Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 84 (1993)

Heft: 25

Artikel: Fehlerfreie Software : ein realistisches Ziel?

Autor: Schaltegger, Peter

DOl: https://doi.org/10.5169/seals-902768

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-902768
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Softwarequalitat

Moderne elektronische Gerate beinhalten meist Hard- und Softwarefunktionen. Wahrend
sich zur Sicherstellung der Hardwarequalitdt mehr oder weniger einheitliche Konzepte
durchgesetzt und bewahrt haben, haben die erst nach 1985 entstandenen Software-QS-
Konzepte noch nicht dieselbe Verbreitung gefunden. Dass ein Nachholbedarf besteht,
belegen einige Softwareausfalle, die in letzter Zeit Schlagzeilen gemacht haben. In diesem
Beitrag wird gezeigt, wie die Zahl der Programmfehler reduziert werden kann, wobei
ein Vorgehen zur Produktsicherung als auch ein prozessorientiertes Vorgehen dargestellt
werden.

Fehlerfreie Software -
ein realistisches Ziel?

Adresse des Autors:
Peter Schaltegger, lic. math., Schaltegger
Zuverldssigkeitssicherung, 8126 Zumikon.

Bulletin SEV/VSE 25/93

B Peter Schaltegger

Mit der Qualitidt und Zuverldssigkeit der
Hardware befasst sich die Industrie seit Jah-
ren. Zwei Stichworte dazu sind Kompo-
nentenpriifung und Zuverldssigkeitsanalysen.
Gewisse Konzepte, wie zum Beispiel die
Verlagerung von der Eingangspriifung beim
Geritehersteller zur Ausgangspriifung beim
Komponentenhersteller, haben sich durchge-
setzt. Uber Qualititssicherungskonzepte fiir
Software aber, sowie dariiber, wie man bei
einer allfilligen Einfiihrung vorzugehen hat,
besteht nicht dieselbe Klarheit. Dabei liegen
in der Elektronikindustrie die Kosten fiir die
Softwareentwicklung in derselben Grossen-
ordnung wie fiir die Hardwareentwicklung.
Andererseits kann man doch feststellen, dass
das Bewusstsein wichst — und von Entwick-
lungsleitern namhafter Unternehmen geteilt
wird —, dass die Software-Qualititssicherung
schon bald von grosser Wichtigkeit sein wird.

Qualitdtsrelevante Unterschiede
bei der Behandlung von Hardware
und Software

Jeder Hardwareabnehmer verlangt von
seinem Lieferanten eine hohe Qualitit und
Zuverlissigkeit der Produkte. Durch den Er-
werb des Qualititssicherungs-Zertifikats,
aber auch durch Abgabe von Zuverlissig-
keitsanalysen oder zumindest durch Angabe

eines MTBF-Wertes wird den Wiinschen der
Abnehmer Rechnung getragen. Nach einem
Ausfall interessiert sich der Abnehmer nicht
dafiir, ob die Hardware oder die Software
schuld ist; er verlangt, dass moglichst wenig
Ausfille auftreten. Es liegt also nicht zuletzt
im eigenen Interesse des Lieferanten, das
oben angetonte Ungleichgewicht zwischen
Soft- und Hardwarequalitit sowie Zuverlds-
sigkeit zu beheben. Softwarezuverlissigkeit
darf nicht erst wichtig sein, wenn ein Soft-
warefehler einen Ausfall erzeugt.

Im folgenden soll zundchst auf Unter-
schiede und Gemeinsamkeiten von Hard-
ware und Software hingewiesen werden. An-
schliessend wenden wir uns der Fehlerfrei-
heit von Software zu. Welche Massnahmen
konnen kurz- und langfristig das Ziel der
Fehlerfreiheit néherbringen? Gerade bei pro-
duktintegrierter Software ist die Fehlerfrei-
heit besonders wichtig. In der Produktehaft-
pflicht ist die Fehlerfreiheit ein zentraler Be-
griff. Auch Softwarefehler diirfen nicht zu
einem Sicherheitsrisiko werden.

Hardwaresysteme bestehen aus elektroni-
schen Komponenten, Lotstellen, Leiterbah-
nen, Steckern usw. Die Aufgliederung in
Komponenten, Baugruppen und Gesamt-
systeme ist daher naheliegend. Entsprechend
gibt es Komponenten-, Baugruppen- und
Systemtests. Fiir die Komponentenqualitit
ist primér der Komponentenhersteller verant-,
wortlich. Die Komponenten sind fast immer
Grossserienprodukte von recht konstanter
Qualitit. Die Geritequalitdt hingt von den
eingekauften Komponenten, der Entwick-
lung und der Fertigung ab.

