
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 84 (1993)

Heft: 25

Artikel: Fehlerfreie Software : ein realistisches Ziel?

Autor: Schaltegger, Peter

DOI: https://doi.org/10.5169/seals-902768

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-902768
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Softwarequalität

Moderne elektronische Geräte beinhalten meist Hard- und Softwarefunktionen. Während
sich zur Sicherstellung der Hardwarequalität mehr oder weniger einheitliche Konzepte
durchgesetzt und bewährt haben, haben die erst nach 1985 entstandenen Software-QS-

Konzepte noch nicht dieselbe Verbreitung gefunden. Dass ein Nachholbedarf besteht,
belegen einige Softwareausfälle, die in letzter Zeit Schlagzeilen gemacht haben. In diesem

Beitrag wird gezeigt, wie die Zahl der Programmfehler reduziert werden kann, wobei
ein Vorgehen zur Produktsicherung als auch ein prozessorientiertes Vorgehen dargestellt
werden.

Fehlerfreie Software -
ein realistisches Ziel?

Adresse des Autors:
Peter Schaltegger, lie. math., Schaltegger

Zuverlässigkeitssicherung, 8126 Zumikon.

Peter Schaltegger

Mit der Qualität und Zuverlässigkeit der
Hardware befasst sich die Industrie seit Jahren.

Zwei Stichworte dazu sind

Komponentenprüfung und Zuverlässigkeitsanalysen.
Gewisse Konzepte, wie zum Beispiel die

Verlagerung von der Eingangsprüfung beim
Gerätehersteller zur Ausgangsprüfung beim

Komponentenhersteller, haben sich durchgesetzt.

Über Qualitätssicherungskonzepte für
Software aber, sowie darüber, wie man bei
einer allfälligen Einführung vorzugehen hat,

besteht nicht dieselbe Klarheit. Dabei liegen
in der Elektronikindustrie die Kosten für die

Softwareentwicklung in derselben Grössen-

ordnung wie für die Hardwareentwicklung.
Andererseits kann man doch feststellen, dass

das Bewusstsein wächst - und von
Entwicklungsleitern namhafter Unternehmen geteilt
wird -, dass die Software-Qualitätssicherung
schon bald von grosser Wichtigkeit sein wird.

Qualitätsrelevante Unterschiede
bei der Behandlung von Hardware
und Software

Jeder Hardwareabnehmer verlangt von
seinem Lieferanten eine hohe Qualität und

Zuverlässigkeit der Produkte. Durch den
Erwerb des Qualitätssicherungs-Zertifikats,
aber auch durch Abgabe von
Zuverlässigkeitsanalysen oder zumindest durch Angabe

eines MTBF-Wertes wird den Wünschen der

Abnehmer Rechnung getragen. Nach einem
Ausfall interessiert sich der Abnehmer nicht
dafür, ob die Hardware oder die Software
schuld ist; er verlangt, dass möglichst wenig
Ausfälle auftreten. Es liegt also nicht zuletzt
im eigenen Interesse des Lieferanten, das

oben angetönte Ungleichgewicht zwischen
Soft- und Hardwarequalität sowie Zuverlässigkeit

zu beheben. Softwarezuverlässigkeit
darf nicht erst wichtig sein, wenn ein
Softwarefehler einen Ausfall erzeugt.

Im folgenden soll zunächst auf
Unterschiede und Gemeinsamkeiten von Hardware

und Software hingewiesen werden.
Anschliessend wenden wir uns der Fehlerfreiheit

von Software zu. Welche Massnahmen
können kurz- und langfristig das Ziel der
Fehlerfreiheit näherbringen? Gerade bei

produktintegrierter Software ist die Fehlerfreiheit

besonders wichtig. In der Produktehaftpflicht

ist die Fehlerfreiheit ein zentraler
Begriff. Auch Softwarefehler dürfen nicht zu
einem Sicherheitsrisiko werden.

