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Energietechnik I Neuronale Netze

Elektroenergiesysteme werden dauernd mit Hilfe moderner Schutztechnik überwacht;
sie hat die Aufgabe, in einem Fehlerfall die betroffenen Teile rasch abzuschalten. Die
dabei zur Strommessung eingesetzten Messwandler unterliegen aber bei sehr hohen
Strömen Sättigungseffekten. Um eine Überfunktion zu verhindern, muss das Schutzsystem

die dabei auftretenden Signalverzerrungen mit aufwendigen Massnahmen

kompensieren. In einem Forschungsprojekt wurden Methoden entwickelt, welche
erlauben, mit einem neuronalen Netzwerk den tatsächlichen Strom aus dem verzerrten

Messsignal zu rekonstruieren. Das Netzwerk erreicht ohne genaue Kenntnis der
Wandler- und Systemparameter eine Rekonstruktionsqualität, welche den erfolgreichen

Einsatz in Schutzsystemen ermöglicht. Dadurch werden sowohl die Robustheit
erhöht als auch die Zuverlässigkeit des Schutzes gesteigert.

Neuronale Signalverarbeitung
für sicheren Schutz
Die Anwendung neuronaler Netzwerke auf das Problem der Sättigung von Stromwandlern

Adressen der Autoren:
Rico Cozzio, Dipl. Informatik-Ing. ETH,
ABB Forschungszentrum, 5405 Baden, und
Dr. David Peck, ABB Relays AG, 5401 Baden.

Rico Cozzio und David Peck

In der modernen Schutztechnik für
Elektroenergiesysteme ist es nötig, den Zustand
des Systems dauernd zu überwachen, um in
einem Fehlerfall die betroffenen Teile
schnell abschalten zu können. Zur Messung
der Ströme werden Messwandler eingesetzt;

es sind dies im wesentlichen zu
Messzwecken ausgelegte Transformatoren mit
Eisenkern. Bei sehr grossen Strömen ist es

solchen Messwandlern nicht mehr möglich,

den zu messenden Strom getreu
wiederzugeben, da Sättigungseffekte auftreten.
Das Schutzsystem erhält somit Messsignale,

die ein verzerrtes Abbild der tatsächlichen

Verhältnisse ergeben. Im Schutzsystem

müssen deshalb aufwendige
Massnahmen getroffen werden, um eine
Überfunktion zu verhindern. In einem

Forschungsprojekt wurden nun Möglichkeiten
untersucht, wie mit einem neuronalen
Netzwerk aus dem verzerrten Messsignal

der tatsächliche Strom rekonstruiert werden

kann. Das Netzwerk wurde dabei mit
einer Datenbank von simulierten Störfällen
trainiert, um die Rekonstruktion der
verfälschten Signale zu erlernen. Das Netzwerk

erreicht ohne genaue Kenntnis der
Wandler- und Systemparameter eine gute
Qualität der Rekonstruktion; einem
erfolgreichen Einsatz in einem Schutzsystem
steht daher nichts im Wege. Dadurch lässt

sich die Robustheit des Schutzes erhöhen
und die Zuverlässigkeit steigern.

Moderne Schutztechnik
für Elektroenergiesysteme

Die Schutzeinrichtungen von
Elektroenergiesystemen haben die Aufgabe,
Auswirkungen von Störungen auf ein Minimum

zu reduzieren und möglichst lokal zu
beschränken. Störungen können extern
durch Umwelteinflüsse, zum Beispiel
Blitzschlag, aber auch intern durch Überlast

entstehen. Bei Hochspannungseinrichtungen

werden im Störungsfall sehr grosse
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Energiebeträge frei, was zu grossen Schäden

führen kann. Es ist deshalb sehr wichtig,

dass ein Schutzsystem schnell reagiert
und die gefährdeten Teile vom restlichen

System trennt. Dabei muss darauf geachtet
werden, dass der Schutz selektiv nur die
betroffenen Komponenten abschaltet, um
die Auswirkungen auf das restliche
System, und damit die Kosten des Ausfalls, zu
minimieren.

Moderne Schutzsysteme übernehmen
zunehmend, neben den eigentlichen
Schutzaufgaben, auch administrative
Aufgaben wie beispielsweise die Datenerfassung

für statistische Analysen. Dies ist heute

möglich durch den Generationswechsel

von analogen zu digitalen Schutzsystemen,
sowie durch den verstärkten Einsatz von
digitalen Rechnern. Eine gute Einführung
in die Schutztechnik für Elektroenergiesysteme

wird in [ 14 ] gegeben.