21

informatik

Glossar
Case Computer-Aided Software
Engineering
FMEA Failure Modes and Effect Analysis
KLOC 1000 Lines of Code
MTBF Mean Time Between Failures
Tabelle |

Software besteht aus Codezeilen, Moduln,
dem Gesamtprogramm und der Dokumenta-
tion. Die Programmqualitit hingt aus-
schliesslich von der Entwicklung ab. Zuge-
kauft werden allenfalls Hilfsprogramme,
nicht aber Komponenten. Jede Codezeile
kann einen Fehler aufweisen, da sie von ei-
nem Programmierer geschrieben wurde. Auf
Modul- und Programmebene besteht zwar
eine gewisse Analogie zu Prints und reinen
Hardwaresystemen. Modul- und Systemtests
haben sich eingebiirgert. Hinzu kommt allen-
falls ein Abnahmetest fiir den Kunden. Doch
der Faktor Mensch spielt weiterhin eine gros-
sere Rolle als bei der Hardware, bei der die
Komponentenherstellung und = Printbestiik-
kung stark automatisiert sind.

Beschrinkung auf die Fehlerfreiheit

Da die Qualitdtssicherung ein sehr breites
Gebiet ist, soll bei der folgenden Betrachtung
eine Beschrankung auf die Fehlerfreiheit vor-
genommen werden; viele Autoren sprechen
dann von Softwarezuverléssigkeit. In der Zu-
verlissigkeitssicherung beschridnkt man sich
auf das Merkmal der Funktionsfahigkeit. Sie
kann durch Ausfille eingeschrinkt oder ver-
nichtet werden. Ausfille sind auf Fehler zu-
riickzufithren. Ein gradueller Unterschied
zwischen Hardware und Software besteht
darin, dass die Hardware durch physikalisch-
chemische Prozesse beeintrichtigt werden
kann, was auch durch Priifungen des Herstel-
lers nicht génzlich vermieden werden kann.
Da Software immateriell ist, besteht dieses
Problem nicht. Fragen der Sicherheit werden
hier nicht speziell behandelt, obwohl Sicher-
heitsanforderungen die Bedeutung der Feh-
lerfreiheit wesentlich erhohen.

Bei Software kann man sich auf die Ent-
wicklung konzentrieren. Es entsteht ein Pro-
totyp. Ist er fehlerfrei, so sind alle Kopien
auch fehlerfrei. Die Produktion, das Kopie-
ren ist ein problemloser Vorgang. Allerdings
ist die Kennzeichnung des Status des Proto-
typen nicht trivial. Da der Einfluss der Mitar-
beiter grosser ist und Menschen Fehler ma-
chen konnen, enthalten Programme immer
Fehler. Case-Werkzeuge, wie beispielsweise
Debugger, sind Ansitze in Richtung Teil-
automation. Die Fehlerbehebung ist deshalb
“auf absehbare Zeit ein wichtiges Element der
Software-Zuverldssigkeitssicherung. Infor-
mation und Schulung der Mitarbeiter haben
deshalb einen hohen Stellenwert.

22

Zusammenhang zwischen Fehlern
und Ausfillen

Bei Zuverldssigkeitsanalysen von Hard-
ware wird angenommen, dass ein Kompo-
nentenausfall zu einem Geriteausfall fiihrt,
was nicht immer zutrifft. Das fiihrt tibrigens
dazu, dass die Zahl der Ausfille im Feld tiefer
liegt, als nach der Zuverldssigkeitsanalyse zu
erwarten wire. Mit einer Analyse der Aus-
fallarten (FMEA) kann dieser Effekt aller-
dings berticksichtigt werden. Die Auswirkun-
gen von Softwarefehlern sind mannigfaltiger
als die von Hardwarefehlern. Ein Software-
fehler kann zum Beispiel zu einem formalen
Fehler auf einer Anzeige, er kann aber auch
zu einem Vollausfall fiihren. FMEA-Analy-
sen werden {ibrigens auch fiir Software vor-
geschlagen. Grundsitzlich kann man sich
nicht auf bestimmte Arten von Softwarefeh-
lern beschrinken. Software ist nicht stetig,
worauf in [1] hingewiesen wird. Der Begriff
Fehler ist bei Software zentral. Softwarefeh-
ler diirfen allerdings nicht mit Programmier-
fehlern gleichgesetzt werden. Softwarefehler
entstehen schon in der Anforderungs- und
Konzeptphase.

