in Opera-
tionen der aktivierten Transitionen ausge-
fiihrt.

Interaktion: Synchrone Puls-
iibertragung, Zustandsinspektion

Die synchrone Ubertragung von Pulsen
wird als Interaktion bezeichnet. Durch ein
Interaktionsnetz (Bild 5) wird spezifiziert,
zwischen welchen Prozessen Pulse iiber-
tragen werden konnen.

Die Struktur des Interaktionsnetzes
schrinkt die moglichen Pulsiibertragungs-
ketten jedoch zuwenig ein, da im allgemei-
nen zyklische Ubertragungswege moglich
sind. Damit diese Kettenreaktionen eindeu-
tig und beschriinkt definiert sind, muss fiir
jeden Prozess, der Ereignisse oder Meldun-
gen erwartet, die durch ihn aktivierbare
Prozesskaskade definiert werden. Eine
Kaskade ist ein baumartiges Subnetz des
Interaktionsnetzes, in welchem der oberste
Prozess durch einen externen Input aktiviert
wird. Erzeugt ein in einer Kaskade aktivier-
ter Prozess keinen Puls oder erwartet ein
Empfinger einen erzeugten Puls nicht, so
bricht die Ausfiihrung der Kaskade in
diesen Knoten ab.

Wie bereits erwihnt, konnen die Bedin-
gungen einer Transitionsstruktur direkt von
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Bild 5 Interaktionsnetz und Kaskaden eines Clusters

den Zustinden und Variablen anderer Pro-
zesse desselben Clusters abhingen. Der
Lesezugriff auf die Daten eines anderen
Prozesses wird als Zustandsinspektion be-
zeichnet und erfolgt wie in objektorien-
tierten Modellen iiber Zugriffsfunktionen
(read-only methods) des inspizierten Pro-
zesses. Die gelieferte Information bezieht
sich immer auf die Zustinde und Variablen-
werte unmittelbar vor der aktuellen Cluster-
aktivierung. Im Gegensatz zur Pulsiiber-
tragung, bei welcher sowohl Sender wie
Empfiinger aktiv an der Ubertragung teil-
nehmen, wird bei einer Inspektion der
inspizierte Prozess nicht aktiviert.

Durch Zustandsinspektion entsteht eine
weitere Abhingigkeit zwischen Prozessen,
die im Interaktionsnetz durch Verbindun-

gen mit Diamanten grafisch deklariert
werden (Bild5). Die Pfeile geben die
Richtung des Datenflusses an.

Kommunikation: Asynchrone
Ubertragung von Meldungen

Die Informationsiibertragung zwischen
Prozessen verschiedener Cluster wird
durch asynchrone Kommunikation mittels
Datenstromen spezifiziert, wobei auch Pro-
zesse desselben Clusters mit Datenstromen
verkniipft werden konnen. Datenstrome
sind sequentielle Meldungspuffer und mo-
dellieren das Kommunikationsmedium des
verteilten Systems. Wie bei der Interaktion
wird die Datenflussstruktur durch ein grafi-
sches Netzmodell spezifiziert. Die kommu-
nizierenden Prozesse werden dabei iiber

MODERATOR

Bild 6 Drei Modi mit
Moderator
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Outports und Inports mit Datenstromen
verkniipft. Fiir jeden Outport und Inport
werden Meldungen definiert, die in Pro-
zesstransitionen geschrieben und gelesen
werden konnen.

Moderation: Verhaltensstrukturierung

Durch verschiedene Modi konnen fiir
einen Prozess verschiedene Verhaltens-
muster definiert werden. Jeder Modus wird
durch eine Transitionsstruktur wie in
Bild 4 beschrieben, welche die Zustinde,
Ereignisse, Pulse, Aktionen und Meldun-
gen des Prozesses verwendet.

Der aktive Modus eines Prozesses defi-
niert das aktuelle Prozessverhalten. Durch
eine weitere Transitionsstruktur (Moderator)
auf den Modi des Prozesses wird spezifiziert,
wie das Verhalten des Prozesses gewechselt
werden kann. Modustransitionen werden
durch spezielle Pulse erzeugt. Bei einer
Modustransition bleibt der aktuelle Prozess-
zustand erhalten; es ist jedoch moglich, in
einer Modustransition einen Trigger abzu-
setzen, der im neuen Modus sofort einen
ersten Zustandsiibergang erzeugt.