Hardwaresysteme bestehen aus elektronischen

Komponenten, Lötstellen, Leiterbahnen,

Steckern usw. Die Aufgliederung in
Komponenten, Baugruppen und Gesamtsysteme

ist daher naheliegend. Entsprechend

gibt es Komponenten-, Baugruppen- und

Systemtests. Für die Komponentenqualität
ist primär der Komponentenhersteller verant-,
wortlich. Die Komponenten sind fast immer
Grossserienprodukte von recht konstanter

Qualität. Die Gerätequalität hängt von den

eingekauften Komponenten, der Entwicklung

und der Fertigung ab.

Bulletin SEV/VSE 25/93 21

Informatik

Glossar

Case Computer-Aided Software

Engineering

FMEA Failure Modes and Effect Analysis

KLOC 1000 Lines of Code

MTBF Mean Time Between Failures

Tabelle I

Software besteht aus Codezeilen, Moduln,
dem Gesamtprogramm und der Dokumentation.

Die Programmqualität hängt
ausschliesslich von der Entwicklung ab. Zugekauft

werden allenfalls Hilfsprogramme,
nicht aber Komponenten. Jede Codezeile

kann einen Fehler aufweisen, da sie von
einem Programmierer geschrieben wurde. Auf
Modul- und Programmebene besteht zwar
eine gewisse Analogie zu Prints und reinen

Hardwaresystemen. Modul- und Systemtests
haben sich eingebürgert. Hinzu kommt allenfalls

ein Abnahmetest für den Kunden. Doch
der Faktor Mensch spielt weiterhin eine grössere

Rolle als bei der Hardware, bei der die

Komponentenherstellung und Printbestük-

kung stark automatisiert sind.

Beschränkung auf die Fehlerfreiheit
Da die Qualitätssicherung ein sehr breites

Gebiet ist, soll bei der folgenden Betrachtung
eine Beschränkung auf die Fehlerfreiheit

vorgenommen werden; viele Autoren sprechen
dann von Softwarezuverlässigkeit. In der

Zuverlässigkeitssicherung beschränkt man sich

auf das Merkmal der Funktionsfähigkeit. Sie

kann durch Ausfälle eingeschränkt oder
vernichtet werden. Ausfälle sind auf Fehler
zurückzuführen. Ein gradueller Unterschied
zwischen Hardware und Software besteht

darin, dass die Hardware durch physikalischchemische

Prozesse beeinträchtigt werden

kann, was auch durch Prüfungen des Herstellers

nicht gänzlich vermieden werden kann.

Da Software immateriell ist, besteht dieses

Problem nicht. Fragen der Sicherheit werden

hier nicht speziell behandelt, obwohl
Sicherheitsanforderungen die Bedeutung der
Fehlerfreiheit wesentlich erhöhen.

Bei Software kann man sich auf die

Entwicklung konzentrieren. Es entsteht ein

Prototyp. Ist er fehlerfrei, so sind alle Kopien
auch fehlerfrei. Die Produktion, das Kopieren

ist ein problemloser Vorgang. Allerdings
ist die Kennzeichnung des Status des Prototypen

nicht trivial. Da der Einfluss der Mitarbeiter

grösser ist und Menschen Fehler
machen können, enthalten Programme immer
Fehler. Case-Werkzeuge, wie beispielsweise

Debugger, sind Ansätze in Richtung
Teilautomation. Die Fehlerbehebung ist deshalb

auf absehbare Zeit ein wichtiges Element der

Software-Zuverlässigkeitssicherung.
Information und Schulung der Mitarbeiter haben

deshalb einen hohen Stellenwert.

Zusammenhang zwischen Fehlern
und Ausfällen

Bei Zuverlässigkeitsanalysen von Hardware

wird angenommen, dass ein
Komponentenausfall zu einem Geräteausfall führt,
was nicht immer zutrifft. Das führt übrigens
dazu, dass die Zahl der Ausfälle im Feld tiefer

liegt, als nach der Zuverlässigkeitsanalyse zu
erwarten wäre. Mit einer Analyse der
Ausfallarten (FMEA) kann dieser Effekt
allerdings berücksichtigt werden. Die Auswirkungen