Flexibilitit

Ein Vorteil der Software besteht in der
grosseren Flexibilitit, das heisst in ihrer An-
derbarkeit. Die Kehrseite zeigt sich darin,
dass Anderungen an der Software deren Qua-
litit beeintrichtigt. Fehlerkorrekturen kon-
nen vor der Freigabe gemacht werden; nach-
her sind sie — besonders bei produktintegrier-
ter Software — unerwiinscht.

Qualitiitsbewusstsein, Arbeitsweise

Bei der Hardwareentwicklung ist in den
letzten Jahren das Qualititsbewusstsein ge-
stiegen; man spricht zurecht von Engineer-
ing. Bei der Softwareentwicklung haben
sich erst Elemente des Engineerings einge-
biirgert, wobei sich die Softwareunternehmen
diesbeziiglich mehr als die Hardwareherstel-
ler unterscheiden. Realistischerweise muss
man sogar feststellen, dass das Qualititsbe-
wusstsein noch wenig entwickelt ist. Das

heisst nun nicht, dass alle Software von frag-
wiirdiger Qualitit ist. Aber das Bewusstsein,
dass - jede Phase so zu bearbeiten ist, dass
moglichst wenig Fehler entstehen, ist noch
zuwenig ausgeprigt. Wer denkt bei der For-
mulierung des Pflichtenhefts ernsthaft an
mogliche Fehler? Zum Teil ist auch der Ar-
beitsstil im Softwaregewerbe wenig geeignet,
Fehler zu vermeiden. Natiirlich konnen Feh-
ler im nachhinein durch Tests weitgehend
eliminiert werden, so dass das Endprodukt
trotzdem befriedigt; der Testaufwand ist aber
ein wesentlicher Kostenfaktor.

Die Software-Qualititssicherung hat zum
Ziel, Qualitit in jeder Phase zu gewdihrlei-
sten. Qualitdtspriifungen und Korrektur-
massnahmen sollen reduziert werden. Auf
das Testen von Software wird man allerdings
nicht so bald verzichten konnen, denn wel-
cher Software-Projektleiter konnte behaup-
ten, dass sein Programm fehlerfrei sei, oder
angeben, wieviele Fehler es enthilt. Erfah-
rungswerte tiber die Zahl der Fehler, die ein
Programm nach Freigabe noch enthilt, spre-
chen von 2 bis 10 Fehlern pro 1000 Zeilen
ausfiihrbaren Codes (KLOC). Auf jeden Fall
besteht ein Bedarf, die Zuverldssigkeit von
Programmen beurteilen zu kdnnen.

Software-Fehlerbehebung

Wie bei der Hardware unterscheidet man
auch bei der Software zwischen Engineering
und Qualitdtssicherung, obwohl zwischen
den beiden Titigkeiten Wechselwirkungen
bestehen. Das Software-Engineering wird
sich in Richtung Case weiterentwickeln, wo-
bei die Anliegen der Qualitétssicherung noch
vermehrt miteinbezogen werden miissen.

Die Software-Qualititssicherung stellt
Kataloge von Merkmalen zur Verfiigung. Zu
Beginn eines Softwareprojektes ist ein An-
forderungsprofil aufzustellen, in dem die
Wichtigkeit der verschiedenen Qualitits-
merkmale festgelegt wird; immer wichtig
wird das Merkmal der Fehlerfreiheit sein.
Qualititsmerkmale koénnen quantifizierbar

Begriffe und Abkiirzungen nach IEEE-Standard 982.2

Irrtum (Error):

Defekt:
Fehler (Fault):

Ausfall (Failure):

Metrik:

Tabelle Il

Menschliche Handlung, die zu einer Abweichung
vom angestrebten Soll-Zustand (Softwarefehler)
fiihrt.

Eine Anomalie eines Produktes (oder Dokuments)
Eine Bedingung, die bei einer funktionalen Einheit
dazu fiihrt, dass diese ihre Funktion nicht mehr
ausfiihren kann.

