Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des

Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de l'Association suisse des électriciens, de l'Association des entreprises

électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer

Elektrizitätsunternehmen

Band: 85 (1994)

Heft: 15

Artikel: Les polymères conducteurs : une nouveauté prometteuse : le

développement de polymères conducteurs intrinsèques ouvre de

nouvelles applications aux matières plastiques

Autor: Fiorucci, David

DOI: https://doi.org/10.5169/seals-902575

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Des progrès considérables ont été réalisés au cours des dernières années en matière de polymères conducteurs, obtenus grâce à la modification par dopage de la chaîne de certains polymères. On évite ainsi, pour la réalisation de plastiques conducteurs, les charges importantes, par exemple de noir de carbone, qui dégradent les qualités mécaniques du matériau. Suivant les procédés de préparation utilisés, les produits obtenus présentent des propriétés électriques, magnétiques et optiques différentes mais souvent remarquables. Leurs applications sont déjà nombreuses, et certaines ne sont pas connues, pour cause de secret industriel ou militaire. Le marché correspondant semble devoir se développer très rapidement.

Les polymères conducteurs – une nouveauté prometteuse

Le développement de polymères conducteurs intrinsèques ouvre de nouvelles applications aux matières plastiques

David Fiorucci

Tout le monde connaît les matières plastiques utilisées pour fabriquer la plupart des objets qui nous entourent. Ce sont de très bons isolants électriques. Cependant, de simples modifications de matières plastiques ont récemment transformé d'excellents isolants en excellents conducteurs, alliant les propriétés électriques des métaux aux avantages qui avaient suscité l'engouement pour les plastiques dans les années 1930.

Les plastiques conducteurs de l'électricité sont parfois dénommés «polymères conducteurs intrinsèques» (PCI), cela pour éviter toute confusion avec les plastiques

rendus conducteurs par une charge de particules conductrices de carbone ou de différents métaux. L'avantage des polymères conducteurs est d'obtenir les mêmes propriétés électriques avec une charge de 1 à 5%, qu'avec 20 à 40% de noir de carbone. Il en résulte naturellement une bien meilleure qualité mécanique du composite obtenu.

Les polymères dont le squelette contient un grand nombre d'électrons π conjugués présentent des propriétés électroniques tout à fait intéressantes, qui les distinguent des polymères classiques. Il n'est pas interdit de penser que ces nouveaux matériaux prendront dans l'avenir une place aussi importante que les plastiques traditionnels. De nombreux industriels ne s'y trompent pas et investissent largement dans les domaines de recherche correspondants.

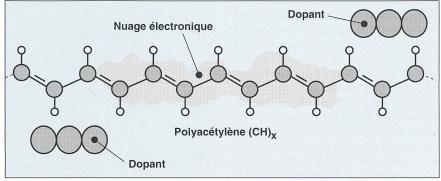


Figure 1 Délocalisation des électrons dans une chaîne de polyacétylène

Cette vue d'ensemble des polymères conducteurs fut présentée dans le cadre d'une journée ETG qui eut lieu le 9 novembre 1993 à Boudry NE.

Adresse de l'auteur:

David Fiorucci, Ing.-chimiste ETS, Laboratoire d'Essais des Matériaux, Câbles Cortaillod S.A., 2016 Cortaillod.

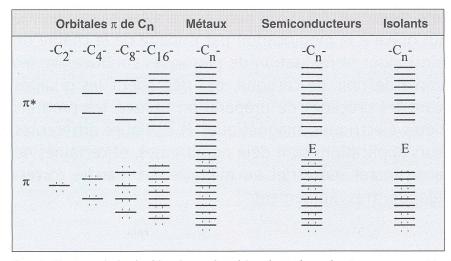


Figure 2 Diagramme des bandes d'énergie pour des polyènes de grandeur croissante

- π^* orbitales moléculaires formant la bande de conduction
- π orbitales moléculaires formant la bande de valence
- E manque énergétique

La conductivité électrique des polymères

Les polymères conducteurs sont en général constitués d'une succession de simples et de doubles liaisons. Un modèle du genre, probablement le plus simple, est le polyacétylène (CH)_x (fig. 1). Les propriétés de ces matériaux sont liées à:

- la présence de transitions optiques de faibles énergies
- un faible potentiel d'ionisation
- parfois une grande affinité électronique.