von Softwarefehlern sind mannigfaltiger
als die von Hardwarefehlem. Ein Softwarefehler

kann zum Beispiel zu einem formalen
Fehler auf einer Anzeige, er kann aber auch

zu einem Vollausfall führen. FMEA-Analy-
sen werden übrigens auch für Software

vorgeschlagen. Grundsätzlich kann man sich

nicht auf bestimmte Arten von Softwarefehlem

beschränken. Software ist nicht stetig,
worauf in [1] hingewiesen wird. Der Begriff
Fehler ist bei Software zentral. Softwarefehler

dürfen allerdings nicht mit Programmierfehlem

gleichgesetzt werden. Softwarefehler
entstehen schon in der Anforderungs- und

Konzeptphase.

Flexibilität
Ein Vorteil der Software besteht in der

grösseren Flexibilität, das heisst in ihrer
Änderbarkeit. Die Kehrseite zeigt sich darin,
dass Änderungen an der Software deren Qualität

beeinträchtigt. Fehlerkorrekturen können

vor der Freigabe gemacht werden; nachher

sind sie - besonders bei produktintegrierter
Software - unerwünscht.

Qualitätsbewusstsein, Arbeitsweise
Bei der Hardwareentwicklung ist in den

letzten Jahren das Qualitätsbewusstsein
gestiegen; man spricht zurecht von Engineering.

Bei der Softwareentwicklung haben

sich erst Elemente des Engineerings
eingebürgert, wobei sich die Softwareunternehmen

diesbezüglich mehr als die Hardwarehersteller

unterscheiden. Realistischerweise muss

man sogar feststellen, dass das Qualitätsbewusstsein

noch wenig entwickelt ist. Das

Tabelle II

heisst nun nicht, dass alle Software von
fragwürdiger Qualität ist. Aber das Bewusstsein,
dass jede Phase so zu bearbeiten ist, dass

möglichst wenig Fehler entstehen, ist noch

zuwenig ausgeprägt. Wer denkt bei der

Formulierung des Pflichtenhefts emsthaft an

mögliche Fehler? Zum Teil ist auch der
Arbeitsstil im Softwaregewerbe wenig geeignet,
Fehler zu vermeiden. Natürlich können Fehler

im nachhinein durch Tests weitgehend
eliminiert werden, so dass das Endprodukt
trotzdem befriedigt; der Testaufwand ist aber

ein wesentlicher Kostenfaktor.

Die Software-Qualitätssicherung hat zum
Ziel, Qualität in jeder Phase zu gewährleisten.

Qualitätsprüfungen und Korrektur-
massnahmen sollen reduziert werden. Auf
das Testen von Software wird man allerdings
nicht so bald verzichten können, denn
welcher Software-Projektleiter könnte behaupten,

dass sein Programm fehlerfrei sei, oder

angeben, wieviele Fehler es enthält.

Erfahrungswerte über die Zahl der Fehler, die ein

Programm nach Freigabe noch enthält, sprechen

von 2 bis 10 Fehlem pro 1000 Zeilen
ausführbaren Codes (KLOC). Auf jeden Fall
besteht ein Bedarf, die Zuverlässigkeit von
Programmen beurteilen zu können.

Software-Fehlerbehebung

Wie bei der Hardware unterscheidet man
auch bei der Software zwischen Engineering
und Qualitätssichemng, obwohl zwischen
den beiden Tätigkeiten Wechselwirkungen
bestehen. Das Software-Engineering wird
sich in Richtung Case weiterentwickeln, wobei

die Anliegen der Qualitätssichemng noch
vermehrt miteinbezogen werden müssen.

Die Software-Qualitätssicherung stellt

Kataloge von Merkmalen zur Verfügung. Zu

Beginn eines Softwareprojektes ist ein

Anforderungsprofil aufzustellen, in dem die

Wichtigkeit der verschiedenen
Qualitätsmerkmale festgelegt wird; immer wichtig
wird das Merkmal der Fehlerfreiheit sein.

