Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 85 (1994)

Heft: 7

Artikel: Neuronale Signalverarbeitung fir sicheren Schutz : die Anwendung

neuronaler Netzwerke auf das Problem der Sattigung von
Stromwandlern

Autor: Cozzio, Rico / Peck, David
DOl: https://doi.org/10.5169/seals-902552

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-902552
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Energietechnik @ Neuronale Netze

Elektroenergiesysteme werden dauernd mit Hilfe moderner Schutztechnik Gberwacht;
sie hat die Aufgabe, in einem Fehlerfall die betroffenen Teile rasch abzuschalten. Die
dabei zur Strommessung eingesetzten Messwandler unterliegen aber bei sehr hohen
Stromen Sattigungseffekten. Um eine Uberfunktion zu verhindern, muss das Schutz-
system die dabei auftretenden Signalverzerrungen mit aufwendigen Massnahmen
kompensieren. In einem Forschungsprojekt wurden Methoden entwickelt, welche
erlauben, mit einem neuronalen Netzwerk den tatsachlichen Strom aus dem verzerr-
ten Messsignal zu rekonstruieren. Das Netzwerk erreicht ohne genaue Kenntnis der
Wandler- und Systemparameter eine Rekonstruktionsqualitat, welche den erfolgrei-
chen Einsatz in Schutzsystemen ermdglicht. Dadurch werden sowohl die Robustheit

erhéht als auch die Zuverlassigkeit des Schutzes gesteigert.

Neuronale Signalverarbeitung
fiir sicheren Schutz

Die Anwendung neuronaler Netzwerke auf das Problem der Sattigung von Stromwandlern
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In der modernen Schutztechnik fiir Elek-
troenergiesysteme ist es notig, den Zustand
des Systems dauernd zu iiberwachen, um in
einem Fehlerfall die betroffenen Teile
schnell abschalten zu konnen. Zur Messung
der Strome werden Messwandler einge-
setzt; es sind dies im wesentlichen zu Mess-
zwecken ausgelegte Transformatoren mit
Eisenkern. Bei sehr grossen Stromen ist es
solchen Messwandlern nicht mehr mog-
lich, den zu messenden Strom getreu wie-
derzugeben, da Sittigungseffekte auftreten.
Das Schutzsystem erhélt somit Messsigna-
le, die ein verzerrtes Abbild der tatsédchli-
chen Verhiltnisse ergeben. Im Schutz-
system miissen deshalb aufwendige Mass-
nahmen getroffen werden, um eine Uber-
funktion zu verhindern. In einem For-
schungsprojekt wurden nun Moglichkeiten
untersucht, wie mit einem neuronalen
Netzwerk aus dem verzerrten Messsignal

der tatsdchliche Strom rekonstruiert wer-
den kann. Das Netzwerk wurde dabei mit
einer Datenbank von simulierten Storfillen
trainiert, um die Rekonstruktion der ver-
falschten Signale zu erlernen. Das Netz-
werk erreicht ohne genaue Kenntnis der
Wandler- und Systemparameter eine gute
Qualitit der Rekonstruktion; einem erfolg-
reichen Einsatz in einem Schutzsystem
steht daher nichts im Wege. Dadurch lésst
sich die Robustheit des Schutzes erhéhen
und die Zuverldssigkeit steigern.

Moderne Schutztechnik
fiir Elektroenergiesysteme

Die Schutzeinrichtungen von Elektro-
energiesystemen haben die Aufgabe, Aus-
wirkungen von Storungen auf ein Mini-
mum zu reduzieren und moglichst lokal zu
beschriinken. Storungen konnen extern
durch  Umwelteinfliisse, zum Beispiel
Blitzschlag, aber auch intern durch Uber-
last entstehen. Bei Hochspannungseinrich-
tungen werden im Storungsfall sehr grosse
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Energiebetrige frei, was zu grossen Schi-
den fiihren kann. Es ist deshalb sehr wich-
tig, dass ein Schutzsystem schnell reagiert
und die gefihrdeten Teile vom restlichen
System trennt. Dabei muss darauf geachtet
werden, dass der Schutz selektiv nur die
betroffenen Komponenten abschaltet, um
die Auswirkungen auf das restliche Sy-
stem, und damit die Kosten des Ausfalls, zu
minimieren.