En conséquence, ces polymères peuvent être oxydés ou réduits (on dit aussi dopés) de façon relativement réversible. Un anion ou un cation (dopant) s'insère dans le polymère, qui passe de l'état d'isolant à l'état de conducteur à caractère métallique. Ce dopage a pour effet de diminuer l'écart qui existe entre la bande de valence et celle de conduction dans le diagramme énergétique du matériau (fig. 2). Le remplissage électronique des différents niveaux est à l'origine, avec le dopage, de la conductibilité du polymère.

Les polymères conducteurs électroniques sont actuellement un sujet de recherche majeur, au niveau fondamental comme au niveau des applications potentielles. La compétition est rude, car les implications commerciales sont considérables. Il faut dire que depuis deux ans de nombreux progrès ont été obtenus dans le sens d'une plus grande facilité de mise en œuvre. Auparavant en effet, la plupart de ces matériaux étaient insolubles et infusibles. Maintenant, on sait obtenir des solutions ou des suspensions stables de polymères conducteurs, et certains ont pu être fondus à des températures inférieures à 100 °C.

Qu'est-ce que le dopage?

Dans le cas des polymères conducteurs, le terme de dopage n'est pas assimilable à celui connu en électronique. L'étude des polymères conducteurs a été à l'origine de l'introduction par les physiciens de nouveaux concepts (fig. 3):

- solitons neutres (défauts radicalaires neutres)
- solitons chargés (cations)
- polarons (radicaux cations)
- bipolarons (dications).

En effet, dans un dopage classique, les éléments dopants apportent ou enlèvent des électrons selon que l'on a un dopage n ou p. Dans le cas de PCI, l'anion crée avec le polymère de nouvelles espèces, chargées ou non («défauts»), possédant une mobilité accrue et pouvant se déplacer grâce à la conjugaison des simples et doubles liaisons (analogie avec un tapis roulant). De plus ces espèces ont la possibilité de passer d'une chaîne à l'autre du polymère. Elles présentent généralement toutes un très haut

degré de délocalisation sur la chaîne du polymère (fig. 1).

Le point de départ de ce type de matériaux a été la découverte du dopage de films de (CH)_x en 1977 grâce à l'action d'accepteurs ou de donneurs d'électrons, conduisant à des films présentant une conductivité d'environ 1000 S/cm. Depuis de gros progrès ont également été réalisés sur ce matériau; la conductivité des fibrilles du polyacétylène a été portée à environ 500 000 S/cm, ce qui lui confère une conductivité voisine de celle du cuivre.

La réalisation du dopage électrochimique de films de (CH)_x a provoqué une véritable explosion de travaux de recherche sur ce matériau, en raison de sa possible application à des batteries rechargeables. Malheureusement, le polyacétylène reste toujours un matériau très instable, qui ne peut être manipulé que dans une atmosphère inerte, c'est-à-dire en absence d'oxygène et d'eau.

Domaine de conductivité

Il existe cependant d'autres polymères conducteurs qui présentent une stabilité tout à fait convenable. Le deuxième matériau étudié a été le polyparaphénylène (en 1979), qui peut également être dopé jusqu'à un haut degré de conductivité. Ensuite, de nombreux polyaromatiques (polymères formés de structures cycliques conjuguées) contenant ou non des hétéroatomes (atomes autres que le carbone C; c'est-à-dire: azote N, oxygène O, soufre S, etc.) ont été étudiés, et en particulier le sulfure de polyparaphénylène, le polypyrrole, le polythiophène, la polyaniline, etc. Le domaine de conductivité en fonction du taux de dopage de quelques-uns de ces polymères est représenté sur la figure 4.

Il y a lieu de signaler que le polypyrrole et la polyaniline ont déjà été étudiés en France dès 1965 et en Italie pour le polypyrrole dès 1966. Un travail remarquable avait été fait, mais il n'a pas eu le retentissement mérité, probablement parce que les auteurs étaient en avance sur leur temps!