Die Beendigung der Fihigkeit einer funktionalen
Einheit, ihre bendtigte Funktion auszufiihren.

Eine quantitative Abschétzung des Grades, den ein
Softwareprodukt oder -prozess beziiglich eines
Merkmals aufweist.

Bulletin ASE/UCS 25/93

oder nichtquantifizierbar sein. Tendenziell
sind quantitative Merkmale, welche durch
Kennzahlen ausgedriickt werden, zu bevor-
zugen (Fehler sind quantifizierbar). Betref-
fend Metriken wird auf [1] verwiesen.

Zuverlissigkeitsanalysen fiir Software?

Der Gedanke liegt nahe, — analog wie bei
der Hardwaretechnik — auch in der Software-
entwicklung mit Zuverldssigkeitsanalysen zu
arbeiten. Leider ist dies nicht moglich. Die
Zuverldssigkeitsanalysen von Hardware ba-
sieren auf Datensammlungen mit Kompo-
nentenausfallraten. Ausfallraten zum Bei-
spiel fiir Codezeilen zu ermitteln, ist doch
wohl illusorisch. Es muss also ein anderer
Ansatz gefunden werden.

Fehlerentdeckung und -behebung

Da die Fehler den entscheidenden Faktor
darstellen, muss bei der Fehlerentdeckung
und -behebung angesetzt werden. Der IEEE-
Standard 982.2 [2] unterscheidet zwischen
Irrtum (Error), Fehler (Fault) und Ausfall
(Failure). Ein Irrtum ist eine menschliche
Handlung, die zu einer Abweichung vom an-
gestrebten Soll-Zustand fiihrt. Ein Fehler ist
ein Codefehler. Wird die fehlerhafte Code-
zeile ausgefiihrt, so verursacht sie einen Aus-
fall, das heisst eine Abweichung vom Soll-
Zustand. Der Fehler bezieht sich auf den
Zustand des Programms; der Ausfall ist ein
zeitabhingiges Ereignis beim Programmab-
lauf.

Irrtiimer konnen in jeder Entwick-
lungsphase entstehen und sich in einem Pro-
grammfehler dussern. Programmfehler verur-
sachen Ausfille, wobei man unter Ausfall die
Beeintrichtigung einer wesentlichen Pro-
grammfunktion versteht. Was als Ausfall an-
zusehen ist, muss von Fall zu Fall im Detail
festgelegt werden. Jeder Ausfall geht zwar
auf mindestens einen Programmfehler zu-
riick, aber nicht jeder Fehler fiithrt zu einer
Auswirkung, welche das Kriterium eines
Ausfalls erfiillt. Da komplexe Programme
eine enorme Zahl von Ablaufpfaden aufwei-
sen, werden nicht alle Fehler in der Testphase
entdeckt. Die Fehlerwirkung kann auch von
den Inputdaten abhidngen. Die Ausfille sind
deshalb zeitabhidngig und scheinbar zufillig
verteilt, obwohl die Fehler natiirlich determi-
nistisch sind. Es kann auch Fehler geben, die
nie zu einem Ausfall fiihren. Ein Programm
weist erst nach der Integration die volle
Funktionalitit auf, weshalb Ausfille erst
beim Systemtest beurteilt werden konnen.
Das Ziel der Software-Zuverldssigkeitsprii-
fung ist das Vermeiden von Ausfillen.

Fehleraufzeichnung

Die Phase des Systemtests wird in ver-
schiedene Testabschnitte und -ldufe unter-
teilt. Die Ausfille werden protokolliert und
die verursachenden Fehler gesucht und korri-

Bulletin SEV/VSE 25/93

A

Fehler

Restfehler

Phase

Bild 1a Fehlerentwicklung, wenn nur der System-
test durchgefiihrt wird

A

Fehler

Restfehler

Phase

Bild 1b Fehlerentwicklung beim prozess-
orientierten Vorgehen

giert. Beim Testen wird man eine Abnahme
der Zahl gefundener Fehler pro Testabschnitt
feststellen, was einen Reifeprozess zum
Ausdruck bringt. Als Kriterium fiir den Ab-
bruch der Testphase wird das Unterschreiten
einer Zahl gefundener Fehler pro Zeitab-
schnitt vorgeschlagen. Die Fehlerfunktion,
welche die kumulierten Fehler im Testverlauf
darstellt, legt es nahe, das Unterschreiten
einer Zahl gefundener Fehler pro Zeiteinheit
als Kriterium fiir den Abbruch der Testphase
zu verwenden. Die Auswertung der Fehler-
protokollierung liefert Kennzahlen iiber die
Reduktion der Fehlerdichte pro 1000 Zeilen
Code. Die Kennzahl gibt fiir spitere Pro-
jekte einen Hinweis, wieviele Fehler zu
erwarten sind. Allenfalls konnen die Fehler
nach der Schwere ihrer Auswirkung unter-
schieden werden (gravierende, formale
Fehler).