Moderne Schutzsysteme iibernehmen
zunehmend, neben den eigentlichen
Schutzaufgaben, auch administrative Auf-
gaben wie beispielsweise die Datenerfas-
sung fiir statistische Analysen. Dies ist heu-
te moglich durch den Generationswechsel
von analogen zu digitalen Schutzsystemen,
sowie durch den verstirkten Einsatz von
digitalen Rechnern. Eine gute Einfiihrung
in die Schutztechnik fiir Elektroenergie-
systeme wird in [14] gegeben.

Entstehung von Wandlersattigung

Ein zu schiitzendes System wird in ein-
zelne Schutzzonen eingeteilt, fiir die je-
weils eine Gruppe von Schutzeinrichtun-
gen zustindig ist. Diese miissen feststellen,
ob ein Fehlerfall vorliegt und ob dieser in
die Zustindigkeit der eigenen Zone fillt
(interner Fehler), wonach die zugehorigen
Gerite abgekoppelt werden. Dazu werden
Messwandler eingesetzt, die Strom- und
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Spannungsmessungen an die Schutzrelais
weiterleiten. Das Problem besteht nun dar-
in, dass Storfille die Messwandler in die
magnetische Sittigung treiben konnen,
weil dabei starke Strome auftreten. Die ge-
messenen Signale bilden dann die tatséchli-
chen Strome nicht mehr getreu ab. Einfache
Schutzalgorithmen, wie die Anwendung
der Kirchhoffschen Summenregel, bei der
eine Abweichung der Summe aller einge-
henden und abgehenden Strome von Null
einen Fehler signalisiert, konnen im Grenz-
fall die internen Fehler nicht mehr von den
externen unterscheiden. Dadurch entsteht
die Gefahr von Uberfunktion. Da beispiels-
weise beim Ausfall einer Sammelschiene
mehrere angeschlossene Leitungen mitbe-
troffen sind, muss solches Verhalten ver-
hindert werden. Die Bilder I und 2 zeigen
die mogliche Wirkung von Sittigung auf
den tibertragenen Sekundirstrom. (In die-
sen Bildern wurde der Sekunddrstrom mit
dem Ubersetzungsverhiltnis skaliert, so
dass die Kurven fiir Primér- und Sekundir-
strom bei idealer Ubertragung identisch
wiren.)

Klassische Losungsansétze
fiir das Wandlersattigungsproblem

Um das Problem der Wandlersittigung
in den Griff zu bekommen, werden heute
folgende Massnahmen angewendet:

* Grossziigige Dimensionierung der ein-
gesetzten Wandler.

 Kiirzere Reaktionszeit des Schutzes, um
noch vor Sittigungseintritt den Schutz
auszulosen; diese Losung ist technisch
aufwendig und teuer.

* Hohere Schwellwerte beim Schutzalgo-
rithmus, um die Robustheit gegeniiber
Sdttigung zu steigern; dies vermindert
aber die Empfindlichkeit und verldngert
die Reaktionszeit.

Die beste Losung wire natiirlich, Wand-
lersittigung tiberhaupt zu vermeiden. In
naher Zukunft werden dazu wohl alterna-
tive Messverfahren mit besseren Eigen-
schaften zur Verfiigung stehen, wie zum
Beispiel optische Messverfahren. Es wird
aber noch lange dauern, bis die klassischen
Wandler und damit auch das Sittigungs-
problem verschwunden sind.

In der Zwischenzeit wurden bereits nu-
merische Verfahren entwickelt, um aus
dem gesittigten Sekundirstrom den tat-
sdchlichen Primirstrom zu errechnen (sie-
he zum Beispiel [8]). Diese Verfahren be-
ruhen auf der numerischen Integration der
Differentialgleichungen, die den Wandler
beschreiben. Sie haben den Nachteil, dass
die Wandlerkennlinie sowie die Netzpara-
meter exakt bekannt sein miissen. Dies ist
in der Realitdt selten gegeben, da grosse
Hochspannungsnetze einem  stidndigen
Wandel unterliegen und auch Alterungs-
prozesse von Komponenten hineinspielen.

Eine andere Losung besteht darin, den
urspriinglichen  «ungesittigten» ~ Strom
nachzubilden. Wenn die Frequenz und der
richtige Nulldurchgang des Stromsignales
bekannt sind und die Amplitude vor Sétti-
gungseintritt ermittelt wird, ist es moglich,
das sinusformige Stromsignal durch Syn-
chronisierung und Amplitudenanpassung
mit einer gespeicherten sinusformigen Kur-
ve zu erzeugen (siehe [11]).