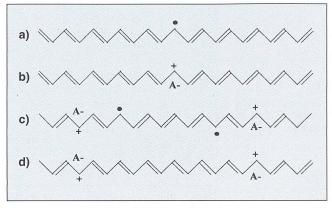


Figure 3 Représentation du polyacétylène et des «défauts» qu'il peut comporter

- a soliton neutre
- b soliton chargé (cation)
- c polarons (radicaux cations)
- d bipolarons (dications formés par combinaison de deux polarons)
- A_ représente l'anion dopant

Modes de préparation

Les modes de synthèses des polymères conducteurs peuvent être classés en différents types, dont les méthodes classiques de polymérisation et les oxydations chimiques ou électrochimiques des monomères. La méthode d'oxydation se distingue des autres par le fait qu'elle conduit directement à un matériau à l'état dopé (p) conducteur. Le choix de l'oxydant et du solvant sera alors déterminant pour les propriétés du polymère (fig. 5).

La réaction de dopage se traduit généralement par des modifications importantes de la chaîne du polymère. Il a été montré que la chaîne du polymère conducteur électronique peut être greffée par divers groupements ayant des propriétés spécifiques. Ces groupements peuvent être: des couples redox, des groupes à activité biologique (enzymes), des porteurs de spins, etc. Il est aujourd'hui possible, grâce aux progrès effectués, de réaliser facilement des composites interpénétrés avec la plupart des polymères classiques connus, de réaliser des films très minces et transparents, voire des dépôts présentant des profils de concentration, donc de conductivité.

Propriétés physiques et électrochimiques des PCI

Propriétés électrochimiques

Le polypyrrole

Le polypyrrole (fig. 6) peut être préparé par voie électrochimique sous forme de film, par oxydation du pyrrole dans divers solvants, y compris dans l'eau. L'épaisseur du film est directement proportionnelle au nombre de coulombs qui traversent le circuit. On obtient un film noir et conducteur à l'état dopé, et jaune et isolant à l'état réduit. Ce film, déposé sur une électrode (fig. 5), peut donc être oxydé et réduit réversiblement. Le polypyrrole peut également être préparé facilement par oxydation chimique grâce, par exemple, au chlorure ferrique. On obtient alors un matériau pulvérulent qui a l'aspect du noir de carbone. Si la solution renferme un autre matériau dissous, on obtiendra un composite interpénétré. Si la solution renferme un solide, par exemple un morceau de textile de verre ou une pièce de PVC, le polypyrrole se déposera de préférence sur le solide. On obtiendra ainsi un textile dont toutes les fibres seront devenues conductrices, ou une pièce de PVC dont la surface sera devenue également conductrice.

La polyaniline

D'un comportement plus complexe, la polyaniline est un polymère conducteur

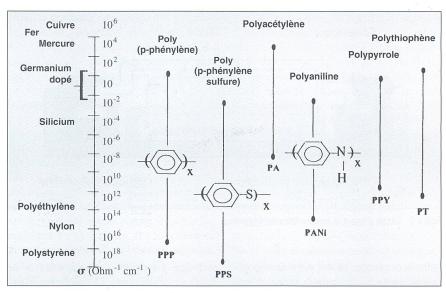


Figure 4 Conductivité électrique de polymères conducteurs

Domaine de conductivité accessible par dopage des quelques polymères conducteurs, par comparaison avec les matériaux classiques

stable à l'état dopé. Une étude détaillée a démontré qu'un dépôt en film sur différents métaux permet l'obtention d'une protection anticorrosion efficace. Sa structure et le fait qu'elle est conductrice permettent que les électrons, qui normalement sont source de corrosion, se répartissent en surface sur le polymère conducteur et n'influencent donc plus le processus de corrosion.

Propriétés physiques

Optique

Le polypyrrole peut être déposé sur une électrode optiquement transparente, réalisée par un dépôt d'oxyde d'indium sur du verre (ITO). Cela permet, grâce à une cel-

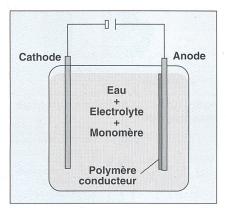


Figure 5 Schéma d'une électropolymérisation

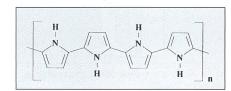


Figure 6 La chaîne du polypyrrole

lule spectroélectrochimique travaillant par transmission, d'obtenir des informations sur les spectres du film en fonction de l'état d'oxydation ou de dopage. C'est par de telles expériences que l'on a mis en évidence la faisabilité d'applications des polymères conducteurs dans le domaine de l'affichage et des fenêtres électrochromes.

