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Eingebettete Systeme

CIP ist eine formale Entwicklungsmethode, mit der eingebettete Systeme durch

grafische Modelle ablauffähig spezifiziert werden können. Der Entwicklungsansatz
der Methode geht vom Verhalten der realen Objekte der Umgebung aus und führt in

konstruktiven Schritten zum kompositioneil definierten Gesamtsystem. Das auf die
Methode zugeschnittene Spezifikationswerkzeug CIP Tool mit grafischen Editoren und
C-Code-Generatoren erlaubt eine effiziente Anwendung der Methode in der Praxis.

Spezifizieren und Entwickeln
mit grafischen Modellen
CIP - eine konstruktive Entwicklungsmethode für eingebettete Systeme

Dieser in Heft 17/95 publizierte Artikel wird
nochmals abgedruckt, da bei der elektronischen

Datenübergabe an die Druckerei eine grössere
Anzahl von Figuren-Beschriftungen
verlorengegangen sind.

Adresse des Autors:
Hugo Fierz, Dr. phys., Institut für Technische
Informatik und Kommunikationsnetze,
ETH-Zentrum, 8092 Zürich.

Hugo Fierz

In diesem Beitrag wird CIP (Communicating

Interacting Processes) als

Entwicklungsmethode für klassische eingebettete
Systeme beschrieben. Der allgemeine
Anwendungsbereich der Methode erstreckt
sich sinngemäss auch auf Systeme, die Teil
eines umfassenderen Softwaresystems
sind, wie zum Beispiel die Leitprozesse
eines Reglersystems oder die Protokolle
einer bestimmten Schicht eines

Kommunikationssystems.

Eingebettete Systeme, englisch Embedded

Systems, sind Rechnersysteme, die als

integrierender Bestandteil von Geräten und

Anlagen für die Steuerung und Regelung
der umgebenden Prozesse verantwortlich
sind. In der Regel haben derartige Systeme

speziellen Ansprüchen hinsichtlich
Zuverlässigkeit und Einhalten von
Echtzeitbedingungen zu genügen. Das notwendige
ingenieurmässige Arbeiten wird durch die
in der Praxis verbreiteten Case-Werkzeuge
jedoch zuwenig unterstützt, da die verwendeten

Methoden kaum durch formale
Modelle abgestützt sind. Das Verhalten
eines Systems kann mit solchen Methoden
erst in der Implementationsphase durch

die kompilierbaren Programme vollständig
definiert werden. Die Folge sind oft
Produkte, welche die hohen Qualitäts-
anforderungen an derartige Systeme nicht
zufriedenstellend erfüllen, was sich unmittelbar

in unnötig hohen Unterhaltskosten

niederschlägt. Eine entscheidende Verbesserung

der Softwarequalität ist möglich,
wenn bereits in den problemorientierten
Entwicklungsphasen mit formalen
Prozessmodellen gearbeitet wird. Weil die

Problemlösungen im Kontext der Anforderungen

gefunden werden, entstehen natur-
gemäss weniger logische Fehler. Bekanntlich

kommen solche Fehler besonders teuer
zu stehen, wenn sie erst am implementierten

System entdeckt werden. Zudem
erlaubt die formalere Arbeitsweise den

Entwicklungsprozess konsequenter durch

Softwarewerkzeuge zu unterstützen, was
eine weitere Senkung des Entwicklungsaufwandes

mit sich bringt.

Eingebettete Systeme

Die Umgebung eines eingebetteten
Systems (ES) besteht aus verschiedenen

Anlageteilen mit eigenem aktivem Verhalten.

Bei einfacheren Objekten ist dieses

Verhalten in erster Linie durch deren

physikalische Eigenschaften bestimmt.