Der Einsatz neuronaler Netzwerke

Kiinstliche neuronale Netzwerke sind
eine mathematische Vereinfachung der In-
formationsverarbeitung biologischer Ner-
vensysteme, mit zum Teil dhnlichen Eigen-
schaften (siehe zum Beispiel [1], [7] oder
[15]). Eine fiir technische Anwendungen
besonders attraktive Eigenschaft solcher
Netzwerke ist die Fihigkeit, aus Beispielen
lernen zu kdénnen. Mit Hilfe geeigneter
Lernalgorithmen konnen neuronale Netz-
werke durch die Prisentation von Beispie-
len soweit trainiert werden, dass sie kom-
plexe Zusammenhinge nachbilden konnen.
Vielversprechende ~ Anwendungsgebiete
sind Muster- und  Spracherkennung,
Signalverarbeitung, maschinelles Lernen,
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Im Kontext der Wandlersittigung sind
auch folgende Eigenschaften von Bedeu-
tung:

* Fehlertoleranz: Kleine Abweichungen
der Eingabedaten oder der Ausfall eini-
ger Neuronen fithren nur zu geringen
Ausgabefehlern.

* Verallgemeinerungsfihigkeit: Wird das
Netzwerk geeignet trainiert, so kann es
auch fiir neue, noch nie gesehene Einga-
bedaten gute Ergebnisse liefern. Es hat
die trainierten Beispiele nicht einfach
«auswendig gelernt», sondern kann auch
neue Situationen verarbeiten.

Diese Eigenschaften werden ben6tigt, da
die Bedingungen nicht genau bekannt sind,
unter denen die gesittigten Strome entste-
hen. Sowohl die Wandlerkennlinie als auch
die {ibrigen Kenngrossen des Hochspan-
nungsnetzes sind nur ndherungsweise be-
kannt, so dass die Anwendung exakter ma-
thematischer Modelle nicht moglich ist. Es
ist deshalb naheliegend, neuronale Netz-
werke fiir die Rekonstruktion gesittigter
Strome einzusetzen.

Neuronale Netzwerke konnen aber nicht
einfach als Black-Box betrachtet werden,
die nur mit den Rohdaten gefiittert werden
muss und die nach der Anwendung eines
Lernverfahrens automatisch das richtige
Ergebnis liefert. Wie bisherige Erfahrun-
gen gezeigt haben, sollte moglichst viel
Problemwissen bei der Vorverarbeitung
der Eingabedaten, wie auch beim Entwurf
der neuronalen Netze beriicksichtigt wer-
den, damit die Komplexitit des Lernpro-
blems reduziert wird. Die Erfahrungen aus
den Voruntersuchungen in [3] und [4] ha-
ben zu folgenden Uberlegungen gefiihrt:

* Beim Stromdifferentialschutz, wie auch
bei einigen anderen Schutzmethoden,
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wird nur die 50-Hz-Komponente des ge-
messenen Signals verwendet und nicht
das vollstindige Zeitsignal. Es ist des-
halb  giinstiger, nur die 50-Hz-
Komponente zu rekonstruieren.

e Da nur die 50-Hz-Komponente interes-
siert, soll das Netzwerk so gewihlt
werden, dass es nur sinusformige Si-
gnale erzeugen kann. Dies fiihrt zu
robusteren Ergebnissen, als wenn das
Netzwerk beliebige Signale generieren
kann. (Diese Einschrinkung muss even-
tuell gelockert werden, falls auch
Schaltvorginge usw. beriicksichtigt
werden sollen.)

e Im Unterschied zu 3] und [4] wird hier
Frequenzinformation als Eingabegrosse
verwendet. Dies ergibt im Vergleich zur
Verwendung von Abtastwerten des Si-
gnals ein kleineres Netzwerk, das
effizienter trainiert werden kann.

 Ein kleines Netzwerk verbessert ausser-
dem die Verallgemeinerungsfihigkeit,
da weniger Gefahr besteht, dass nur die
prisentierten Beispiele gespeichert wer-
den und neue Situationen dagegen zu
schlechten Ergebnissen fiihren.