Conductivité

Les mesures de conductivité des polymères conducteurs sont naturellement le critère de base pour l'étude de ces matériaux. Les paramètres qui peuvent intervenir sont structuraux, mais la nature des ions dopants et par conséquent des conditions de préparation sont également déterminantes. Dans ce domaine, il s'agit souvent de secrets de laboratoire qui sont jalousement gardés.

Polythiophène, polyparaphénylène et autres polymères

Le polythiophène est l'un des polymères conducteurs les plus étudiés. Il est en particulier envisagé sérieusement au Japon pour des systèmes d'affichage électrochrome. Il s'agit également ici de la reprise de résultats qui avaient été décrits en France et en particulier par un laboratoire du CNRS à Thiais.

Récemment, des résultats très intéressants ont été publiés sur des dérivés du polythiophène, dont le poly(octyl-3 thiophène), qui peut être solubilisé dans un grand nombre de solvants et qui peut être fondu à une température légèrement supérieure à 100 °C.

Enfin, il existe de nombreux autres polymères conducteurs. On peut espérer

Matières plastiques

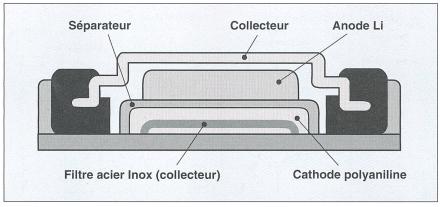
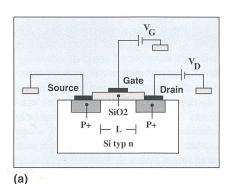


Figure 7 Coupe d'une pile bouton lithium/polyaniline

qu'un jour certains de ces polymères pourront présenter des propriétés supraconductrices à basse température, voire à température ambiante; en effet, les diverses théories sur les modes de conduction se recoupent parfois (polarons, solitons).

Applications des PCI

Les énormes possibilités d'applications dans de nombreux domaines scientifiques et techniques passionnent les chercheurs qui étudient les polymères conducteurs. Beaucoup d'applications ne sont d'ailleurs pas encore connues et vont paraître à me-


sure que les études fondamentales et de R&D se développent. De nouveaux polymères de base mais aussi des alliages avec les matériaux les plus divers vont également apparaître. Certaines applications sont du domaine du secret industriel, voire militaire. Voyons, parmi celles du domaine public, quelles sont les plus connues, dans un ordre qui pourrait être celui de la faisabilité.

Applications déjà commercialisées

Générateurs électrochimiques: Il s'agit de générateurs électrochimiques dont les éléments sont les suivants: électrode positive en polyaniline, électrode négative en lithium-aluminium et électrolyte à base de carbonate de propylène et d'un sel de lithium [1, 2]. Il s'agit d'une batterie 3 V de type bouton destinée à l'électronique et à l'informatique (fig. 7). Pour le moment, il n'est pas question d'utiliser ce genre de couple électrochimique pour l'automobile, car les puissances sont limitées. En effet, la densité de courant peut difficilement dépasser 5 mA/cm², et l'énergie volumique n'atteint pas les 100 Wh/l. En revanche l'énergie massique est intéressante (100 Wh/kg) et l'autodécharge reste très faible, avec un comportement d'autant plus satisfaisant que la température est supérieure à la température ordinaire. Plus de 100 000 de ces batteries de type bouton sont vendues tous les mois au Japon, au prix de 3 \$ la pièce.

Aviation: Une deuxième application des polymères conducteurs est utilisée à une grande échelle: il s'agit encore de polyaniline, sous forme de peinture, pour modifier la signature radar des avions militaires. Dans un futur plus lointain, le but, dans l'aviation militaire et commerciale, sera de remplacer les conducteurs en cuivre (circuit électrique, fils, câbles, etc.) par des polymères conducteurs; le poids en serait diminué d'un tiers.