Entstehung von Wandlersättigung

Ein zu schützendes System wird in
einzelne Schutzzonen eingeteilt, für die
jeweils eine Gruppe von Schutzeinrichtungen

zuständig ist. Diese müssen feststellen,
ob ein Fehlerfall vorliegt und ob dieser in
die Zuständigkeit der eigenen Zone fällt
(interner Fehler), wonach die zugehörigen
Geräte abgekoppelt werden. Dazu werden
Messwandler eingesetzt, die Strom- und

Spannungsmessungen an die Schutzrelais
weiterleiten. Das Problem besteht nun darin,

dass Störfälle die Messwandler in die

magnetische Sättigung treiben können,
weil dabei starke Ströme auftreten. Die
gemessenen Signale bilden dann die tatsächlichen

Ströme nicht mehr getreu ab. Einfache

Schutzalgorithmen, wie die Anwendung
der Kirchhoffschen Summenregel, bei der
eine Abweichung der Summe aller
eingehenden und abgehenden Ströme von Null
einen Fehler signalisiert, können im Grenzfall

die internen Fehler nicht mehr von den

externen unterscheiden. Dadurch entsteht

die Gefahr von Überfunktion. Da beispielsweise

beim Ausfall einer Sammelschiene
mehrere angeschlossene Leitungen
mitbetroffen sind, muss solches Verhalten
verhindert werden. Die Bilder 1 und 2 zeigen
die mögliche Wirkung von Sättigung auf
den übertragenen Sekundärstrom. (In diesen

Bildern wurde der Sekundärstrom mit
dem Übersetzungsverhältnis skaliert, so
dass die Kurven für Primär- und Sekundärstrom

bei idealer Übertragung identisch

wären.)

Klassische Lösungsansätze
für das Wandlersättigungsproblem

Um das Problem der Wandlersättigung
in den Griff zu bekommen, werden heute

folgende Massnahmen angewendet:

• Grosszügige Dimensionierung der

eingesetzten Wandler.
• Kürzere Reaktionszeit des Schutzes, um

noch vor Sättigungseintritt den Schutz
auszulösen; diese Lösung ist technisch

aufwendig und teuer.
• Höhere Schwellwerte beim Schutzalgorithmus,

um die Robustheit gegenüber
Sättigung zu steigern; dies vermindert
aber die Empfindlichkeit und verlängert
die Reaktionszeit.

Die beste Lösung wäre natürlich,
Wandlersättigung überhaupt zu vermeiden. In
naher Zukunft werden dazu wohl alternative

Messverfahren mit besseren
Eigenschaften zur Verfügung stehen, wie zum
Beispiel optische Messverfahren. Es wird
aber noch lange dauern, bis die klassischen
Wandler und damit auch das Sättigungsproblem

verschwunden sind.
In der Zwischenzeit wurden bereits

numerische Verfahren entwickelt, um aus
dem gesättigten Sekundärstrom den
tatsächlichen Primärstrom zu errechnen (siehe

zum Beispiel [81). Diese Verfahren
beruhen auf der numerischen Integration der

Differentialgleichungen, die den Wandler
beschreiben. Sie haben den Nachteil, dass

die Wandlerkennlinie sowie die Netzparameter

exakt bekannt sein müssen. Dies ist
in der Realität selten gegeben, da grosse
Hochspannungsnetze einem ständigen
Wandel unterliegen und auch Alterungsprozesse

von Komponenten hineinspielen.
Eine andere Lösung besteht darin, den

ursprünglichen «ungesättigten» Strom
nachzubilden. Wenn die Frequenz und der

richtige Nulldurchgang des Stromsignales
bekannt sind und die Amplitude vor
Sättigungseintritt ermittelt wird, ist es möglich,
das sinusförmige Stromsignal durch
Synchronisierung und Amplitudenanpassung
mit einer gespeicherten sinusförmigen Kurve

zu erzeugen (siehe [11]).

Der Einsatz neuronaler Netzwerke

Künstliche neuronale Netzwerke sind
eine mathematische Vereinfachung der
Informationsverarbeitung biologischer
Nervensysteme, mit zum Teil ähnlichen
Eigenschaften (siehe zum Beispiel [1], [7] oder
[ 15]). Eine für technische Anwendungen
besonders attraktive Eigenschaft solcher
Netzwerke ist die Fähigkeit, aus Beispielen
lernen zu können. Mit Hilfe geeigneter
Lernalgorithmen können neuronale
Netzwerke durch die Präsentation von Beispielen

soweit trainiert werden, dass sie
komplexe Zusammenhänge nachbilden können.