Aus diesen Griinden wird das neuronale
Netzwerk nur fiir die Rekonstruktion der
50-Hz-Komponente des Primérstromes
trainiert, wobei ein Teil des Frequenzspek-
trums des Sekundérstroms dem Netz zur
Eingabe dient. Die 50-Hz-Komponente
wird .dabei als sinusformiges Signal via
Amplitude und Phase rekonstruiert. Die
Gesamtarchitektur ist in Bild 3 dargestellt.

Neuronale Netze

der Grosse einer 50-Hz-Periode eingeteilt,
und dann wird mit Hilfe einer Fourierana-
lyse (FFT) tiber dem Zeitfenster das Fre-
quenzspektrum ermittelt. Anschliessend
werden pro Zeitfenster die ermittelten
Amplituden und Phasen normalisiert und
an zwei neuronale Netzwerke weitergelei-
tet, die je die Amplitude und die Phase der
50-Hz-Komponente des Primdrstroms re-
konstruieren. Diese werden nach einer
Riicktransformation dem Schutzalgorith-
mus iibergeben.

Architektur
der neuronalen Netzwerke

Die Hauptaufgabe im Rekonstruktions-
algorithmus tibernehmen zwei neuronale
Netzwerke, die Amplitude und Phase der
50-Hz-Komponente bestimmen. Da sie
eine Abbildung von Eingabedaten zu Aus-
gabedaten berechnen, ist die klassische
«Feedforward»-Architektur, das heisst
eine Schichtenstruktur ohne Riickkoppe-
lung, dem Problem angemessen (siehe
Bild 5). Diese Architektur wird auch
«Multilayer-Perceptron» genannt (sieche
[7,9,10]), wobei gemiss Theorie (siehe [6],
Theorem 2, S. 132) fiir eine Approxima-
tionsaufgabe ein dreischichtiges Netz aus-
reicht. Die Neuronen der Mittelschicht
besitzen eine sigmoide Aktivierungsfunk-
tion (tanh), wihrend das Ausgabeneuron
eine lineare Aktivierungsfunktion verwen-
det (Bilder 6 -7). Dabei ist jede nachfol-
gende Schicht vollstindig mit der voran-
gehenden verkniipft, und jede Verbindung
ist mit einem Gewicht versehen. Somit be-
rechnet das Netzwerk eine Funktion nach
Formel (1).

N M
y= Z w; -mn/z(zwi“i %X - 0;)-6 (1)

i=1 j=I

Anzahl Neuronen in Mittelschicht
“)

M Anzahl Neuronen in Eingabeschicht

(6)

Eingabewerte

Gewichte der Verbindungen von Ein-

gabe- zu Mittelschicht

w;  Gewichte der Verbindungen von Mit-
tel- zu Ausgabeschicht

6, 8, Schwellwerte

y  Ausgabe des Netzwerkes

Vorverarbeitungsschritte

Die Rekonstruktion der 50-Hz-Kompo-
nente ist in mehrere Verarbeitungsschritte
strukturiert (Bild 4). Zuerst wird das Signal
mit 2,4 kHz abgetastet und in Zeitfenster

Grosse der Netzwerke

Um eine gute Verallgemeinerungsfihig-
keit, aber auch eine ausreichende Approxi-
mationsgenauigkeit zu erreichen, muss
eine optimale Netzwerkgrosse gewihlt
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Fir die Aktivierungsfunktion der Ausgabeschicht
wird eine lineare Funktion f(x) verwendet
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Bild 7 Transferfunktion der Mittelschicht

Fiir die Mittelschicht wird eine sigmoide Aktivie-
rungsfunktion f(x) = tanh(x) eingesetzt