Protection antistatique et blindage EMI: Les polymères conducteurs prendront très certainement une importance considérable dans le domaine de la protection antista-

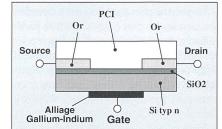


Figure 8 Transistor à effet de champs

- a Diagramme schématique d'un transistor à effet de champs conventionnel métal-isolantsemiconducteur (MISFET)
- b Transistor à effet de champs avec polymère conducteur intrinsèque (PCI)

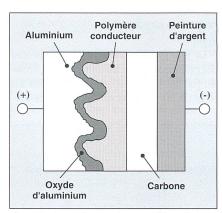


Figure 9 Coupe d'un condensateur électrolytique à base de polypyrrole

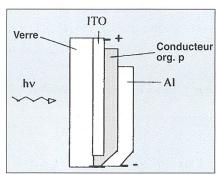
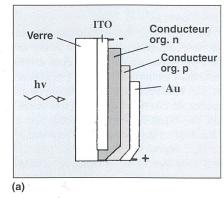



Figure 10 Structure d'une cellule photovoltaïque organique Schottky

Vue de coupe

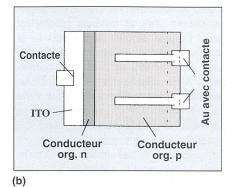
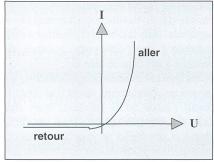
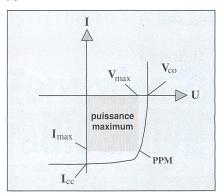



Figure 11 Structure d'une cellule photovoltaïque organique p–n double couche


- a Vue de coupe
- b Vue de face

(b)

Polymères conducteurs

(a)

. 42

Figure 12 Diagramme schématique d'une courbe courant/tension pour une photodiode

- Photodiode (p-n ou Schottky) dans le noir
- b Photodiode (p-n ou Schottky) sous illumination
- I Courant
- U Tension
- Icc Courant de court-circuit
- V_{co} Tension de circuit ouvert
- PPM Point de puissance maximum avec

 $V_{max} \cdot I_{max} = puissance de sortie maximale$

tique et pour le blindage contre les parasites électromagnétiques (EMI). En effet, la réalisation de matériaux conducteurs composites interpénétrés les plus divers est devenue une chose relativement facile grâce aux progrès qui viennent d'être réalisés au niveau de la mise en œuvre. D'après les spécialistes, les applications dans le domaine du blindage auront certainement les retombées commerciales les plus importantes. En effet, cela s'adresse au secteur de l'automobile, de l'aéronautique, de l'électronique et de l'informatique. Il y a un type de pollution atmosphérique dont personne ne parle, mais qui est considérable: il s'agit de tous les parasites d'origine électromagnétique produits par la plupart des appareils électriques. Cette pollution conduit à des gênes dans le domaine des transmissions et du bon fonctionnement des matériels informatiques. Différents domaines de l'électrotechnique pourront bénéficier, à plus ou moins court terme, de ces propriétés de blindage et d'écran (boîtiers, accessoires, câbles, etc).

Tissus métallisés: Certaines entreprises, suisses notamment, fabriquent en continu

divers tissus métallisés recouverts par voie électrochimique de polypyrrole et autres PCI. Que cela soit pour des écrans d'ordinateurs, des vêtements ou toute autre application, de tels tissus sont très prometteurs.

Futures applications

On sait maintenant préparer des polymères conducteurs en solution, on sait les évaporer sous vide et faire des synthèses en phase gazeuse. Ces nouveaux modes de mise en œuvre laissent penser que de nombreuses applications peuvent être réalisées par le dépôt de couches, par exemple transparentes, de polymères conducteurs sur les matériaux les plus divers. Il y a également un certain nombre d'applications en haute technologie qui nécessitent d'importants moyens de recherche.

Smart Windows: Il s'agit d'abord des procédés d'affichage et de fenêtres électrochromes. De nombreux PCI ont la particularité de changer de couleur suivant qu'ils sont dopés ou non; le polypyrrole, par exemple, passe du jaune (non dopé) au vert foncé (dopé). Plusieurs brevets relatifs à la polyaniline et à ses dérivés sont déposés.

Composants électroniques: Dans le domaine des composants électroniques actifs et passifs, beaucoup d'études sont en cours: résistances, diodes, transistors à effet de champ (FET) [3, 4] (fig. 8), supercapacités, condensateurs (fig. 9), écrans plats.