Vielversprechende Anwendungsgebiete
sind Muster- und Spracherkennung,
Signalverarbeitung, maschinelles Lernen,
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Diagnose, Prognose, Optimierung sowie

Steuerung und Regelung.
Im Kontext der Wandlersättigung sind

auch folgende Eigenschaften von Bedeutung:

* Fehlertoleranz: Kleine Abweichungen
der Eingabedaten oder der Ausfall einiger

Neuronen führen nur zu geringen
Ausgabefehlern.

* Verallgemeinerungsfähigkeit: Wird das

Netzwerk geeignet trainiert, so kann es

auch für neue, noch nie gesehene
Eingabedaten gute Ergebnisse liefern. Es hat

die trainierten Beispiele nicht einfach

«auswendig gelernt», sondern kann auch

neue Situationen verarbeiten.

Diese Eigenschaften werden benötigt, da
die Bedingungen nicht genau bekannt sind,

unter denen die gesättigten Ströme entstehen.

Sowohl die Wandlerkennlinie als auch
die übrigen Kenngrössen des

Hochspannungsnetzes sind nur näherungsweise
bekannt, so dass die Anwendung exakter
mathematischer Modelle nicht möglich ist. Es
ist deshalb naheliegend, neuronale Netz-
Werke für die Rekonstruktion gesättigter
Ströme einzusetzen.

Neuronale Netzwerke können aber nicht
einfach als Black-Box betrachtet werden,
die nur mit den Rohdaten gefüttert werden
tnuss und die nach der Anwendung eines
Lernverfahrens automatisch das richtige
Ergebnis liefert. Wie bisherige Erfahrungen

gezeigt haben, sollte möglichst viel
Problemwissen bei der Vorverarbeitung
der Eingabedaten, wie auch beim Entwurf
der neuronalen Netze berücksichtigt werden,

damit die Komplexität des Lernproblems

reduziert wird. Die Erfahrungen aus
den Voruntersuchungen in [3] und [4]
haben zu folgenden Überlegungen geführt:

* Beim Stromdifferentialschutz, wie auch
bei einigen anderen Schutzmethoden,

wird nur die 50-Hz-Komponente des

gemessenen Signals verwendet und nicht
das vollständige Zeitsignal. Es ist
deshalb günstiger, nur die 50-Hz-
Komponente zu rekonstruieren.

• Da nur die 50-Hz-Komponente interes¬

siert, soll das Netzwerk so gewählt
werden, dass es nur sinusförmige
Signale erzeugen kann. Dies führt zu
robusteren Ergebnissen, als wenn das

Netzwerk beliebige Signale generieren
kann. (Diese Einschränkung muss eventuell

gelockert werden, falls auch

Schaltvorgänge usw. berücksichtigt
werden sollen.)

• Im Unterschied zu [3] und [4] wird hier
Frequenzinformation als Eingabegrösse
verwendet. Dies ergibt im Vergleich zur
Verwendung von Abtastwerten des

Signals ein kleineres Netzwerk, das

effizienter trainiert werden kann.
• Ein kleines Netzwerk verbessert ausser¬

dem die Verallgemeinerungsfähigkeit,
da weniger Gefahr besteht, dass nur die

präsentierten Beispiele gespeichert werden

und neue Situationen dagegen zu
schlechten Ergebnissen führen.

Aus diesen Gründen wird das neuronale
Netzwerk nur für die Rekonstruktion der

50-Hz-Komponente des Primärstromes

trainiert, wobei ein Teil des Frequenzspektrums

des Sekundärstroms dem Netz zur
Eingabe dient. Die 50-Hz-Komponente
wird dabei als sinusförmiges Signal via

Amplitude und Phase rekonstruiert. Die
Gesamtarchitektur ist in Bild 3 dargestellt.

Vorverarbeitungsschritte

Die Rekonstruktion der 50-Hz-Komponente

ist in mehrere Verarbeitungsschritte
strukturiert (Bild 4). Zuerst wird das Signal
mit 2,4 kHz abgetastet und in Zeitfenster

der Grösse einer 50-Hz-Periode eingeteilt,
und dann wird mit Hilfe einer Fourieranalyse

(FFT) über dem Zeitfenster das

Frequenzspektrum ermittelt. Anschliessend
werden pro Zeitfenster die ermittelten

Amplituden und Phasen normalisiert und

an zwei neuronale Netzwerke weitergeleitet,

die je die Amplitude und die Phase der

50-Hz-Komponente des Primärstroms
rekonstruieren. Diese werden nach einer
Rücktransforination dem Schutzalgorithmus

übergeben.