Die Strukturierung des Prozessverhal-
tens durch verschiedene Modi hat sich
bewihrt; es lassen sich damit die direkte
Beeinflussung eines Prozesses von der
Beeinflussung des Verhaltens separieren.
Das Strukturierungsmittel erlaubt, auf ein-
fache Weise die Komplexitit reaktiver
Systeme durch Verhaltenshierarchien in
den Griff zu bekommen.

Umgebungsorientierter objekt-
basierter Entwicklungsansatz

Mit operationellen Spezifikationsforma-
lismen wird automatisch in einer definier-
ten Abstraktionsebene gearbeitet. Zusitz-
lich zu solchen «Leitplanken» sollte eine
Methode fiir den Entwicklungsprozess ein
konzeptuelles Modell vorschlagen, mit
welchem in nachvollziehbaren Schritten
verstindliche Losungen gefunden werden
konnen. Ein «richtig laufendes System» ist
noch kein Garant fiir Qualitit. Entscheidend
ist, dass eine Strukturierung gefunden wer-
den kann, die auch einen sicheren Unterhalt
des Systems ermoglicht.

Bei der operationellen Spezifikation mit
der CIP-Methode wird vom Verhalten der
realen Objekte der Systemumgebung aus-
gegangen. Der Ansatz stammt aus der JSD-
Methode (Jackson System Development)
[5] und wird auch in den neueren objekt-
orientierten Analysemethoden angewendet.
Das realititsorientierte Vorgehen fiihrt zu
verstindlichen Systemen, was sich unmit-
telbar auf Qualititsmerkmale wie Zuverlis-
sigkeit, Wartbarkeit und Anderungsfreund-
lichkeit auswirkt.
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Wir beschreiben in diesem Beitrag die
Modell- und die Funktionsphase fiir die
Entwicklung eines einzigen Clusters (Bild 7).
Bei Systemen mit mehreren Clustern kiime
noch eine Entwicklungsphase fiir die globale
Kommunikation dazu.

Modellphase

Als erste  Komponenten eines CIP-
Systems spezifiziert man pro Objekt der
Umgebung einen sogenannten Modellpro-
zess, welcher die Sensorsignale des Objektes

als Ereignisse empfingt und durch Aktionen
entsprechende Aktorsignale erzeugen kann.
Die Transitionsstrukturen dieser Prozesse
beschreiben, in welchen Folgen Ereignisse
auftreten und Aktionen erzeugt werden
konnen (sequentielle Protokolle). Das spezi-
fizierte System enthilt so explizite Modelle,
die das giiltige Verhalten der Anlageteile aus
der Sicht des eingebetteten Systems definie-
ren. Die Modellprozesse bilden damit die
Grundlage fiir die Entwicklung der reaktiven
Funktionalitit des Systems.

Eingebettete Systeme

Funktionsphase

In der zweiten Entwicklungsphase wird
das Gesamtverhalten des eingebetteten
Systems spezifiziert. Dazu werden Funk-
tionsprozesse eingefiihrt und mittels Puls-
tibertragung und Statusinspektion die not-
wendigen Abhingigkeiten zwischen den
Modellprozessen definiert. In einem ersten
Schritt entwickelt man die primire Funktio-
nalitéit des Systems, die sich auf das durch
die Modellprozesse definierte Normalver-
halten abstiitzt. Damit auch auf ungiiltiges
Verhalten der Umgebung und auf Ubertra-
gungsfehler reagiert werden kann, miissen
meistens in weiteren Schritten die Struktu-
ren der Modellprozesse erweitert und Uber-
wachungsprozesse eingefiihrt werden. Wie
die Erfahrung zeigt, gehort die Spezifikati-
on des Systemverhaltens fiir den Fehlerfall
zu den schwierigsten Problemen bei der
Entwicklung robuster und sicherer Systeme.
Ohne explizites Modell des Normalverhal-
tens kann diese Aufgabe meist gar nicht oder
zumindest nicht befriedigend gelost werden.