werden. Wird ein zu kleines Netz gewihlt,
so verbessert sich im allgemeinen die Ver-
allgemeinerungsfihigkeit, aber das Netz
kann unter Umstinden die zu lernende
Funktion nur ungenau implementieren.
Wird hingegen das Netz zu gross gewihlt,
konnen die trainierten Beispiele vielleicht
exakt gelernt werden, aber die Verallge-
meinerung ist schlecht. Die optimale Gros-
se ist problemabhingig und kann meist nur
empirisch ermittelt werden. Als Faustregel
ist aber zu beachten, dass, wie bei allen
Approximationsproblemen, die Anzahl be-
kannter Punkte (Beispiele) grosser als die
Anzahl freier Parameter des Netzwerkes
(Gewichte) sein sollte. Sind die Daten ver-
rauscht, so miissen sogar wesentlich mehr
Beispiele als Parameter vorhanden sein.
Nach einer Frequenzanalyse einiger Bei-
spieldaten und verschiedenen Experimen-
ten mit variabler Netzgrosse haben sich die
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Amplituden und Phasen der 50-Hz-Kom-
ponente des Signals (das heisst des Sekun-
dérstroms des Messwandlers) und seiner
ersten zwei Oberwellen als Eingabegrossen
geeignet erwiesen. Mit einer Mittelschicht
von 4 Neuronen ergibt sich somit ein Netz
von total 11 Neuronen mit 33 Verbindun-
gen bzw. Gewichten (inkl. Schwellwerte).
Ein solch kleines Netz hat auch den Vorteil,
dass es fiir den Einsatz in Echtzeit wesent-
lich kostengiinstiger zu implementieren ist
als ein grosses Netz.

Beschaffung von Trainingsdaten

Da es aus Kostengriinden nicht moglich
ist, Messwerte von tatsdchlichen Mess-
wandlern in ausreichender Menge zu be-
schaffen, ist man bei der Datenbeschaffung
auf Simulation angewiesen. Die Simulation
von Wandlersittigung stiitzt sich auf das
vereinfachte Wandlermodell in Bild 8 mit
der zugehorigen Differentialgleichung in
Formel (2) (siehe [2]):

di li
L) —2=L-22 4R,

dt dt )
I -ii=1+1,

i; Primidrstrom

i» Sekundirstrom

i,, Magnetisierungsstrom

L,, Hauptinduktivitit des Wandlers

R Gesamtwiderstand der Sekundirseite
L Geamtinduktivitit der Sekundirseite
i Ubersetzungsverhiltnis

Im allgemeinen Fall ist die genaue
Kennline des Wandlers und somit die
Hauptinduktivitit L'u(iy) (Bild 9) nicht ge-
nau bekannt. In Datenblittern werden je-
doch Angaben zum Fehler bei einem be-
stimmten Uberstromfaktor geliefert: Die
Fehlerklasse «5P20» bedeutet beispiels-
weise, dass ein entsprechender Wandler
5% Abweichung bei einem 20fachen Uber-

Bild 8 Fiir die Simulation beniitztes Wandlermodell

strom aufweisen darf. Durch diese grobe
Klassifizierung von Wandlern ist es mog-
lich, zu einer Fehlerklasse eine Reihe von
Wandlerkennlinien nach dem Modell von
Formel (3) aus [2] zu simulieren:

Lp. max ~ L

Loy L min
L/,l (l,u ) - . o + Ly min (3)
! 1
1+ [L]
i.\'tll
Ly e Induktivitdt ohne Sittigung
; Induktivitit bei Sittigung
Lmin =] (=]
Lggt Séttigungsstrom
a Kriimmungsfaktor

Zu jeder Fehlerklasse werden separate
Netzwerke trainiert, die nur fiir diese
Wandlerklasse zustindig sind.

Neben der eigentlichen Wandlerkennli-
nie miissen auch die tibrigen Kenngrossen
festgelegt und fiir die Erzeugung von Lern-
daten geeignet variiert werden. Als Fehler-
signale werden Kurzschlussstrome nach
dem Modell von Formel (4) (siche [14],
S. 12) an den Wandler angelegt:

L(n=1I,, " e% -cos(oa)—cos(w-t+ o)
4)

« Phasenwinkel des Fehlereintritts

w 27 « Frequenz = 100w

T Netzzeitkonstante

~

mae  Amplitude des Kurzschlussstromes

Ly [H]

Bild 9 Beispiel
einer Wandlerkennlinie

Bulletin ASE/UCS 7/94



Parameter Amplitude Phase Tabelle | Lernparameter
5P5, 5P20 5P, 5P20
Lernschritte 100 000 100 000
Anfangslernrate n 0.4 0,001
Moment o 09 0,9
Anfangsgewichte w zufillig, 0 ... 1 zufillig, 0 ... x1
Fehler nach Training 0,0008 0,001
e
Datensiitze Mittelwert » Stan.dard- Maximum A.nzahl Eigse:lt(;rl I K-Faktor
abweichung Signale
_"W var(K i ) K -
Lerndaten L5P5 0,257 0,312 0,365 30
Testdaten T5P5 0,287 0,198 0,539 27
Lerndaten L5P20 0,120 0,085 0,247 30
Testdaten T5P20 0,149 0,144 0,261 17
Datensiitze Mittelwert Standard- Maximum Anzahl Tabe.”e "I
dhweichms Signale Zweitgrosster K-Faktor
Fz max yvar( [?z — 2 max
Lerndaten L5P5 0,10 0,07 0,30 30
Testdaten T5P5 0,09 0,05 0,22 27
Lerndaten L5P20 0,03 0,03 0,05 30
Testdaten T5P20 0,04 0,06 0,07 17