Architektur
der neuronalen Netzwerke

Die Hauptaufgabe im Rekonstruktionsalgorithmus

übernehmen zwei neuronale

Netzwerke, die Amplitude und Phase der

50-Hz-Komponente bestimmen. Da sie

eine Abbildung von Eingabedaten zu
Ausgabedaten berechnen, ist die klassische

«Feedforward»-Architektur, das heisst
eine Schichtenstruktur ohne Rtickkoppe-
lung, dem Problem angemessen (siehe
Bild 5). Diese Architektur wird auch

«Multilayer-Perceptron» genannt (siehe

[7,9,10]), wobei gemäss Theorie (siehe [6],
Theorem 2, S. 132) für eine
Approximationsaufgabe ein dreischichtiges Netz
ausreicht. Die Neuronen der Mittelschicht
besitzen eine sigmoide Aktivierungsfunktion

(tanh), während das Ausgabeneuron
eine lineare Aktivierungsfunktion verwendet

(Bilder 6 -7). Dabei ist jede nachfolgende

Schicht vollständig mit der
vorangehenden verknüpft, und jede Verbindung
ist mit einem Gewicht versehen. Somit
berechnet das Netzwerk eine Funktion nach

Formel (1).

N M

y X wi ' tanll( Xwij ' xj ~6: > -9 1

;=i j=l

N Anzahl Neuronen in Mittelschicht
(4)

M Anzahl Neuronen in Eingabeschicht
(6)

X: Eingabewerte

wy Gewichte der Verbindungen von Ein¬

gabe- zu Mittelschicht
w,- Gewichte der Verbindungen von Mit¬

tel- zu Ausgabeschicht
0, 6/ Schwellwerte

y Ausgabe des Netzwerkes

Grösse der Netzwerke

Um eine gute Verallgemeinerungsfähigkeit,
aber auch eine ausreichende

Approximationsgenauigkeit zu erreichen, muss
eine optimale Netzwerkgrösse gewählt
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Amplituden und Phasen der 50-Hz-Kom-

ponente des Signals (das heisst des

Sekundärstroms des Messwandlers) und seiner

ersten zwei Oberwellen als Eingabegrössen
geeignet erwiesen. Mit einer Mittelschicht
von 4 Neuronen ergibt sich somit ein Netz

von total 11 Neuronen mit 33 Verbindungen

bzw. Gewichten (inkl. Schwellwerte).
Ein solch kleines Netz hat auch den Vorteil,
dass es für den Einsatz in Echtzeit wesentlich

kostengünstiger zu implementieren ist
als ein grosses Netz.

Beschaffung von Trainingsdaten

Da es aus Kostengründen nicht möglich
ist, Messwerte von tatsächlichen
Messwandlern in ausreichender Menge zu
beschaffen, ist man bei der Datenbeschaffung
auf Simulation angewiesen. Die Simulation
von Wandlersättigung stützt sich auf das

vereinfachte Wandlermodell in Bild 8 mit
der zugehörigen Differentialgleichung in
Formel (2) (siehe [2]):

di,, di,
Ludu)-— L-^+R-i2

dt dt
l,-U ln+l

(2)

Bild 7 Transferfunktion der Mittelschicht

Für die Mittelschicht wird eine sigmoide
Aktivierungsfunktion f(x) tanh(x) eingesetzt

werden. Wird ein zu kleines Netz gewählt,
so verbessert sich im allgemeinen die

Verallgemeinerungsfähigkeit, aber das Netz
kann unter Umständen die zu lernende

Funktion nur ungenau implementieren.
Wird hingegen das Netz zu gross gewählt,
können die trainierten Beispiele vielleicht
exakt gelernt werden, aber die
Verallgemeinerung ist schlecht. Die optimale Grösse

ist problemabhängig und kann meist nur
empirisch ermittelt werden. Als Faustregel
ist aber zu beachten, dass, wie bei allen

Approximationsproblemen, die Anzahl
bekannter Punkte (Beispiele) grösser als die
Anzahl freier Parameter des Netzwerkes
(Gewichte) sein sollte. Sind die Daten
verrauscht, so müssen sogar wesentlich mehr

Beispiele als Parameter vorhanden sein.