Cellules photovoltaïques: Dans le domaine de la conversion photovoltaïque (fig. 10–12), des résultats intéressants ont également été publiés [5]. Les rendements sont encore faibles, mais ce n'est qu'un début.

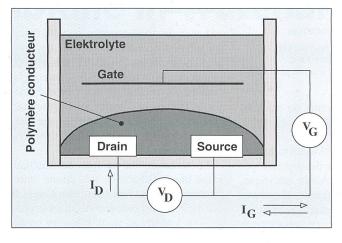


Figure 13 Représentation schématique d'un senseur électrochimique

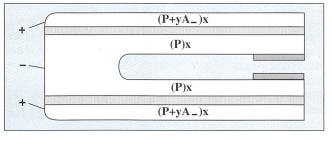
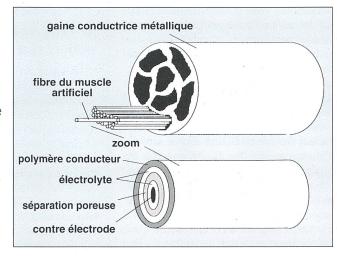



Figure 14 Micropince électrochimique

Elle est constituée de deux actuateurs bimorphes. Le transfert électrochimique du dopant de la couche externe à la couche interne de chaque bras provoque l'ouverture de la pince

Figure 15 Actuateur électromécanique semblable à un muscle naturel

Proposition d'un actuateur électromécanique ayant une structure semblable à celle d'un muscle naturel. Les fibres de polymères conducteurs provoquent les modifications dimensionnelles. Le travail résulte de l'expansion ou de la contraction des fibres suivant qu'il y a dopage ou dédopage électrochimique

Matières plastiques

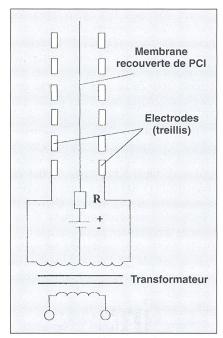


Figure 16 Haut-parleur électrostatique Illustration schématique d'un haut-parleur électrostatique utilisant une membrane avec 0,1 μm de polyaniline sur 6 μm de polyester

L'avantage est le faible coût du matériau par rapport au silicium, sa facilité d'emploi, sa légèreté, etc.

Capteurs: Un domaine également très prometteur concerne celui des capteurs spécifiques, utilisables en chimie analytique, en biologie (ex.: glucose, urée, glutamate) pour les gaz, le pH, les radiations, l'eau, les solvants, etc. La plupart de ces capteurs peuvent être réalisés sous forme de transistors à effet de champ (fig. 13, [6]).

Applications médicales: Une application très avancée en biotechnologie concerne des membranes à relargage contrôlé de principes actifs. Un grand nombre de ces applications très spécifiques sont liées aux propriétés des anions dopants A_ (fig. 3). Par exemple, il a été possible de préparer du polypyrrole dopé à l'héparine, ce qui a permis de réaliser des implants parfaitement compatibles avec le corps humain, ainsi que des nerfs artificiels pour reconnecter un membre désafférenté.

Actuateurs en microtechnique et muscles artificiels: Les PCI peuvent également intervenir dans la fabrication d'actuateurs pour des applications dans des microcircuits (micropinces, microvalves, etc.) [6]. Un exemple d'utilisation de polymère conducteur flexible est illustré dans le schéma d'une micropince (fig. 14). Chaque bras de la pince est constitué de couches de même polymère séparé électriquement par une couche adhésive d'un électrolyte solide. Le transfert électrochimique du dopant entre les couches du polymère conducteur permet la mise en œuvre de la pince. Par

exemple, en inversant le potentiel des électrodes, l'anion A_ passe de l'électrode externe à celle interne, ce qui ouvre la pince. Des chercheurs ont fabriqué des pinces électrochimiques de 200 µm sur 25 µm. Le principal avantage d'une telle pince est la faible tension nécessaire à l'opération, environ 1 volt, voire moins. Selon un principe identique, des chercheurs s'intéressent à la fabrication de muscles artificiels (fig. 15, [7]).

Applications diverses: Enfin citons en vrac des matériaux pour la catalyse chimique et électrochimique (piles à combustibles), des membranes pour haut-parleurs électrostatiques (fig. 16) - avec un polymère piézo-électrique (PVDF) entre deux couches de polypyrrole -, la protection contre la corrosion dans des cas très spécifiques, etc. [8].