Komplexere Teile sind oft bereits durch
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Bild 1 Eingebettetes System mit Umgebung

lokale Mikroprozessoren gesteuert (SPS,

eingekaufte Produkte) und haben ein
Verhalten, das wesentlich durch die integrierte
Software bestimmt ist. Damit ein System
durch den Menschen beeinflusst werden

kann, muss die Anlage zusätzlich mit
entsprechenden Bedienungsgeräten ausgestattet

werden.
Die Koppelung zwischen Anlage und ES

erfolgt über geeignete Wandler, die als

Sensoren und Aktoren bezeichnet werden.
Über Sensorsignale wird das ES über

Zustandsänderungen der Anlage
informiert, mittels Aktorsignalen kann auf die

Anlage eingewirkt werden. Die allgemeine
Aufgabe eines ES besteht darin, die einzelnen

Anlagekomponenten so zu beeinflussen,

dass ein bestimmtes Gesamtverhalten
der Anlage entsteht.

Die CIP-Methode

Dieser Beitrag erläutert den
Spezifikationsformalismus und die Entwicklungskonzepte

der CIP-Methode [1]:

- Operationeller Spezifikationsformalismus:
Das reaktive Verhalten eines

eingebetteten Systems wird durch eine

ausführbare Spezifikation formal
vollständig beschrieben.

- Umgebungsorientierter Entwicklungsansatz:

Die operationeile Spezifikation
wird ausgehend vom Verhalten der realen

Objekte der Umgebung in nachvoll¬

ziehbaren Entwicklungsschritten
gefunden.

An einem einfachen Fallbeispiel wird
zum Schluss gezeigt, wie die vorgestellte
Methode angewendet wird.

Operationelle Spezifikation
eingebetteter Systeme

Der Entwickler eines eingebetteten
Systems (ES) hat grundsätzlich zwei
Aufgaben zu lösen:

- logisch richtige Reaktion des Systems auf
Ereignisse der Umgebung

- Informationsübertragung zwischen ES

und Umgebung

Diese beiden Aufgaben sollten
möglichst unabhängig voneinander gelöst werden.

Die logische Problemlösung kann als

invarianter Teil verschiedener Implementationen

eines eingebetteten Systems
betrachtet werden und wird dementsprechend
in einer höheren Abstraktionsebene
beschrieben. Die logische Beschreibung,
welche zum Beispiel das Verhalten der

Steuerung eines Liftsystems festhält, wird
keine Begriffe aus der Computertechnik
verwenden. Von einer Lösung des logischen
Problems kann jedoch nur gesprochen werden,

wenn das Verhalten des eingebetteten
Systems formal beschrieben wird. Das

Problem der Informationsübertragung
hingegen ist stark durch die verwendete Hardware

geprägt und muss mit entsprechend
speziellen Techniken gelöst werden.

Die vollständige Separierung der
logischen Problemlösung von der Implementation

der Informationsübertragung bringt
grosse Vorteile im Entwicklungsprozess,
da die beiden Aufgaben unabhängig
voneinander gelöst werden können. Es

handelt sich hier nicht einfach um die

Zerlegung eines grossen Problems in zwei

0-fV
Anlage { J

Dienste

Ereignisse

Aktionen Abstrakte
Maschine

Sensoren
Aktoren

Dienste
f
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Reaktive Schicht
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Verhalten

Einbettungsschicht
Informationsübertragung

Bild 2 Abstraktionsebenen eingebetteter Systeme

kleinere, sondern es wird die Entflechtung
zweier Problemkreise erreicht, welche
verschiedenen Abstraktionsebenen angehören.

Eine operationelle Spezifikation [2] ist
die konstruktive Beschreibung des Verhaltens

eines Systems durch eine abstrakte
Maschine (Petrinetze [4], Zustandsmaschi-

nen [3], sequentielle Prozesse [5]). Dabei
bedeutet Operationen, dass das zugrunde
hegende Modell logisch ablauffähig ist.

Geeignete Softwarewerkzeuge ermöglichen,

aus so spezifizierten Modellen
ablauffähigen Code zu erzeugen, der direkt für
Simulationen oder für die Implementation
auf dem Zielsystem verwendet werden
kann. Aus denselben Modellen lässt sich
auch die Dokumentation erzeugen, die den

gleichen formalen Gehalt hat wie der

erzeugte Code.