Nach einer Frequenzanalyse einiger
Beispieldaten und verschiedenen Experimenten

mit variabler Netzgrösse haben sich die

Bild 8 Für die Simulation benütztes Wandlermodell

ström aufweisen darf. Durch diese grobe

Klassifizierung von Wandlern ist es möglich,

zu einer Fehlerklasse eine Reihe von
Wandlerkennlinien nach dem Modell von
Formel (3) aus [2] zu simulieren:

j üu max Lß mjn
Lß(tß) ——: h^ + L,

1 +
f \a

lE

V *sat y

fi nun
(3)

-'fx min

Induktivität ohne Sättigung
Induktivität bei Sättigung
Sättigungsstrom
Krümmungsfaktor

ii Primärstrom
i2 Sekundärstrom

iln Magnetisierungsstrom
Lm Hauptinduktivität des Wandlers
R Gesamtwiderstand der Sekundärseite

L Geamtinduktivität der Sekundärseite

ii Übersetzungsverhältnis

Im allgemeinen Fall ist die genaue
Kennline des Wandlers und somit die

Hauptinduktivität L^(i^) (Bild 9) nicht
genau bekannt. In Datenblättern werden
jedoch Angaben zum Fehler bei einem
bestimmten Überstromfaktor geliefert: Die
Fehlerklasse «5P20» bedeutet beispielsweise,

dass ein entsprechender Wandler
5% Abweichung bei einem 20fachen Über-

Zu jeder Fehlerklasse werden separate
Netzwerke trainiert, die nur für diese

Wandlerklasse zuständig sind.
Neben der eigentlichen Wandlerkennlinie

müssen auch die übrigen Kenngrössen
festgelegt und für die Erzeugung von Lerndaten

geeignet variiert werden. Als Fehlersignale

werden Kurzschlussströme nach
dem Modell von Formel (4) (siehe [14],
S. 12) an den Wandler angelegt:

h(0 /,„
-1/

e cos(a) -cos( a -t + a)

(4)

a Phasenwinkel des Fehlereintritts
üj 2TT • Frequenz IOOtt

r Netzzeitkonstante
Imax Amplitude des Kurzschlussstromes

Bild 9 Beispiel
einer Wandlerkennlinie
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Neuronale Netze

Parameter Amplitude Phase

5P5, 5P20 5P5, 5P20

Lernschritte 100 000 100 000

Anfangslernrate r| 0,4 0,001

Moment a 0,9 0,9

Anfangsgewichte w zufällig, 0 ±1 zufällig, 0 ±1

Fehler nach Training 0.0008 0.001

Datensätze Mittelwert

Knm

Standardabweichung

V'wirl K

Maximum

K

Anzahl

Signale

Lerndaten L5P5 0,257 0,312 0,365 30

Testdaten T5P5 0,287 0.198 0,539 27

Lerndaten L5P20 0.120 0,085 0,247 30

Testdaten T5P20 0.149 0,144 0.261 17

Datensätze Mittelwert

% m»

Standardabweichung

Vvar( Ä'w

Maximum

K
1 »:

Anzahl
Signale

Lerndaten L5P5 0,10 0,07 0,30 30

Testdaten T5P5 0.09 0,05 0,22 27

Lerndaten L5P20 0.03 0,03 0,05 30

Testdaten T5P20 0,04 0,06 0,07 17

Die eigentlichen Lerndaten bestehen aus
dem Primär- und dem Sekundärstromverlauf,

die bei fixen Wandler- und Netzparametern

durch Simulation gewonnen werden.

Trainieren
der neuronalen Netzwerke

Die neuronalen Netzwerke werden
trainiert, indem die Ergebnisse der Vorverarbeitung

eines Zeitfensters des Sekundärstroms

an die Netzwerke angelegt werden
und die Antwort der Netze berechnet wird.
Aus dem Vergleich der gewünschten Ausgabe

(Primärstrom) mit der tatsächlichen
Antwort (rekonstruierter Primärstrom)
wird ein Fehlersignal erzeugt, das zur
Korrektur der Gewichte in den neuronalen Netzen

so verwendet wird (Formel (5)), dass

der Fehler möglichst klein wird:

E=l(dv-yvf (5)
V=1

E Fehler des Netzwerkes
V Anzahl Beispiele
dv gewünschte Ausgabe zu Beispiel v

)'v tatsächliche Ausgabe zu Beispiel v

Tabelle I Lernparameter

Tabelle II

Grösster K-Faktor

Tabelle III

Zweitgrösster K-Faktor

Es ist hier anzumerken, dass auch die
hier beschriebenen neuronalen Netzwerke
auf einem Computer simuliert werden. Die
Simulation ist normalerweise einfacher und
flexibler als die Verwendung spezialisierter
Hardware. Sobald die Netzwerke aber in
Echtzeit betrieben werden, ist man bei

grösseren Netzen möglicherweise auf die
höhere Rechenleistung von «Neuro-Chips»
angewiesen.

Für die Korrektur der Gewichte stehen
verschiedene Lernalgorithmen zur Verfügung.