Die Fehlererfassung muss durch die Me-
trik der Testabdeckung erginzt werden. Bei
geringer Testabdeckung findet man weniger
Fehler. Man wird bald das Kriterium fiir den
Testabbruch erreichen. Nur bei hoher Testab-
deckung kann der Schluss gezogen werden,
dass das Programm weitgehend fehlerfrei ist.
Die Testabdeckung gibt auch einen Hinweis
auf die Zahl der Restfehler, die nicht gefun-
den wurden. Schon bei der Testplanung muss
man sich mit der Testabdeckung befassen.
Einerseits soll moglichst das ganze Pro-

Software'dﬁéllt.é't

gramm getestet werden, andererseits aber
eine grossere Testredundanz vermieden wer-
den.

Die Kostenfrage

Nun wird die Frage auftauchen, ob ein
systematisches Testen die Programmkosten
nicht wesentlich erhoht. Darauf ldsst sich ant-
worten, dass das Testen unvermeidlich ist
und bereits heute recht viel kostet, dass aber
in der Testphase vielerorts noch ein erhebli-
ches Effizienzsteigerungs-Potential vorliegt.
Mit einem systematischen Vorgehen kann
man bei gleichem Aufwand mehr Testab-
deckung und -tiefe erreichen. Da ein Ausfall
beim Testen (inkl. Fehlerkorrektur) weit
weniger kostet, als ein Ausfall im Feldein-
satz, ist das Testen sehr lohnend, solange rele-
vante Fehler gefunden werden. Immerhin,
professionelles Testen kann den Testaufwand
erhéhen, und Einsparungen werden erst spi-
ter durch Reduktion von Garantie- und War-
tungskosten realisiert.

Fehlerdatenerfassung

Bei der Einfiihrung der Fehlerdatenerfas-
sung wird empfohlen, dass man beim Sy-
stemtest beginnt und eventuell spéter den
Modultest einbezieht. Hiufig wird ein Mo-
dul von einem einzelnen Programmierer er-
stellt. Es konnte der Verdacht aufkommen,
dass die Fehlerdatenerfassung der individu-
ellen Qualifikation dient. Das darf natiirlich
nicht sein. Der Programmierer sollte die Ge-
legenheit haben, Fehler selbst zu eliminie-
ren. Die Fehlerbehebung ist auf der Modul-
stufe noch etwas kostengiinstiger als auf der
Systemstufe.

Testteam

Der Systemtest sollte nicht durch das
Entwicklerteam, sondern durch ein Testteam
durchgefiihrt werden. Eine solche Arbeits-
teilung existiert ja auch bei der Hardware
(Priiffeld). Das Programmtesten stellt andere
Anforderungen als das Programmentwik-
keln. Zudem ist es auch aus psychologischen
Griinden schwierig, ein Programm zu ent-
wickeln und nachher kritisch zu testen. Es
gibt unter anderem Fehler, die auf eine fal-
sche Interpretation des Pflichtenhefts zu-
riickzufiihren sind. Diese wiirden durch den
Programmierer wohl kaum entdeckt.

Weiteres Vorgehen

Zwei wichtige Metriken wurden erwihnt:
die Fehlerdichte und die Testabdeckung.
Spiter sollten je nach Anforderungen weitere
Metriken und Indikatoren hinzukommen.
Eine Liste von Metriken mit Kurzbeschrei-
bungen enthilt der IEEE-Standard 982.2 [2].
Die Auswahl hingt von der Art der Software
ab. Zudem muss das Kosten-Nutzen-Ver-
hiltnis beachtet werden. Eine sehr sorgfiltige
Auswahl wird empfohlen.