Der operationeile Spezifikationsformalismus

von CIP

Bei der CIP-Methode wird das
Systemverhalten durch kooperierende Zustands-
maschinen spezifiziert. Ein CIP-System
besteht aus asynchron kooperierenden
Clustern (true concurrency). Jeder Cluster setzt
sich aus synchron kooperierenden
Prozessen zusammen, die als erweiterte
Zustandsmaschinen (Automaten) beschrieben

werden. Das mathematische Modell
eines Clusters ist als Produkt dieser
Zustandsmaschinen definiert und stellt eine
Zustandsmaschine mit mehrdimensionalem
Zustandsraum dar; das heisst, der Zustand
eines Clusters ist durch die Zustände seiner
Prozesse gegeben.

Durch ein Ereignis aus der Umgebung
wird ein Zustandsübergang des empfangenden

Prozesses erzeugt. Der so aktivierte
Prozess kann einen Puls erzeugen und
damit weitere Prozesse des Clusters anstos-

sen, die wiederum mittels Pulsen weitere
Prozesse aktivieren können. Die durch
Pulsübertragung entstehende Kettenreaktion

ist ununterbrechbar und definiert einen
einzigen Zustandsübergang des ganzen
Clusters. Mittels Aktionen wirken die
aktivierten Prozesse auf die Umgebung zurück.

Die Prozesse der verschiedenen Cluster
können über Datenströme asynchron
kommunizieren. Asynchrone Kommunikation
bedeutet im CIP-Formalismus, dass die
Schreib- und die Leseaktion einer
Übertragung zeitlich getrennt in zwei verschiedenen

Clustertransitionen ausgeführt werden.

Prozesse:

Erweiterte Zustandsmaschinen
Prozesse werden als erweiterte

Zustandsmaschinen spezifiziert: Mit
Transitionsstrukturen und durch die in den
Transitionen ausgeführten Operationen kann in
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Bild 3 ClP-System mit zwei Clustern

zwei verschiedenen Abstraktionsebenen
Funktionalität spezifiziert werden. Die
Transitionsstruktur beschreibt die Kooperation

mit anderen Prozessen und mit den

Objekten der Umgebung; mit den Operationen

wird die lokale algorithmische
Funktionalität definiert.

Die in Bild 4 abgebildete Transitionsstruktur

definiert das Verhalten des Prozesses

Einnehmer eines Verkaufsautomaten.
Der Prozess befindet sich immer in einem

Bulletin SEV/VSE 21/95

der durch Kreise dargestellten Zustände.
Das externe Ereignis Muenze oder die Pulse

abbruch und verkauft können einen Zu-

standsübergang auslösen. In jeder Transition

ist es möglich, die Aktion Auswurfund
einen neuen Puls zu erzeugen.

Für algorithmische Belange können in
jedem Prozess statische Variablen und

Datentypen für Ereignisse, Pulse, Aktionen
und Meldungen deklariert werden. Die

Algorithmen werden mittels Operationen

spezifiziert, die in den Zustandsübergängen

ausgeführt werden.
Im grau markierten Zustand einnehmend

des Prozesses Einnehmer in Bild 4 sind für
das Ereignis Muenze zwei Transitionen

möglich (Nondeterminismus). Durch
entsprechende Bedingungen des zugeordneten
Switch swl wird das Prozessverhalten

eindeutig. Die Bedingungen eines solchen
Switch können von den Daten des Ereignisses

und den Werten der eigenen Variablen
sowie von den Zuständen und Variablen
anderer Prozesse desselben Clusters abhängen

(siehe Zustandsinspektion).
Variablen, Datentypen, Operationen und

Bedingungen werden in CIP in der

Programmiersprache C oder C++ formuliert.

Die Code-Fragmente werden im
generierten C-Code «inline» eingebunden. Vom
theoretischen Standpunkt aus wäre es schöner,

eine eigene funktionale Sprache zu
verwenden. In der Praxis hat sich jedoch die
Nützlichkeit des pragmatischen Ansatzes
mit ANSI-C bzw. C++ eindeutig bestätigt,
erlaubt er doch problemlos Funktionen,
Datentypen und Objektklassen bestehender
Bibliotheken zu verwenden.