Ein weiterer Vorteil des kompositionel-
len Ansatzes zeigt sich, wenn Anderungs-
wiinsche realisiert werden miissen. Mo-
delle der realen Umgebung werden sich in
den meisten Fillen als stabiler erweisen, als
eine durch funktionale Dekomposition ge-
fundene Systemstruktur, die auf einem
speziellen Katalog funktionaler Anforde-
rungen basiert.

Kleine Anwendung

. An einem einfachen Beispiel werden die
Entwicklungsschritte der CIP-Methode er-
ldutert. Die resultierende Spezifikation be-

PROCESS Foerderer PROCESS LichtSchranke
Frei -
unbelegtFahrend belegtFahrend einVerbunden
Belegt \ \
Belegt LS_Aus Dunkel| | Hell
MotAus MotEin MotAus| |MotEin
l Frei l
LS_Aus
Belegt
unbelegtGestoppt belegtGestoppt aus Ls_Ein|  €inUnterbrochen
EVENTS ACTIONS EVENTS ACTIONS
. Belegt, Frei  MotEin, MotAus Hell, Dunkel LS_Ein, LS_Aus
Bild 9 Modellprozesse ’ _
mit Ereignissen und —
Aktionen
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Bild 10 Interaktionsnetz und Kaskaden

schreibt formal vollstindig die synchrone
Kooperation von drei CIP-Prozessen. Die
algorithmischen Anforderungen in diesem
Beispiel sind trivial, das heisst, die Prozesse
haben keine Variablen, fiihren keine Opera-
tionen aus und es werden keine Daten
libertragen.

Anlagebeschreibung

Die Anlage besteht aus einem Forderer
und einer Lichtschranke, mit der die maxi-
mal erlaubte Hohe des Forderguts iiber-
wacht werden soll (Bild 8). Die Belegung
des Forderers kann iiber einen digitalen
Belastungssensor erfasst werden. Der Licht-

sensor der Lichtschranke meldet, ob der
Lichtstrahl empfangen wird. Der Motor
des Forderers und die Lichtschranke
konnen elektronisch ein- und ausgeschaltet
werden.

Anforderungen

Wenn der Forderer belegt wird, sollen der
Motor und die Lichtschranke eingeschaltet
werden. Bei unterbrochener Lichtschranke
darf der Motor des Forderers nie laufen. Ist
der Forderer wihrend 30 Sekunden unbe-
legt, so sollen Forderer und Lichtschranke
wieder ausgeschaltet werden.

In der folgenden CIP-Spezifikation
wurde folgende Schreibregel angewendet:
Die Namen der Prozesse, Ereignisse und
Aktionen beginnen immer mit einem
Grossbuchstaben, die Namen der Zustinde
und Pulse dagegen sind klein geschrieben.

Modellphase
In der Modellphase werden fiir den
Forderer und die Lichtschranke Modellpro-

PROCESS Controller

\

aktivUnbelegt

PROCESS LichtSchranke

einVerbunden

\

PROCESS Foerderer

TimeUp stop
s belegt | [frei LS. Aus Dunkel| [Hel
) alarm | |ok
StopTim |SetTim
stop
belegt LS_Aus|
@—}start S oL
start
inaktiv aktivBelegt aus LS Ein einUnterbrochen
INQUIRY

int hatVerbindung( )

{return (STATUS.STATE == einVerbunden);}

unbelegtFahrend E:z: belegtFahrend
Legende:
Belegt
belegt @
Anfangszustand
stop [|alarm Belegt alarm ||ok
belegt
MotAus| [MotAus MotEin MotAus| [MotEin
Frei SWITCH swi
i CONDITION belegtFahrend
s\ﬁ 1 LichtSchranke.hatVerbindung( )
Eel'egtt CONDITION BelegtGestoppt
unbelegtGestoppt eleg belegtGestoppt ELSE

Bild 11 Vollstandige
Transitionsstrukturen
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Zur Projektgeschichte von CIP