23

Informatik

Vorgehen zur Fehlerreduktion
in Programmen

Software-Qualititssicherung
als Rahmen

Software-Engineering befindet sich in
rascher Entwicklung und Case-Werkzeuge
finden immer weitere Verbreitung. Die Soft-
ware-Qualitdtssicherung wird durch den
Zwang zur Zertifizierung gefordert. Die Pro-
duktehaftung ist ein weiteres Stichwort, wo-
bei in diesem Zusammenhang der Fehlerfrei-
heit besondere Bedeutung zukommt. Das
Ziel kann zundchst durch Konzentration auf
die Produktqualitit und spiter durch den
Ausbau zu einer prozessorienten Fehlerbe-
seitigung erreicht werden.

Vorgehensweise

Eine erste Voraussetzung ist die Fehlerda-
tenerfassung. Sie beginnt mit der Ausfallpro-
tokollierung und soll zundchst in der Phase
des Systemtests eingefiihrt werden. Die An-
zahl Ausfille pro Zeiteinheit, zum Beispiel
pro Testtag, werden erfasst und graphisch
aufgetragen. Die Ausfille werden nach
Schwere unterschieden. Aus der Protokollie-
rung muss klar hervorgehen, wie sich ein
Ausfall gedussert hat und wo bzw. wann er
aufgetreten ist. Wenn moglich soll ein Beleg
den Ausfall illustrieren. Zusammen mit dem
Programmierer muss dann der Fehler im
Code gesucht werden.

Die Protokollierung muss durch die Test-
abdeckung ergdnzt werden. Sie kann funk-
tions- oder strukturbezogen vorgenommen
werden. Die Teilfunktionen werden aufge-
listet. In der Testplanung wird festgehalten,
wie vorzugehen ist. Wihrend den Tests wird
protokolliert, welche Teilfunktionen getestet
wurden. Die Testabdeckung ist der Quotient
getestete Funktionen zu allen Funktionen.
Fiir die Testabdeckung ist eine Zielvorgabe
zu machen. Sie héngt ab vom Risiko, das man
zu tragen bereit ist, und vom Grad der Detail-
lierung der Testplanung. Auch der Testauf-
wand in Mannstunden soll erfasst werden.
Gegen Ende der Testphase soll eine Abschiit-
zung der Restfehler vorgenommen werden.
Das Vorgehen kann dem IEEE-Standard
982.2 entnommen werden. Die Restfehlerab-
schitzung kann anfanglich zu einer Erniich-
terung fiihren.

Schliesslich wird ein Freigabekriterium
festgelegt. Berticksichtigt werden die Ausfél-
le, die pro Zeiteinheit noch gefunden wurden,
die erreichte Testabdeckung und allenfalls
der Testaufwand. Zur Beurteilung der Erfah-
rungswerte aus den Tests konnen auch
Normwerte aus der Literatur beigezogen
werden. Der Entscheid iber die Freigabe
wird der Projektleiter zusammen mit dem
Testteam treffen. Durch die Berticksichti-
gung von Metriken wird der Entscheid auf

24

eine objektive Grundlage gestellt, ein Vorge-
hen, das den Projektleiter erheblich entlastet.

Worin liegt der Sinn des oben geschilder-
ten Vorgehens? Sein Hauptvorteil liegt darin,
dass man iiber die Fehlerhdufigkeit genauere
und objektive Informationen erhélt. Damit
kann man das Risiko, das verbleibende Fehler
darstellen, erst richtig einschétzen. Die Erfah-
rung zeigt, dass die Beurteilungssicherheit
den Freigabeentscheid wesentlich erleichert.
Da die Tests solange weitergefiihrt werden,
bis die Kriterien erfiillt sind, wird eine hohe
Zuverlissigkeit des Programms erreicht. Zu-
dem werden Erfahrungswerte fiir zukiinftige
Projekte gewonnen. Die Fehlerdichte bei Be-
ginn und am Ende des Systemtests kann ab-
geschitzt werden. Fiir die Anzahl der verblie-
benen Fehler wird die Restfehlerabschitzung
verwendet. Sie gibt nur die Grossenordnung
an. Daraus ist ersichtlich, welcher Teil aller
Fehler durch die Tests eliminiert wurde.

Die Analyse der Art der Fehler und wo sie
entstanden sind, liefert klare Hinweise, wie
die Fehlerhdufigkeit reduziert werden kann.
Wenn neue Methoden und Werkzeuge einge-
setzt werden, kann mit Hilfe der Metriken
deren Einfluss auf die Fehlerhdufigkeit beur-
teilt werden.