Eingebettete Systeme haben im
allgemeinen einen hybriden Charakter, indem
die Erfassung des Anlageverhaltens teils
über diskrete Sensoren, teils durch
quasikontinuierliche Abtastung erfolgt. Für die

Regelung der abgetasteten Vorgänge werden

in CIP datentragende Abtastereignisse
und Stellaktionen verwendet; die
regeltechnischen Algorithmen werden in Operationen

der aktivierten Transitionen ausgeführt.

Interaktion: Synchrone
Pulsübertragung, Zustandsinspektion

Die synchrone Übertragung von Pulsen

wird als Interaktion bezeichnet. Durch ein

Interaktionsnetz (Bild 5) wird spezifiziert,
zwischen welchen Prozessen Pulse

übertragen werden können.
Die Struktur des Interaktionsnetzes

schränkt die möglichen Pulsübertragungsketten

jedoch zuwenig ein, da im allgemeinen

zyklische Übertragungswege möglich
sind. Damit diese Kettenreaktionen eindeutig

und beschränkt definiert sind, muss für
jeden Prozess, der Ereignisse oder Meldungen

erwartet, die durch ihn aktivierbare
Prozesskaskade definiert werden. Eine
Kaskade ist ein baumartiges Subnetz des

Interaktionsnetzes, in welchem der oberste
Prozess durch einen externen Input aktiviert
wird. Erzeugt ein in einer Kaskade aktivierter

Prozess keinen Puls oder erwartet ein

Empfänger einen erzeugten Puls nicht, so

bricht die Ausführung der Kaskade in
diesen Knoten ab.

Wie bereits erwähnt, können die

Bedingungen einer Transitionsstruktur direkt von
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PROCESS Einnehmer

verkauft
bedient
Auswurf

*
BetragErhalten

OH

abbruch

kAuswurf

Muenze
start

unbeschaeftigt einnehmend

EVENTS
Muenze: tWert

INPULSES
abbruch
verkauft: tWert

OUTPULSES
Start
bezahlt
bedient

ACTIONS
Auswurf: tWert

VARIABLES
betrag: tBetrag

OPERATIONS
op1 {SELF.betrag IN.wert;}
op2 {SELF.betrag SELF.betrag + IN.wert;}
op3 {ACTION.wert SELF.betrag;}
op4 {ACTION.wert SELF.betrag - IN.wert;}

SWITCH sw1

CONDITION einnehmend
(SELF.betrag + IN.wert < Auswahl.preis())

CONDITION BetragErhalten
ELSE

USER TYPES
typdef int tBetrag;

typedef struct{
int wert;

JtWert;

Bild 4 Prozess Einnehmer eines Verkaufsautomaten
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den Zuständen und Variablen anderer
Prozesse desselben Clusters abhängen. Der

Lesezugriff auf die Daten eines anderen
Prozesses wird als Zustandsinspektion
bezeichnet und erfolgt wie in objektorientierten

Modellen über Zugriffsfunktionen
(read-only methods) des inspizierten
Prozesses. Die gelieferte Information bezieht
sich immer auf die Zustände und Variablenwerte

unmittelbar vor der aktuellen Cluster-

aktivierung. Im Gegensatz zur Pulsübertragung,

bei welcher sowohl Sender wie

Empfänger aktiv an der Übertragung
teilnehmen, wird bei einer Inspektion der

inspizierte Prozess nicht aktiviert.
Durch Zustandsinspektion entsteht eine

weitere Abhängigkeit zwischen Prozessen,
die im Interaktionsnetz durch Verbindun¬

gen mit Diamanten grafisch deklariert
werden (Bild 5). Die Pfeile geben die

Richtung des Datenflusses an.

Kommunikation: Asynchrone
Übertragung von Meldungen

Die Informationsübertragung zwischen
Prozessen verschiedener Cluster wird
durch asynchrone Kommunikation mittels
Datenströmen spezifiziert, wobei auch

Prozesse desselben Clusters mit Datenströmen

verknüpft werden können. Datenströme
sind sequentielle Meldungspuffer und
modellieren das Kommunikationsmedium des

verteilten Systems. Wie bei der Interaktion
wird die Datenflussstruktur durch ein grafisches

Netzmodell spezifiziert. Die
kommunizierenden Prozesse werden dabei über

Outports und Inports mit Datenströmen

verknüpft. Für jeden Outport und Inport
werden Meldungen definiert, die in
Prozesstransitionen geschrieben und gelesen
werden können.