Die eigentlichen Lerndaten bestehen aus
dem Primir- und dem Sekundirstromver-
lauf, die bei fixen Wandler- und Netzpara-
metern durch Simulation gewonnen wer-
den.

Trainieren
der neuronalen Netzwerke

Die neuronalen Netzwerke werden trai-
niert, indem die Ergebnisse der Vorverar-
beitung eines Zeitfensters des Sekundir-
stroms an die Netzwerke angelegt werden
und die Antwort der Netze berechnet wird.
Aus dem Vergleich der gewiinschten Aus-
gabe (Primérstrom) mit der tatsdchlichen
Antwort  (rekonstruierter  Primirstrom)
wird ein Fehlersignal erzeugt, das zur Kor-
rektur der Gewichte in den neuronalen Net-
zen so verwendet wird (Formel (5)), dass
der Fehler moglichst klein wird:

A4 =
E=%(d,-y) (5)

v=1

E  Fehler des Netzwerkes
V' Anzahl Beispiele

dy, gewiinschte Ausgabe zu Beispiel v
Yy tatséchliche Ausgabe zu Beispiel v
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Es ist hier anzumerken, dass auch die
hier beschriebenen neuronalen Netzwerke
auf einem Computer simuliert werden. Die
Simulation ist normalerweise einfacher und
flexibler als die Verwendung spezialisierter
Hardware. Sobald die Netzwerke aber in
Echtzeit betrieben werden, ist man bei
grosseren Netzen moglicherweise auf die
hohere Rechenleistung von «Neuro-Chips»
angewiesen.

Fiir die Korrektur der Gewichte stehen
verschiedene Lernalgorithmen zur Verfii-
gung. Im Prinzip kann jede Methode zur
Funktionsminimierung eingesetzt werden.
Da es sich bei den verwendeten neuronalen
Netzen um kleine Netze handelt, ist eine
Variante des beliebten «Backpropagation»-
Algorithmus ausreichend (siehe [1], [7]
oder [16]). Die Verbindungsgewichte im
Netzwerk werden iterativ nach dem Sche-
ma von Formel (6) korrigiert; dabei werden
die Schwellwerte wie Gewichte behandelt:

Aw=—n~a—E+cx~Awu,, (6)
ow
Aw Gewichtsidnderung pro Lern-
schritt
Aw,,  Gewichtsdnderung bei letztem
Schritt

Neuronale Netze

M Schrittweite

a Moment

dE/ow  Gradient des Fehlers beziiglich
Gewicht w

Die Schrittweite n wird in Abwandlung
der Originalmethode dem Lernerfolg ange-
passt:

e Nach 5 Lernschritten mit abnehmendem
Fehler wird die Schrittweite um 50% er-
hoht.

e Nach einem Schritt mit zunehmendem
Fehler wird die Schrittweite um 50% re-
duziert.

Da beim Backpropagation-Algorithmus
die Gefahr besteht, in einem lokalen Mini-
mum steckenzubleiben, wurden auch Ver-
suche mit stochastischen Lernverfahren
durchgefiihrt (siehe [7]). Es konnten keine
wesentlichen Verbesserungen erzielt wer-
den, aber der Rechenaufwand stieg deut-
lich. Genaue Angaben iiber die Lernpara-
meter sowie den erreichten Fehler sind der
Tabelle I zu entnehmen.