Qualitätsmerkmale können quantifizierbar

Begriffe und Abkürzungen nach IEEE-Standard 982.2

Irrtum (Error): Menschliche Handlung, die zu einer Abweichung

vom angestrebten Soll-Zustand (Softwarefehler)
führt.

Defekt: Eine Anomalie eines Produktes (oder Dokuments)

Fehler (Fault): Eine Bedingung, die bei einer funktionalen Einheit

dazu führt, dass diese ihre Funktion nicht mehr

ausführen kann.

Ausfall (Failure): Die Beendigung der Fähigkeit einer funktionalen

Einheit, ihre benötigte Funktion auszuführen.

Metrik: Eine quantitative Abschätzung des Grades, den ein

Softwareprodukt oder -prozess bezüglich eines

Merkmals aufweist.

22 Bulletin ASE/UCS 25/93

Softwarequalität

oder nichtquantifizierbar sein. Tendenziell
sind quantitative Merkmale, welche durch
Kennzahlen ausgedrückt werden, zu bevorzugen

(Fehler sind quantifizierbar). Betreffend

Metriken wird auf [1] verwiesen.

Zuverlässigkeitsanalysen für Software?
Der Gedanke hegt nahe, - analog wie bei

der Hardwaretechnik - auch in der

Softwareentwicklung mit Zuverlässigkeitsanalysen zu
arbeiten. Leider ist dies nicht möglich. Die

Zuverlässigkeitsanalysen von Hardware
basieren auf Datensammlungen mit
Komponentenausfallraten. Ausfallraten zum
Beispiel für Codezeilen zu ermitteln, ist doch

wohl illusorisch. Es muss also ein anderer

Ansatz gefunden werden.

Fehlerentdeckung und -behebung
Da die Fehler den entscheidenden Faktor

darstellen, muss bei der Fehlerentdeckung
und -behebung angesetzt werden. Der IEEE-
Standard 982.2 [2] unterscheidet zwischen
Irrtum (Error), Fehler (Fault) und Ausfall
(Failure). Ein Irrtum ist eine menschliche

Handlung, die zu einer Abweichung vom
angestrebten Soll-Zustand führt. Ein Fehler ist
ein Codefehler. Wird die fehlerhafte Codezeile

ausgeführt, so verursacht sie einen Ausfall,

das heisst eine Abweichung vom Soll-
Zustand. Der Fehler bezieht sich auf den

Zustand des Programms; der Ausfall ist ein

zeitabhängiges Ereignis beim Programmablauf.

Irrtümer können in jeder
Entwicklungsphase entstehen und sich in einem

Programmfehler äussern. Programmfehler
verursachen Ausfälle, wobei man unter Ausfall die

Beeinträchtigung einer wesentlichen

Programmfunktion versteht. Was als Ausfall
anzusehen ist, muss von Fall zu Fall im Detail
festgelegt werden. Jeder Ausfall geht zwar
auf mindestens einen Programmfehler
zurück, aber nicht jeder Fehler führt zu einer

Auswirkung, welche das Kriterium eines

Ausfalls erfüllt. Da komplexe Programme
eine enorme Zahl von Ablaufpfaden aufweisen,

werden nicht alle Fehler in der Testphase
entdeckt. Die Fehlerwirkung kann auch von
den Inputdaten abhängen. Die Ausfälle sind
deshalb zeitabhängig und scheinbar zufällig
verteilt, obwohl die Fehler natürlich deterministisch

sind. Es kann auch Fehler geben, die
nie zu einem Ausfall führen. Ein Programm
weist erst nach der Integration die volle
Funktionalität auf, weshalb Ausfälle erst
beim Systemtest beurteilt werden können.
Das Ziel der Software-Zuverlässigkeitsprüfung

ist das Vermeiden von Ausfällen.

Fehleraufzeichnung
Die Phase des Systemtests wird in

verschiedene Testabschnitte und -läufe unterteilt.