Information und Schulung

Information und Schulung waren bereits
bei der Einfiihrung der Hardware-Qualitéts-
sicherung ein Muss. Wie sollte es da bei der
Software anders sein? Insbesondere der Pro-
jektleiter muss von der Notwendigkeit und
vom Nutzen der Massnahmen iiberzeugt
sein. Bei der Einfiihrung sollte er durch einen
internen oder externen Berater unterstiitzt
werden. Das ganze Projektteam muss recht-
zeitig iiber die Einfiihrung informiert wer-
den. Motivation ist dringend nétig; teilweise
miissen vorgefasste Meinungen iiber die
Qualitdtssicherung abgebaut werden. Am
besten sind die Voraussetzungen, wenn im
ganzen Softwarebereich eine gute Qualitits-
motivation besteht. Die Schulung betrifft
vor allem das Testteam, das sich mit der
Fehlerdatenerfasssung befasst.

Prozessorientierte Fehlerbehebung

Produkt- und Prozessorientierung

In der Qualititssicherung unterscheidet man
allgemein produkt- und prozessorientierte
Massnahmen. Grundsitzlich muss der Pro-
zess der Softwareentwicklung beherrscht
werden, damit eine hohe Produktqualitit er-
reicht werden kann. Die Abnehmer der Pro-
gramme sind an der Produktqualitit interes-
siert. Die prozessorientierte Qualititssiche-
rung ist wegen der Neuerungen bei Methoden
und Werkzeugen eine langfristige Aufgabe,
die schrittweise zu realisieren ist. Case-Werk-
zeuge werden dazu einen wesentlichen Bei-

Phase Massnahme
Anforderungen Pflichtenheftreview
Entwurf Entwurfsreview
Implementierung Modultests
Integration Systemtests
Betrieb Fehlerkorrektur

Tabelle Il Reviews und Tests nach Phasen

trag leisten. Als erste Massnahme wurde im
letzten Abschnitt der Ausbau der Testphase
vorgeschlagen. Damit kann das Ziel der Pro-
duktefehlerfreiheit weitgehend erreicht wer-
den, wobei allenfalls ein hoherer Aufwand
fiir die Fehlerbehebung in Kauf zu nehmen
ist. Der Vorteil der Prozessorientierung be-
steht darin, dass die Fehler phasenweise eli-
miniert werden, das heisst, dass ein Teil der
Fehler frither beseitigt wird. Je friiher ein
Fehler korrigiert wird, desto billiger. Ein
anderer Aspekt ist allerdings ebenso wichtig:
in jeder Phase werden bestimmte Arten von
Fehlern eliminiert. Dadurch wird der System-
test entlastet. Das Spektrum der Fehler ist
enger. Auf diese Weise erreicht man eine
grossere Testtiefe. Schliesslich kénnen bei
Konzentration auf den Systemtest konzep-
tionelle Fehler kaum noch eliminiert werden.
Bei phasenweisem Vorgehen gibt es ein Ent-
wurfsreview.

Prozessorientiertes Konzept
fiir nahezu fehlerfreie Programme

Die Reduktion der Fehler muss in allen
Phasen der Softwareentwicklung erfolgen.
Dazu ist ein Konzept von Reviews und Tests
erforderlich. Méngel sollen schon im Pflich-
tenheft beseitigt werden. Es sind dies Liicken,
Widerspriiche, Fehler und Unklarheiten. Sie
konnen in spéteren Phasen zu Fehlern und,
auch wenn sie entdeckt werden, zu Mehrauf-
wand fiihren. In der Entwurfsphase sind kon-
zeptionelle Mingel besonders schwerwie-
gend, weil sie in spiteren Phasen kaum noch
zu beseitigen sind.

Ausgangspunkt ist ein einfaches Phasen-
modell. Reviews sind am Schluss der Anfor-
derungs- und Entwurfsphase, Modultests

Vorgehensschritte bei Reviews

1. Der Reviewer tibernimmt die Unterlagen.

2. Der Reviewer priift die Unterlagen.

3. Die gefundenen Mingel werden
besprochen.

4. Reviewer und Ersteller analysieren die
Ursachen.

5. Der Ersteller iiberarbeitet sein Programm.

6. Reviewer iiberpriift die Unterlagen
nochmals, allein oder mit dem Ersteller.

7. Die Unterlagen werden freigegeben.

Tabelle IV

Bulletin ASE/UCS 25/93

nach der Implementierung, der Systemtest
nach der Integration vorgesehen (Tab. III),
wobei zu beachten ist, dass der Kiirze halber
nur die Uberpriifungsinstrumente (Reviews,
Tests) erwihnt sind. Die Uberpriifung der
Dokumentation soll hervorgehoben werden,
denn sie ist fiir die Fehlerbehebung in der
Betriebsphase von grundlegender Bedeu-
tung.