Die ersten Ansitze zur CIP-Methode sind 1989 an der Software-Schule Schweiz in
Bern entstanden. Anschliessend sind in einem dreijahrigen KWF-Projekt (Kommis-
sion zur Forderung der wissenschaftlichen Forschung, Projekt-Nrn. 2112, 2268) am
TIK der ETH Ziirich die formalen Grundlagen der Methode ausgearbeitet und ein
erstes Spezifikationswerkzeug entwickelt worden. Das KWF-Projekt wurde vom
Bund, von der Industrie (Ascom Autelca, EPS, Hasler-Stiftung, Landis & Gyr,
Securiton) und von der durch die Projektgruppe gegriindeten Firma CIP System AG
getragen. Die Tauglichkeit der Methode und des Werkzeuges ist in Pilotprojekten der
industriellen Projektpartner eindriicklich bestitigt worden. In der Folge hat die CIP
System AG das Resultat des KWF-Projektes zum kommerziellen Produkt CIP Tool
weiterentwickelt. Das Werkzeug wird bereits im Unterricht (ETH Ziirich, NDIT/FPIT,
HTL Bern, Biel und Rapperswil) sowie in verschiedenen industriellen Projekten
eingesetzt. Seit Herbst 1994 besteht eine Zusammenarbeit mit der Firma Ziihlke
Engineering AG, die als Kompetenzzentrum fiir die CIP-Methode Grundkurse und
projektbegleitende Unterstiitzung anbietet.

Die CIP-Methode wird in verschiedenen Richtungen weiterentwickelt. Die
geplanten Forschungsarbeiten an der ETH Ziirich betreffen die formale Modellierung
von Verhaltenshierarchien, die Codegenerierung fiir Multiprozessorsysteme und die

formale Verifikation von Systemeigenschaften.

zesse (Bild 9) mit Ereignissen und Aktio-
nen spezifiziert.

Der Belastungssensor erzeugt die Ereig-
nisse Belegt und Frei fiir den Prozess
Foerderer, der mit den Aktionen MotEin
und MotAus den Motor steuern kann. Der
Lichtsensor erzeugt die Ereignisse Hell und
Dunkel fiir den Prozess LichtSchranke. Mit
den Aktionen LS_Ein und LS_Aus kann
dieser die Lichtschranke ein- und aus-
schalten.

Die Struktur des Prozesses Foerderer
enthilt eine nondeterministische Verzwei-
gung: Beim Belegen des gestoppten Forde-
rers hingt die Reaktion des Modellprozes-
ses vom Zustand der Lichtschranke ab. Dies
wird durch zwei verschiedene Transitionen
fiir das Ereignis Belegt ausgedriickt, beide
ausgehend vom grau markierten Zustand
unbelegtGestoppt.

Die Struktur des Prozesses LichtSchran-
ke beriicksichtigt, dass nach dem Einschal-
ten als erstes das Ereignis Hell auftritt.

Funktionsphase

In der Funktionsphase wird zusitzlich
der Steuerprozess Controller eingefiihrt,
der fiir die Aktivierung und Deaktivierung
des Fordersystems verantwortlich ist
(Bild 11). Der Prozess beniitzt einen exter-
nen Timer, der mit den Aktionen SetTim
und StopTim gesetzt und gestoppt werden
kann. Mit dem Ereignis TimeUp meldet
sich der abgelaufene Timer zuriick. Interne
Timer stehen in CIP ebenfalls zur Ver-
fiigung.

Alle drei Prozesse bilden einen einzigen
Cluster. Das geforderte Verhalten des Sy-
stems entsteht durch gezielte Pulsiibertra-
gung. Durch das Interaktionsnetz (Bild 10)
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wird festgelegt, zwischen welchen Prozes-
sen Pulse iibertragen werden diirfen. Die
Verbindung mit dem Diamanten definiert
zudem, dass der Prozess Foerderer den
Prozess LichtSchranke inspizieren kann.
Beim Entwickeln der Kaskaden haben
folgende Szenarien eine Rolle gespielt:

a. Die Ereignisse Belegt und Frei des
Forderers werden dem Controller gemel-
det, der dafiir sorgt, dass die Lichtschran-
ke eingeschaltet wird, und der den Timer
fiir das Ausschalten setzt.

b. Die Ereignisse der Lichtschranke miis-
sen eine Wirkung auf den Forderer haben
konnen.