Im Prinzip kann jede Methode zur
Funktionsminimierung eingesetzt werden.
Da es sich bei den verwendeten neuronalen
Netzen um kleine Netze handelt, ist eine
Variante des beliebten «Backpropagation»-
Algorithmus ausreichend (siehe [1], [7]
oder [16]). Die Verbindungsgewichte im
Netzwerk werden iterativ nach dem Schema

von Formel (6) korrigiert; dabei werden
die Schwellwerte wie Gewichte behandelt:

Aw - ?7 • —— + a A waU (6)
dw

Aw Gewichtsänderung pro Lern¬

schritt
AwaU Gewichtsänderung bei letztem

Schritt

T| Schrittweite

a Moment
dEldw Gradient des Fehlers bezüglich

Gewicht w

Die Schrittweite r/ wird in Abwandlung
der Originalmethode dem Lernerfolg ange-
passt:

• Nach 5 Lernschritten mit abnehmendem
Fehler wird die Schrittweite um 50%
erhöht.

• Nach einem Schritt mit zunehmendem
Fehler wird die Schrittweite um 50%
reduziert.

Da beim Backpropagation-Algorithmus
die Gefahr besteht, in einem lokalen Minimum

steckenzubleiben, wurden auch
Versuche mit stochastischen Lernverfahren
durchgeführt (siehe [7]). Es konnten keine
wesentlichen Verbesserungen erzielt werden,

aber der Rechenaufwand stieg deutlich.

Genaue Angaben über die Lernparameter

sowie den erreichten Fehler sind der
Tabelle I zu entnehmen.

Beurteilungskriterium

Um die Rekonstruktionsqualität der
neuronalen Netzwerke insgesamt beurteilen zu
können, wird der K-Faktor nach Formel (7)
eingeführt:

/l + (A^)2_2.COs(A<p)-^
g _ V Aong (7)

I +
orig

K Rekonstruktionsfehler

Aorjg ursprüngliche 50-Hz-Amplitude
Arec rekonstruierte 50-Hz-Amplitude
A tf Phasendifferenz zwischen Original

und rekonstruiertem Signal

Dieser Faktor vereint Amplituden- und

Phasenabweichung in ein Gesamtfehler-

rnass, das zwischen 0 (kein Fehler) und 1

(ganz schlecht) variieren kann. Der K-Fak-
tor wird jeweils über dem Zeitfenster ermittelt,

das als Eingabe für die neuronalen
Netzwerke dient. Je kleiner der K-Faktor
ist, desto genauer ist die Rekonstruktion
des Primärstroms. Der höchste noch akzeptable

K-Faktor hängt vom Schutzalgorithmus

ab, der das rekonstruierte Signal
benutzt. Als Richtwert wird ein Maximum
von 0,5 angenommen.

Ergebnisse

Es muss natürlich die Rekonstruktionsqualität

sowohl bei den gelernten Beispie-
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t[s]

Bild 10 Primärstrom und

gesättigter Sekundärstrom

für ein Beispiel

aus der Lerndatenmenge

Wandler 5P5,

'mäx=15kA, a 0

Bild 11 Ursprüngliche
und rekonstruierte 50-Hz-

Komponente

Resultat für das Beispiel
nach Bild 10: KmM=0,3392

Bild 12: Primärstrom und

gesättigter Sekundärstrom

für ein Beispiel

aus der Testdatenmenge

Wandler 5P5, lmx 7kA,

a 0

len, als auch bei einer unabhängigen
Testmenge ermittelt werden. Diese erlaubt ja
erst die Beurteilung der Verallgemeinerungsfähigkeit

für unbekannte
Wandlerkennlinien (innerhalb der trainierten
Fehlerklasse) und abweichende Netz- und

Signalparameter. Die Tabellen II und III fassen

die statistische Verteilung des K-Fak-
tors zusammen.

Die Ergebnisse sind vielversprechend.
Die Rekonstruktion des Primärstroms der

Lernbeispiele erfüllt überall die
Qualitätsanforderungen. Typischerweise ist der K-
Faktor am Anfang eines Kurzschlussignals
am grössten und klingt anschliessend
schnell ab. Das ist aus den Statistiken der

zweitgrössten K-Faktoren ersichtlich.
Ein Vergleich der K-Faktoren der

Testdaten mit denjenigen der Lerndaten zeigt,
dass sie von derselben Grössenordnung
sind und dass somit eine gute Verallgemeinerung

erreicht werden konnte. Ein einziger

Testfall ist knapp über dem Referenzwert

für den maximalen K-Faktor, was aber

für den Schutzalgorithmus bei weitem nicht
kritisch ist.