Moderation: Verhaltensstrukturierung
Durch verschiedene Modi können für

einen Prozess verschiedene Verhaltensmuster

definiert werden. Jeder Modus wird
durch eine Transitionsstruktur wie in
Bild 4 beschrieben, welche die Zustände,

Ereignisse, Pulse, Aktionen und Meldungen

des Prozesses verwendet.
Der aktive Modus eines Prozesses definiert

das aktuelle Prozessverhalten. Durch
eine weitere Transitionsstruktur (Moderator)
auf den Modi des Prozesses wird spezifiziert,
wie das Verhalten des Prozesses gewechselt
werden kann. Modustransitionen werden
durch spezielle Pulse erzeugt. Bei einer
Modustransition bleibt der aktuelle Prozess-

zustand erhalten; es ist jedoch möglich, in
einer Modustransition einen Trigger
abzusetzen, der im neuen Modus sofort einen

ersten Zustandsübergang erzeugt.
Die Strukturierung des Prozessverhaltens

durch verschiedene Modi hat sich
bewährt; es lassen sich damit die direkte

Beeinflussung eines Prozesses von der

Beeinflussung des Verhaltens separieren.
Das Strukturierungsmittel erlaubt, auf
einfache Weise die Komplexität reaktiver
Systeme durch Verhaltenshierarchien in
den Griff zu bekommen.

Umgebungsorientierter
objektbasierter Entwicklungsansatz

Mit Operationellen Spezifikationsformalismen

wird automatisch in einer definierten

Abstraktionsebene gearbeitet. Zusätzlich

zu solchen «Leitplanken» sollte eine
Methode für den Entwicklungsprozess ein
konzeptuelles Modell vorschlagen, mit
welchem in nachvollziehbaren Schritten
verständliche Lösungen gefunden werden
können. Ein «richtig laufendes System» ist
noch kein Garant für Qualität. Entscheidend
ist, dass eine Strukturierung gefunden werden

kann, die auch einen sicheren Unterhalt
des Systems ermöglicht.

Bei der operationeilen Spezifikation mit
der CIP-Methode wird vom Verhalten der
realen Objekte der Systemumgebung
ausgegangen. Der Ansatz stammt aus der JSD-
Methode (Jackson System Development)
[5] und wird auch in den neueren
objektorientierten Analysemethoden angewendet.
Das realitätsorientierte Vorgehen führt zu
verständlichen Systemen, was sich unmittelbar

auf Qualitätsmerkmale wie Zuverlässigkeit,

Wartbarkeit und Änderungsfreundlichkeit

auswirkt.

MODERATOR

m1

MODES

m2

m3

m3 3*Q
m2

£
m1 o-* -+-0

I y
& <o

HO

K3

Bild 6 Drei Modi mit
Moderator
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Bild 7 Entwicklungsphasen der CIP-Methode
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Bild 8 Anlage des Fallbeispiels

Wir beschreiben in diesem Beitrag die

Modell- und die Funktionsphase für die

Entwicklung eines einzigen Clusters (Bild 7).

Bei Systemen mit mehreren Clustern käme
noch eine Entwicklungsphase für die globale
Kommunikation dazu.

Modellphase
Als erste Komponenten eines CIP-

Systems spezifiziert man pro Objekt der

Umgebung einen sogenannten Modellpro-
zess, welcher die Sensorsignale des Objektes

als Ereignisse empfängt und durch Aktionen
entsprechende Aktorsignale erzeugen kann.
Die Transitionsstrukturen dieser Prozesse

beschreiben, in welchen Folgen Ereignisse
auftreten und Aktionen erzeugt werden
können (sequentielle Protokolle). Das
spezifizierte System enthält so explizite Modelle,
die das gültige Verhalten der Anlageteile aus

der Sicht des eingebetteten Systems definieren.

Die Modellprozesse bilden damit die

Grundlage für die Entwicklung der reaktiven
Funktionalität des Systems.