Beurteilungskriterium

Um die Rekonstruktionsqualitit der neu-
ronalen Netzwerke insgesamt beurteilen zu
konnen, wird der K-Faktor nach Formel (7)
eingefiihrt:

A2 A
1+(572)" -2 -cos(Ap)- 1
K= \/ Am'm (p Anr:g (7)

Aree
[+

orig

K Rekonstruktionsfehler
urspriingliche 50-Hz-Amplitude
rekonstruierte 50-Hz-Amplitude
Phasendifferenz zwischen Original
und rekonstruiertem Signal

Apri
AI’GC
Ap

Dieser Faktor vereint Amplituden- und
Phasenabweichung in ein Gesamtfehler-
mass, das zwischen 0 (kein Fehler) und 1
(ganz schlecht) variieren kann. Der K-Fak-
tor wird jeweils iiber dem Zeitfenster ermit-
telt, das als Eingabe fiir die neuronalen
Netzwerke dient. Je kleiner der K-Faktor
ist, desto genauer ist die Rekonstruktion
des Primarstroms. Der hochste noch akzep-
table K-Faktor hingt vom Schutzalgorith-
mus ab, der das rekonstruierte Signal be-
nutzt. Als Richtwert wird ein Maximum
von 0,5 angenommen.

Ergebnisse

Es muss natiirlich die Rekonstruktions-
qualitdt sowohl bei den gelernten Beispie-
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Bild 10 Primérstrom und
gesattigter Sekundar-
strom fir ein Beispiel
aus der Lerndatenmenge

Wandler 5P5,
s = 15KA, o = 0

Bild 11 Urspriingliche

und rekonstruierte 50-Hz-

Komponente

Resultat fiir das Beispiel
nach Bild 10: K,,,=0,3392

Bild 12: Primérstrom und
gesattigter Sekundar-
strom fiir ein Beispiel
aus der Testdatenmenge
Wandler 5P5, /5 = 7KA,

a=0

Bild 13 Urspriingliche

und rekonstruierte 50-Hz-

Komponente

Resultat fiir das Beispiel
nach Bild 12: K;,,,,=0,1984

len, als auch bei einer unabhingigen Test-
menge ermittelt werden. Diese erlaubt ja
erst die Beurteilung der Verallgemeine-
rungsfahigkeit fiir unbekannte Wandler-
kennlinien (innerhalb der trainierten Feh-
lerklasse) und abweichende Netz- und Si-
gnalparameter. Die Tabellen II und III fas-
sen die statistische Verteilung des K-Fak-
tors zusammen.

Die Ergebnisse sind vielversprechend.
Die Rekonstruktion des Primirstroms der
Lernbeispiele erfiillt iiberall die Qualitits-
anforderungen. Typischerweise ist der K-
Faktor am Anfang eines Kurzschlussignals
am grossten und klingt anschliessend
schnell ab. Das ist aus den Statistiken der
zweitgrossten K-Faktoren ersichtlich.

Ein Vergleich der K-Faktoren der Test-
daten mit denjenigen der Lerndaten zeigt,
dass sie von derselben Grossenordnung
sind und dass somit eine gute Verallgemei-
nerung erreicht werden konnte. Ein einzi-
ger Testfall ist knapp iiber dem Referenz-
wert fiir den maximalen K-Faktor, was aber
fiir den Schutzalgorithmus bei weitem nicht
kritisch ist.

Um die Rekonstruktionsqualitdt auch vi-
suell darstellen zu konnen, wurden in den
Bildern 10-13 je ein Signalverlauf aus der
Menge der Lerndaten und ein Beispiel aus
den Testdaten in ein Zeitsignal zurlick-
transformiert. Beim Ubergang vom rekon-
struierten Signal eines Zeitfensters zur Re-
konstruktion des nidchsten sind dabei kleine
Sprungstellen zu sehen.

Schlussfolgerungen

Die hier beschriebene Studie zeigt, dass
neuronale Netzwerke erfolgreich zur Lo-
sung des Problems der Wandlersittigung
eingesetzt werden konnen. Wird die Forde-
rung nach exakter Rekonstruktion von Pri-
mérstromen aus gesittigten Sekundirstro-
men etwas abgeschwiicht, ist es moglich,
mit wenig Wissen iiber die Wandlercharak-
teristik und tiber das Umfeld des Wandlers
auszukommen und dabei eine fiir Schutz-
zwecke gute Rekonstruktionsqualitit zu er-
reichen. Obwohl das Hauptgewicht der
Studie auf eine Anwendung im Sammel-
schienenschutz ausgerichtet war, ist der
verwendete Ansatz auch in anderen Schutz-
systemen einsetzbar, wo ebenfalls nur die
50-Hz-Komponente des Signals benétigt
wird.