Conclusion

Les études fondamentales et de R&D sur les polymères conducteurs ont fait des progrès considérables depuis dix ans, et surtout depuis trois ans en ce qui concerne la mise en œuvre. Des applications sont déjà sur le marché et d'autres vont apparaître très prochainement, y compris pour des produits destinés au grand public, dont certaines en électrotechnique.

La recherche sur ce type de matériau exige une collaboration très étroite entre fondamentalistes, chimistes, physiciens et industriels. C'est peut-être ce qui est le plus difficile à mettre au point. L'Europe prend du retard, bien que dans le nouveau programme Brite-Euram plusieurs dossiers concernant ces matériaux aient été déposés. La connaissance des polymères conducteurs électroniques progresse vite. Leur nombre va également croissant. Les applications effectives sont non seulement envisageables, mais la commercialisation a déjà commencé pour différentes gammes de produits à une échelle mondiale.

Malgré ces premières applications, les polymères conducteurs n'ont pas encore connu l'essor qu'ils méritent, mais aux vues des résultats obtenus par les chercheurs et des études de marché effectuées, un important potentiel leur est accordé, autant financièrement que pratique. Tout ceci se fera dans les cinq ans à venir, et peut-être même avant.

Littérature

générale: R. Kaner et A. Macdiarmid. Sci. Amer., 126 (1988) p. 60; Pour la Science, 126 (1988) p. 52

F. Garnier. La Recherche, 193 (1987) 1306.

E. M. Genies, M. Lapokowski et C. Tsintavis. New J. Chem., 12 (1988) p. 181; RGE, nº 11 (1989) p. 49.

[1] A. Techagumpuch, H.S. Nalwa, S. Miyata: in Electroresponsive Molecular Polymeric T.A. Skotheim, ed., Marcel Deker, New York, 1988,

[2] J. Gosch, Electronics, July 9, 1987, p. 41. Lithium-Polymer-Knopfzelle 2025. Product information sheet. H. Naarmann: BASF-Kunststoffe, Forschung und Entwicklung, Nov. 1986, p. 40. D. Naegele, R. Bittihn, Sol. State Ionics 1988, 28–30, 983.

[3] G. Horowitz: Organic Semiconductors for New Electronic Devices. Adv. Mater. 2 (1990) no 6/7, p. 287. [4] Schoch and Saunders: Conducting Polymers.

IEEE Spectrum, June 1992, p. 52.

[5] D. Wöhrle and D. Meissner: Organic Solar Cells. Adv. Mater. 3 (1991) no 3, p. 129.

[6] R. H. Baughman: Conducting Polymers in Redox Devices and Intelligent Materials Systems.

Makromol. Chem., Macromol. Symp. 51, 193-215. [7] T. Stevens, Materials Engineering, 108(#2)

[8] J. S. Miller: Conducting Polymers - Materials of Commerce. Research News / Molecular Materials VII**, Adv. Mater. 1993,5,000.

Elektrisch leitende Polymere eine vielversprechende Neuheit

Die Entwicklung intrinsisch leitender Polymere eröffnet neue Anwendungsmöglichkeiten für Kunststoffe

Im Laufe der letzten Jahre sind bei der Herstellung intrinsisch leitender Polymere (ILP) beachtliche Fortschritte erzielt worden. Die elektrische Leitfähigkeit bestimmter Kunststoffe wird dabei durch eine Dotierung der Molekularketten erreicht. Damit kann man den zahlreichen Füllstoffen (z. B. Russ) ausweichen, mit denen bisher Kunststoffe für bestimmte Anwendungen leitend gemacht wurden, welche dabei aber oft die mechanischen Eigenschaften des Materials verschlechterten. Je nach Herstellprozess besitzen intrinsisch leitende Kunststoffe unterschiedliche, technisch interessante elektrische, magnetische und optische Eigenschaften. Obwohl viele Anwendungsmöglichkeiten wegen industrieller oder militärischer Geheimhaltung noch nicht bekannt sind, werden andere bereits zahlreich genutzt. Der Markt für solche Anwendungen scheint sich sehr rasch zu entwickeln. – Eine deutsche Übersetzung dieses Artikels erschien im Bulletin 11/94.