Funktionsphase
In der zweiten Entwicklungsphase wird

das Gesamtverhalten des eingebetteten
Systems spezifiziert. Dazu werden
Funktionsprozesse eingeführt und mittels
Pulsübertragung und Statusinspektion die

notwendigen Abhängigkeiten zwischen den

Modellprozessen definiert. In einem ersten
Schritt entwickelt man die primäre Funktionalität

des Systems, die sich auf das durch
die Modellprozesse definierte Normalverhalten

abstützt. Damit auch auf ungültiges
Verhalten der Umgebung und auf
Übertragungsfehler reagiert werden kann, müssen

meistens in weiteren Schritten die Strukturen

der Modellprozesse erweitert und

Überwachungsprozesse eingeführt werden. Wie
die Erfahrung zeigt, gehört die Spezifikation

des Systemverhaltens für den Fehlerfall
zu den schwierigsten Problemen bei der

Entwicklung robuster und sicherer Systeme.
Ohne explizites Modell des Normalverhaltens

kann diese Aufgabe meist gar nicht oder
zumindest nicht befriedigend gelöst werden.

Ein weiterer Vorteil des kompositioneilen
Ansatzes zeigt sich, wenn Änderungswünsche

realisiert werden müssen.
Modelle der realen Umgebung werden sich in
den meisten Fällen als stabiler erweisen, als

eine durch funktionale Dekomposition
gefundene Systemstruktur, die auf einem

speziellen Katalog funktionaler Anforderungen

basiert.

Kleine Anwendung

An einem einfachen Beispiel werde'n die

Entwicklungsschritte der CIP-Methode
erläutert. Die resultierende Spezifikation be¬

Bild 9 Modellprozesse
mit Ereignissen und

Aktionen
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Bild 10 Interaktionsnetz und Kaskaden

schreibt formal vollständig die synchrone
Kooperation von drei ClP-Prozessen. Die
algorithmischen Anforderungen in diesem

Beispiel sind trivial, das heisst, die Prozesse
haben keine Variablen, führen keine Operationen

aus und es werden keine Daten

übertragen.

Anlagebeschreibung
Die Anlage besteht aus einem Förderer

und einer Lichtschranke, mit der die maximal

erlaubte Höhe des Förderguts
überwacht werden soll (Bild 8). Die Belegung
des Förderers kann Uber einen digitalen
Belastungssensor erfasst werden. Der Licht¬

sensor der Lichtschranke meldet, ob der
Lichtstrahl empfangen wird. Der Motor
des Förderers und die Lichtschranke
können elektronisch ein- und ausgeschaltet
werden.

Anforderungen
Wenn der Förderer belegt wird, sollen der

Motor und die Lichtschranke eingeschaltet
werden. Bei unterbrochener Lichtschranke
darf der Motor des Förderers nie laufen. Ist

der Förderer während 30 Sekunden unbelegt,

so sollen Förderer und Lichtschranke
wieder ausgeschaltet werden.

In der folgenden CIP-Spezifikation
wurde folgende Schreibregel angewendet:
Die Namen der Prozesse, Ereignisse und
Aktionen beginnen immer mit einem
Grossbuchstaben, die Namen der Zustände
und Pulse dagegen sind klein geschrieben.

Modellphase
In der Modellphase werden für den

Förderer und die Lichtschranke Modellpro-

PROCESS Controller
aktivUnbelegt

belegt frei

StopTirr SetTim

belegt
fr- start

inaktiv aktivBelegt

PROCESS Foerderer

belegtFahrend

stop alarm

MotAus MotAus

Belegt
belegt
MotEin

WO
unbelegtGestoppt

alarm ok

MotAus MotEin

Frei
frei

Belegt
belegt belegtGestoppt

PROCESS Lichtschranke
einVerbunden

stop

LS_Aus Dunkel Hell
alarm ok

einünterbrochen

INQUIRY

int hatVerbindung(
{return (STATUS.STATE einVerbunden);}

Legende:

0
Anfangszustand

SWITCH sw1

CONDITION belegtFahrend
Lichtschranke.hatVerbindung(

CONDITION BelegtGestoppt
ELSE

Bild 11 Vollständige
Transitionsstrukturen

38 Bulletin ASE/UCS 21/95



Eingebettete Systeme

Zur Projektgeschichte von CIP

Die ersten Ansätze zur CIP-Methode sind 1989 an der Software-Schule Schweiz in
Bern entstanden. Anschliessend sind in einem dreijährigen KWF-Projekt (Kommission

zur Förderung der wissenschaftlichen Forschung, Projekt-Nrn. 2112, 2268) am
TIK der ETH Zürich die formalen Grundlagen der Methode ausgearbeitet und ein

erstes Spezifikationswerkzeug entwickelt worden. Das KWF-Projekt wurde vom
Bund, von der Industrie (Ascom Autelca, EPS, Hasler-Stiftung, Landis & Gyr,
Securiton) und von der durch die Projektgruppe gegründeten Firma CIP System AG

getragen. Die Tauglichkeit der Methode und des Werkzeuges ist in Pilotprojekten der
industriellen Projektpartner eindrücklich bestätigt worden. In der Folge hat die CIP

System AG das Resultat des KWF-Projektes zum kommerziellen Produkt CIP Tool
weiterentwickelt. Das Werkzeug wird bereits im Unterricht (ETH Zürich, NDIT/FPIT,
HTL Bern, Biel und Rapperswil) sowie in verschiedenen industriellen Projekten
eingesetzt. Seit Herbst 1994 besteht eine Zusammenarbeit mit der Firma Zühlke

Engineering AG, die als Kompetenzzentrum für die CIP-Methode Grundkurse und

projektbegleitende Unterstützung anbietet.

Die CIP-Methode wird in verschiedenen Richtungen weiterentwickelt. Die

geplanten Forschungsarbeiten an der ETH Zürich betreffen die formale Modellierung
von Verhaltenshierarchien, die Codegenerierung für Multiprozessorsysteme und die
formale Verifikation von Systemeigenschaften.

zesse (Bild 9) mit Ereignissen und Aktionen

spezifiziert.
Der Belastungssensor erzeugt die Ereignisse

Belegt und Frei für den Prozess

Foerderer, der mit den Aktionen MotEin
und MotAus den Motor steuern kann. Der
Lichtsensor erzeugt die Ereignisse Flell und

Dunkel für den Prozess LichtSchranke. Mit
den Aktionen LS_Ein und LS_Aus kann
dieser die Lichtschranke ein- und
ausschalten.

Die Struktur des Prozesses Foerderer
enthält eine nondeterministische Verzweigung:

Beim Belegen des gestoppten Förderers

hängt die Reaktion des Modellprozesses

vom Zustand der Lichtschranke ab. Dies
wird durch zwei verschiedene Transitionen
für das Ereignis Belegt ausgedrückt, beide

ausgehend vom grau markierten Zustand

unbelegtGestoppt.
Die Struktur des Prozesses LichtSchranke

berücksichtigt, dass nach dem Einschalten

als erstes das Ereignis Flell auftritt.

Funktionsphase
In der Funktionsphase wird zusätzlich

der Steuerprozess Controller eingeführt,
der für die Aktivierung und Deaktivierung
des Fördersystems verantwortlich ist

(Bild 11). Der Prozess benützt einen externen

Timer, der mit den Aktionen SetTim
und StopTim gesetzt und gestoppt werden
kann. Mit dem Ereignis TimeUp meldet
sich der abgelaufene Timer zurück. Interne
Timer stehen in CIP ebenfalls zur
Verfügung.

Alle drei Prozesse bilden einen einzigen
Cluster. Das geforderte Verhalten des

Systems entsteht durch gezielte Pulsübertragung.

Durch das Interaktionsnetz (Bild 10)

wird festgelegt, zwischen welchen Prozessen

Pulse übertragen werden dürfen. Die

Verbindung mit dem Diamanten definiert
zudem, dass der Prozess Foerderer den

Prozess LichtSchranke inspizieren kann.
Beim Entwickeln der Kaskaden haben

folgende Szenarien eine Rolle gespielt:

a. Die Ereignisse Belegt und Frei des

Förderers werden dem Controller gemeldet,

der dafür sorgt, dass die Lichtschranke

eingeschaltet wird, und der den Timer
für das Ausschalten setzt.

b. Die Ereignisse der Lichtschranke müssen

eine Wirkung auf den Förderer haben

können.

c. Wenn der Timer des Controllers abläuft,
müssen Förderer und Lichtschranke
ausgeschaltet werden.