Um die Rekonstruktionsqualität auch
visuell darstellen zu können, wurden in den

Bildern 10-13 je ein Signalverlauf aus der

Menge der Lerndaten und ein Beispiel aus

den Testdaten in ein Zeitsignal
zurücktransformiert. Beim Übergang vom
rekonstruierten Signal eines Zeitfensters zur
Rekonstruktion des nächsten sind dabei kleine
Sprungstellen zu sehen.

Schlussfolgerungen

Bild 13 Ursprüngliche
und rekonstruierte 50-Hz-

Komponente

Resultat für das Beispiel
nach Bild 12: kmax=0,1984

Die hier beschriebene Studie zeigt, dass

neuronale Netzwerke erfolgreich zur
Lösung des Problems der Wandlersättigung
eingesetzt werden können. Wird die Forderung

nach exakter Rekonstruktion von
Primärströmen aus gesättigten Sekundärströmen

etwas abgeschwächt, ist es möglich,
mit wenig Wissen über die Wandlercharakteristik

und über das Umfeld des Wandlers
auszukommen und dabei eine für Schutzzwecke

gute Rekonstruktionsqualität zu
erreichen. Obwohl das Hauptgewicht der
Studie auf eine Anwendung im Sammel-
schienenschutz ausgerichtet war, ist der
verwendete Ansatz auch in anderen

Schutzsystemen einsetzbar, wo ebenfalls nur die

50-Hz-Komponente des Signals benötigt
wird.

Mit der Wahl einer Frequenzanalyse als

Vorverarbeitung konnte das neuronale
Netzwerk klein gehalten werden, wodurch
es effizient trainiert werden konnte und
ein gutes Verallgemeinerungsverhalten
erreicht wurde. Ein kleines Netzwerk eignet
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sich auch besser für die Implementation in
einer Echtzeitumgebung.

Ausblick

Neuronale Netzwerke können
grundsätzlich auf zwei verschiedene Arten eingesetzt

werden. Zum einen kann man ein
Netzwerk im Labor für seine Aufgabe
trainieren und anschliessend im Feld ohne
weiteres Dazulernen einsetzen. Zum anderen
ist es aber auch möglich, dass ein Netzwerk
während der Erfüllung seiner Aufgabe
kontinuierlich weiterlernt. Dazu muss aber ein

Rückkoppelungssignal zur Verfügung
stehen, das ihm mitteilt, wie gut es seine

Aufgabe erfüllt. Beim Problem der
Rekonstruktion gesättigter Ströme ist dies aber

nicht möglich, da erstens kein solcher
wissender «Lehrer» vorhanden ist und zweitens

sich ein Netzwerk bei dieser

Anwendung keine Fehler leisten kann. Ein
neuronales Netzwerk lernt aber nur aus
Fehlern.

Es gibt aber noch eine Reihe weiterer
Verbesserungsmöglichkeiten, die untersucht

werden können. Eine Möglichkeit
besteht in der Integration der Schutzalgorithmen

in die neuronalen Netzwerke, d.h.
die Netzwerke werden nicht für die
Signalrekonstruktion allein trainiert, sondern
direkt für die Erzeugung von Schutzentscheiden.

Der Schutz kann so möglicherweise

schneller reagieren, die Verifikation
seiner Entscheidungen wird allerdings
schwieriger.

In der Realität kommen ausser Normalströmen

und Kurzschlussströmen noch
weitere Signaltypen vor, zum Beispiel
jene bei Schaltvorgängen. Die Berücksichtigung

solcher Signaltypen hat bei einer

Weiterführung der Untersuchungen höhere
Priorität als die Erzeugung von Schutzentscheiden.

Im weiteren wird die
Realisierung der neuronalen Netzwerke in
Hardware, zum Beispiel durch den Einsatz
eines kommerziellen Neurochips, oder die
Simulation auf schnellen Rechnern

erwogen.

Danksagung

Der Dank der Autoren gilt vor allem den

ehemaligen Studenten der HTL Brugg-
Windisch, R. Kramer und T. Sutter,
die mit ihrer Diplomarbeit [13]
entscheidend zu dieser Arbeit beigetragen
haben. Auch möchten sie Dr. ./. Bernasconi
und Dr. H. J. Wiesmann für anregende Dis¬

kussionen und Ratschläge danken. Dank

gebührt schliesslich auch dem Schweizerischen

Nationalfonds, der dieses Projekt im
Rahmen des Nationalen Forschungsprogramms

23, Künstliche Intelligenz und
Robotik, finanziell unterstützt hat.

Literatur
[1] i. Bernasconi: Neuronale Netzwerke - Theorie

und Praxis. Bull. SEV/VSE 82(1991)13, S. 11-16.