Mit der Wahl einer Frequenzanalyse als
Vorverarbeitung konnte das neuronale
Netzwerk klein gehalten werden, wodurch
es effizient trainiert werden konnte und
ein gutes Verallgemeinerungsverhalten er-
reicht wurde. Ein kleines Netzwerk eignet
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sich auch besser fiir die Implementation in
einer Echtzeitumgebung.

Ausblick

Neuronale Netzwerke konnen grund-
sétzlich auf zwei verschiedene Arten einge-
setzt werden. Zum einen kann man ein
Netzwerk im Labor fiir seine Aufgabe trai-
nieren und anschliessend im Feld ohne wei-
teres Dazulernen einsetzen. Zum anderen
ist es aber auch moglich, dass ein Netzwerk
wihrend der Erfiillung seiner Aufgabe kon-
tinuierlich weiterlernt. Dazu muss aber ein
Riickkoppelungssignal zur Verfiigung ste-
hen, das ihm mitteilt, wie gut es seine Auf-
gabe erfiillt. Beim Problem der Rekon-
struktion gesittigter Strome ist dies aber
nicht moglich, da erstens kein solcher wis-
sender «Lehrer» vorhanden ist und zwei-
tens sich ein Netzwerk bei dieser An-
wendung keine Fehler leisten kann. Ein
neuronales Netzwerk lernt aber nur aus
Fehlern.

Es gibt aber noch eine Reihe weiterer
Verbesserungsmoglichkeiten, die unter-
sucht werden konnen. Eine Moglichkeit
besteht in der Integration der Schutzalgo-
rithmen in die neuronalen Netzwerke, d.h.
die Netzwerke werden nicht fiir die Signal-
rekonstruktion allein trainiert, sondern
direkt fiir die Erzeugung von Schutzent-
scheiden. Der Schutz kann so moglicher-
weise schneller reagieren, die Verifikation
seiner Entscheidungen wird allerdings
schwieriger.

In der Realitit kommen ausser Normal-
stromen und Kurzschlussstromen noch
weitere Signaltypen vor, zum Beispiel
jene bei Schaltvorgiingen. Die Beriicksich-
tigung solcher Signaltypen hat bei einer
Weiterfiihrung der Untersuchungen hihere
Prioritit als die Erzeugung von Schutzent-
scheiden. Im weiteren wird die Reali-
sierung der neuronalen Netzwerke in
Hardware, zum Beispiel durch den Einsatz
eines kommerziellen Neurochips, oder die
Simulation auf schnellen Rechnern er-
wogen.
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transformateurs d'intensité

tion.

Traitement des signaux neuronal
pour une protection stire

L'utilisation des réseaux neuronaux au probléme de la saturation des

Les transformateurs de mesure utilisés dans les systemes de protection des systeémes
d’énergie électrique subissent des effets de saturation due a des courants tres élevés
(figures 1 et 2). Pour éviter un fonctionnement intempestif, le systeme de protection doit
alors compenser les distorsions des signaux causées par les transformateurs de mesure.
Le présent article montre comment on peut reconstruire, a I’aide d’un réseau neuronal,
le courant effectif a partir du signal de mesure distordu. Le réseau, sans connaissance
précise des parametres du systeme et du transformateur, atteint une qualité de recon-
struction qui permet |'utilisation fructueuse de ce réseau dans les systémes de protec-

Le réseau neuronal utilisé (figure 5) a été entrainé pour réaliser la reconstruction de
I’amplitude et de la phase de la composante 50 Hz du courant primaire du transforma-
teur de mesure, une partie du spectre de fréquences du courant secondaire servant au
réseau pour I'introduction. Le signal, c’est-a-dire le courant secondaire, est d’abord
balayé avec 2,4 kHz et divisé en fenétres de temps de la taille d’une période 50 Hz. Puis,
a I’aide d’une analyse de Fourier (FFT), on en détermine le spectre de fréquences sur la
fenétre de temps. Les amplitudes et phases déterminées sont ensuite transmises a deux
réseaux neuronaux qui reconstruisent chacun I’amplitude et la phase de la composante
50 Hz du courant primaire. Les figures 10 et 11 renseignent sur la qualité de reconstruc-
tion obtenue pour un exemple tiré de I’ensemble des données apprises et les figures 12
et 13 pour un autre exemple tiré des données de test.
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