¢. Wenn der Timer des Controllers ablduft,
miissen Forderer und Lichtschranke aus-
geschaltet werden.

Eingebettete Systeme

Welche Pulse wann iibertragen werden,
ist in den vervollstindigten Transitions-
strukturen der Prozesse definiert (Bild 11).

Die nondeterministische Verzweigung
fiir das Ereignis Belegt im Zustand unbe-
legtGestoppt des Prozesses Foerderer wird
durch den zugeordneten Switch sw/ ein-
deutig ausfithrbar. Die Bedingung fiir
den Folgezustand BelegtFahrend enthilt
den Aufruf der Funktion hatVerbindung(),
welche Information aus dem aktuellen
Kontext des Prozesses LichtSchranke
liefert (Zustandsinspektion).

Das Verhalten des Systems ist durch die
zeitliche Folge der auftretenden dusseren
Ereignisse bestimmt. Durch ein Ereignis
eines Prozesses wird die entsprechende
Prozesskaskade ausgefiihrt. Ein moglicher
Ablauf des Systems (Trace) konnte mit
folgenden drei Clustertransitionen begin-
nen:

Ereignis Belegt fiir Foerderer

— Puls belegt fiir Controller
— Puls start fiir LichtSchranke

-> Zustand belegtGestoppt

-> Zustand aktivBelegt

-> Zustand einUnterbrochen,
Aktion LS_Ein

Ereignis Hell fiir LichtSchranke -> Zustand einVerbunden

— Puls ok fiir Foerderer -> Zustand belegtFahrend,
Aktion MotEin

-> Zustand unbelegtFahrend

-> Zustand aktivBelegt,
Aktion SetTim

Ereignis Frei fiir Foerderer
— Puls frei fiir Controller
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la théorie.

CIP - une méthode formelle de
développement pour des systemes
de commande de processus

CIP est une méthode formelle de développement qui permet de spécifier des systemes
de commande de processus exécutables a 1’aide de modeles graphiques. L’approche
méthodologique part du comportement des objets réels de I’environnement et mene pas
a pas de facon constructive a une spécification exécutable du systeme. Avec Ioutil de
spécification CIP Tool, ses éditeurs graphiques et générateurs de code C, la méthode
s’applique en pratique de manicre efficace.

Apres une introduction & ’approche opérationnelle appliquée aux systemes de
commande de processus, Iarticle présente le formalisme graphique de CIP. Puis, on
explique le processus de développement proposé par CIP. Un exemple complet illustre
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Bitte einzutrefen: Mit unserer begehbaren Kompakistation
T 85 wird bei der Wartung die Tur zum Dach. So
sparen Sie teure Aufstellflache, die Sie bisher zum Offnen
der Turen einplanen mussten. Und mit einer Bauhshe Gber
Terrain von nur 1m sorgt diese unaufféllige Station fir
freies Blickfeld an Kreuzungen und vor Wohnfensterm. Die
T 85 ist eine unserer vier Kompakistationstypen, mit denen
Sie viele Ihrer Planungs- und Versorgungsaufgaben I6sen.
Alle Stationsgeometrien sind fugenlos aus einem Guss
fabrikgefertigt nach System Betonbau, bestehen aus
100 mm Stahlbeton B 35, bieten vorbereitete BBK-Kabel-
durchfohrungen und sind optisch perfekt anpassbar an Ihre
jeweilige Bauumgebung. Eines unserer vier Werke ist in
Ihrer Region. Nahere Informationen bei Befonbau GmbH,

Postfach 1161, 68743 Waghdusel, ; @'\(
PKG
Paritatische Krankenversicherung
fir Branchen der Gebaudetechnik

Postfach 272
3000 Bern 15

Vi
"4 Telefon 031 / 350 24 24
Telefax 031/ 350 22 33

Tel. (07254)980-401, Fax (072 54) 980-419. 5 48

PS: PKG - die Krankenversicherung der
Verbande SSIV, VSEI, VSHL und SMUV
mit mehr als 900 angeschlossenen Firmen.
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