Welche Pulse wann übertragen werden,
ist in den vervollständigten Transitionsstrukturen

der Prozesse definiert (Bild 11).

Die nondeterministische Verzweigung
für das Ereignis Belegt im Zustand
unbelegtGestoppt des Prozesses Foerderer wird
durch den zugeordneten Switch swl
eindeutig ausführbar. Die Bedingung für
den Folgezustand BelegtFahrend enthält
den Aufruf der Funktion hatVerbindung(),
welche Information aus dem aktuellen
Kontext des Prozesses LichtSchranke
liefert (Zustandsinspektion).

Das Verhalten des Systems ist durch die
zeitliche Folge der auftretenden äusseren

Ereignisse bestimmt. Durch ein Ereignis
eines Prozesses wird die entsprechende
Prozesskaskade ausgeführt. Ein möglicher
Ablauf des Systems (Trace) könnte mit
folgenden drei Clustertransitionen beginnen:

Ereignis Belegt für Foerderer -> Zustand belegtGestoppt

- Puls belegt für Controller -> Zustand aktivBelegt

- Puls start für LichtSchranke -> Zustand einUnterbrochen,
Aktion LS_Ein

Ereignis Hell für LichtSchranke -> Zustand einVerbunden

- Puls ok für Foerderer -> Zustand belegtFalirend,
Aktion MotEin

Ereignis Frei für Foerderer -> Zustand unbelegtFahrend

- Puls frei für Controller -> Zustand aktivBelegt,
Aktion SetTim
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CIP - une méthode formelle de

développement pour des systèmes
de commande de processus

CIP est une méthode formelle de développement qui permet de spécifier des systèmes
de commande de processus exécutables à l'aide de modèles graphiques. L'approche
méthodologique part du comportement des objets réels de l'environnement et mène pas
à pas de façon constructive à une spécification exécutable du système. Avec l'outil de

spécification CIP Tool, ses éditeurs graphiques et générateurs de code C, la méthode

s'applique en pratique de manière efficace.

Après une introduction à l'approche opérationnelle appliquée aux systèmes de

commande de processus, l'article présente le formalisme graphique de CIP. Puis, on

explique le processus de développement proposé par CIP. Un exemple complet illustre
la théorie.
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Kompaktstationen

TRETEN SIE MAL
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Bitte einzutreten: Mit unserer begehbaren Kompaktstation

T 85 wird bei der Wartung die Tür zum Dach. So

sparen Sie teure Aufstellfläche, die Sie bisher zum Offnen

der Türen einplanen mussten. Und mit einer Bauhöhe über

Terrain von nur 1 m sorgt diese unauffällige Station für

freies Blickfeld an Kreuzungen und vor Wohnfenstern. Die

T 85 ist eine unserer vier Kompaktstationstypen, mit denen

Sie viele Ihrer Planungs- und Versorgungsaufgaben lösen.

Alle Stationsgeometrien sind fugenlos aus einem Guss

fabrikgefertigt nach System Betonbau, bestehen aus

100 mm Stahlbeton B35, bieten vorbereitete BBK-Kabel-

durchführungen und sind optisch perfekt anpassbar an Ihre

jeweilige Bauumgebung. Eines unserer vier Werke ist in

Ihrer Region. Nähere Informationen bei Betonbau GmbH,

Postfach 1161, 68743 Waghäusel,

Tel. (0 72 54) 9 80 - 4 01, Fax (0 72 54) 9 80 - 4 19.
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PKG
Paritätische Krankenversicherung
für Branchen der Gebäudetechnik
Postfach 272
3000 Bern 15

Telefon 031 / 350 24 24
Telefax 031 / 350 22 33

PS: PKG - die Krankenversicherung der
Verbände SSIV, VSEI, VSHL und SMUV
mit mehr als 900 angeschlossenen Firmen.
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