Wihrend Modultests nicht wesentlich
vom Systemtest verschieden sind, sind Re-
views wesentlich anders geartet. Gelegent-
lich besteht eine Skepsis gegeniiber der
Wirksamkeit von Reviews. Sie miissen gut
vorbereitet und systematisch durchgefiihrt
werden. Die Vorgehensschritte sind in Tabel-
le IV angegeben. Werden Méngel in einzel-
nen Phasen festgestellt, so miissen Massnah-
men veranlasst werden, die jeweils von spe-
zifischen Gegebenheiten abhdngen. Es ist
klar, dass letztlich Faktoren wie professionel-
les Projektmanagement, Methoden, Werk-
zeuge usw. die Qualitit erhohen.

Anderungen als Fehlerquelle

Es ist eine Erfahrungstatsache, dass Ande-
rungen jeder Art Fehler erzeugen. Auch die
Fehlerbehebung ist mit Anderungen verbun-
den. Erhebungen haben gezeigt, dass bei An-
derungen die Fehlerdichte bis zu fiinfmal so
hoch liegt, wie bei der Erstprogrammierung.
Das ist ein weiteres Argument fiir die prozess-
orientierte Fehlerbehebung, wo die Fehler-

Bulletin SEV/VSE 25/93

dichte dauernd tief gehalten wird (Bild 1).
Das heisst aber auch, dass Pflichtenheftinde-
rungen minimal gehalten werden miissen.
Anderungen produzieren nicht nur Fehler,
sondern auch Kosten. Dabei verleitet die An-
derbarkeit der Software geradezu dazu, An-
derungen in allen Phasen vorzunehmen.
Neben der Fehlerfreiheit gibt es weitere
Qualitdtsmerkmale, die gewihrleistet wer-
den miissen. Dafiir ist ein analoges Vorge-
hen, wie das hier beschriebene, zu entwik-
keln. Nach Moglichkeit sind Metriken zu
verwenden. Es gibt aber auch Qualitéitsmerk-
male wie die Robustheit, fiir die keine Me-
triken existieren. In diesen Fillen gibt es oft
Indikatoren, die Hinweise auf die Merk-
malserfiillung geben. Die weitere Entwick-
lung, die etwa in den USA schon absehbar ist,

Softwarequalitat

diirfte in Richtung aussagefdhiger Metriken
gehen, die allerdings auch hohere Anforde-
rungen an die Fehlerdatenerfassung stellen
und einige Erfahrungen voraussetzen. Bei-
spiele solcher Metriken sind die Ausfallrate
und der mittlere Ausfallabstand, also Metri-
ken, die fiir Hardware bereits eingefiihrt sind.
Die Fehlerdatenerfassung wird in Zukunft
vermehrt durch Case-Werkzeuge unterstiitzt.

Literatur

[1] Software Metriken, R. Schild, Bulletin SEV/
V/SE 84(1993)25, S. 15-20.

[2] IEEE Standard 982.2, 1988: Guide for the
Use of IEEE Standard Dictionary of Measures to
Produce Reliable Software (in Uberarbeitung). IEEE
Standard Office, 345 East 47th Street, New York N.Y.
10017-2394.

. om . oy e

Logiciel sans fautes - un but réaliste?

Beaucoup d’appareils contiennent du hardware et du logiciel. I y a des concepts pour
I’assurance de la qualité du hardware, qui sont assez répandus et €prouvés. Apres 1985
de nouveaux concepts pour le logiciel ont été élaborés, qui ne sont pas encore tres
connus. L’état actuel n’est pas tout a fait satisfaisant. Quelques pannes, qui ont gagnées
une grande publicité, prouve ce fait. On présente deux méthodes pour diminuer le
nombre des fautes dans les programmes, une méthode orientée vers ’assurance de la

logiciel. |

qualité du produit et une autre pour améliorer le processus du développement du

23

	Fehlerfreie Software : ein realistisches Ziel?