[2] A Böhm: Numerisches Berechnungsverfahren

für das Stromwandlerverhalten unter
Berücksichtigung der Eisensättigung. ETZ-A 94(1973)10.

[3] U. Braun, F. Engler and K. Feser: Application
of Neural Networks in Numerical Busbar Protection

Systems. Proc. of International Forum on Application
of Neural Networks to Power Systems, Seattle, 1991,

pp. 171-121.

[4] U. Braun, K. Feser and D. Peck: Restoring
Current Signals in Real Time Using Feedforward
Neural Nets. Proc. of International Forum on Application

of Neural Networks to Power Systems,
Yokohama, 1993.

[5] R, Cozzio, T. Sutter and R. Kramer:
Reconstruction of Saturated Current Signals Using Neural
Networks. To be published.

[6] R. Hecht-Nielsen: Neurocomputing. Ad-

dison-Wesley, 1989,

[7] J. Hertz, A. Krogh and R.G. Palmer: Introduction

to the Theory of Neural Computation. Addison-

Wesley, 1991.

[8] T. Konrad: Numerische Korrektur der
Sekundärströme gesättigter Stromwandler in Echtzeit.
Dissertation der Technischen Hochschule Darmstadt,
1989.

[9] J.-F. Leber und M.B, Matthews: Neuronale
Netzwerke - eine Übersicht, Buil. SEV/VSE

80(1989)15, S. 923-932.

[10] R.P. Lippmann: An Introduction to Computing

with Neural Nets. IEEE ASSP Magazine, April
1987.

[11] I. De Mesmaeker und Ch. Steiner: Das

Verhalten des Distanzrelais LZ95 bei extremer Sättigung
der Hauptstromwandler. Brown Boveri Technik Nr, 2,

1985.

[12] T. Sutter und R. Kramer: Erkennung der

Sättigung eines Stromwandlers mit Hilfe von neuronalen

Netzwerken. Semesterarbeit an der HTL

Brugg-Windisch, 1992.

[13] T. Sutter und R. Kramer: Rekonstruktion
der 50-Hz-Komponente des Primärsignals aus
dem Sekundärsignal eines gesättigten
Stromwandlers mit Hilfe von neuronalen
Netzwerken, Diplomarbeit an der HTL Brugg-Windisch,
1992.

[14] H. Ungrad, \N. Winkler und A. Wiszniewski:
Schutztechnik in Elektroenergiesystemen. Springer-
Verlag, 1991.

[15] D. E. Rumelhart and J. L. McClelland: Parallel

distributed processing - Explorations in the
microstructure of cognition. Cambridge, MA, Bradford

Books, 1986.

[16] D. E. Rumelhart, G. E. Hinton and R. J. Williams:

Learning internal representations by error
backpropagation, in Parallel distributed processing -
Explorations in the microstructure of cognition.
D. E. Rumelhart and J. L. McClelland, eds.,

Cambridge, MA, Bradford Books, 1986.

Traitement des signaux neuronal

pour une protection sûre
L'utilisation des réseaux neuronaux au problème de la saturation des
transformateurs d'intensité

Les transformateurs de mesure utilisés dans les systèmes de protection des systèmes

d'énergie électrique subissent des effets de saturation due à des courants très élevés

(figures 1 et 2). Pour éviter un fonctionnement intempestif, le système de protection doit
alors compenser les distorsions des signaux causées par les transformateurs de mesure.
Le présent article montre comment on peut reconstruire, à l'aide d'un réseau neuronal,
le courant effectif à partir du signal de mesure distordu. Le réseau, sans connaissance

précise des paramètres du système et du transformateur, atteint une qualité de

reconstruction qui permet l'utilisation fructueuse de ce réseau dans les systèmes de protection.

Le réseau neuronal utilisé (figure 5) a été entraîné pour réaliser la reconstruction de

l'amplitude et de la phase de la composante 50 Hz du courant primaire du transformateur

de mesure, une partie du spectre de fréquences du courant secondaire servant au

réseau pour l'introduction. Le signal, c'est-à-dire le courant secondaire, est d'abord
balayé avec 2,4 kHz et divisé en fenêtres de temps de la taille d'une période 50 Hz. Puis,
à l'aide d'une analyse de Fourier (FFT), on en détermine le spectre de fréquences sur la

fenêtre de temps. Les amplitudes et phases déterminées sont ensuite transmises à deux
réseaux neuronaux qui reconstruisent chacun l'amplitude et la phase de la composante
50 Hz du courant primaire. Les figures 10 et 11 renseignent sur la qualité de reconstruction

obtenue pour un exemple tiré de l'ensemble des données apprises et les figures 12

et 13 pour un autre exemple tiré des données de test.
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