Die Ausfälle werden protokolliert und

die verursachenden Fehler gesucht und korri-

A
Fehler

— >Phase

Bild 1a Fehlerentwicklung, wenn nur der Systemtest

durchgeführt wird

Bild 1b Fehlerentwicklung beim prozess-
orientierten Vorgehen

giert. Beim Testen wird man eine Abnahme
der Zahl gefundener Fehler pro Testabschnitt

feststellen, was einen Reifeprozess zum
Ausdruck bringt. Als Kriterium für den
Abbruch der Testphase wird das Unterschreiten
einer Zahl gefundener Fehler pro Zeitabschnitt

vorgeschlagen. Die Fehlerfunktion,
welche die kumulierten Fehler im Testverlauf
darstellt, legt es nahe, das Unterschreiten
einer Zahl gefundener Fehler pro Zeiteinheit
als Kriterium für den Abbruch der Testphase

zu verwenden. Die Auswertung der Fehler-

protokollierung liefert Kennzahlen über die

Reduktion der Fehlerdichte pro 1000 Zeilen
Code. Die Kennzahl gibt für spätere
Projekte einen Hinweis, wieviele Fehler zu
erwarten sind. Allenfalls können die Fehler
nach der Schwere ihrer Auswirkung
unterschieden werden (gravierende, formale
Fehler).

Die Fehlererfassung muss durch die Metrik

der Testabdeckung ergänzt werden. Bei

geringer Testabdeckung findet man weniger
Fehler. Man wird bald das Kriterium für den

Testabbruch erreichen. Nur bei hoher
Testabdeckung kann der Schluss gezogen werden,
dass das Programm weitgehend fehlerfrei ist.

Die Testabdeckung gibt auch einen Hinweis
auf die Zahl der Restfehler, die nicht gefunden

wurden. Schon bei der Testplanung muss

man sich mit der Testabdeckung befassen.

Einerseits soll möglichst das ganze Pro¬

gramm getestet werden, andererseits aber

eine grössere Testredundanz vermieden werden.

Die Kostenfrage
Nun wird die Frage auftauchen, ob ein

systematisches Testen die Programmkosten
nicht wesentlich erhöht. Darauf lässt sich

antworten, dass das Testen unvermeidlich ist
und bereits heute recht viel kostet, dass aber

in der Testphase vielerorts noch ein erhebliches

Effizienzsteigerungs-Potential vorliegt.
Mit einem systematischen Vorgehen kann

man bei gleichem Aufwand mehr
Testabdeckung und -tiefe erreichen. Da ein Ausfall
beim Testen (inkl. Fehlerkorrektur) weit
weniger kostet, als ein Ausfall im Feldeinsatz,

ist das Testen sehr lohnend, solange
relevante Fehler gefunden werden. Immerhin,
professionelles Testen kann den Testaufwand

erhöhen, und Einsparungen werden erst später

durch Reduktion von Garantie- und

Wartungskosten realisiert.

Fehlerdatenerfassung
Bei der Einführung der Fehlerdatenerfassung

wird empfohlen, dass man beim
Systemtest beginnt und eventuell später den

Modultest einbezieht. Häufig wird ein Modul

von einem einzelnen Programmierer
erstellt. Es könnte der Verdacht aufkommen,
dass die Fehlerdatenerfassung der individuellen

Qualifikation dient. Das darf natürlich
nicht sein. Der Programmierer sollte die

Gelegenheit haben, Fehler selbst zu eliminieren.

Die Fehlerbehebung ist auf der Modulstufe

noch etwas kostengünstiger als auf der

Systemstufe.

Testteam
Der Systemtest sollte nicht durch das

Entwicklerteam, sondern durch ein Testteam

durchgeführt werden. Eine solche Arbeitsteilung

existiert ja auch bei der Hardware

(Prüffeld). Das Programmtesten stellt andere

Anforderungen als das Programmentwik-
keln. Zudem ist es auch aus psychologischen
Gründen schwierig, ein Programm zu
entwickeln und nachher kritisch zu testen. Es

gibt unter anderem Fehler, die auf eine
falsche Interpretation des Pflichtenhefts
zurückzuführen sind. Diese würden durch den

Programmierer wohl kaum entdeckt.

Weiteres Vorgehen
Zwei wichtige Metriken wurden erwähnt:

die Fehlerdichte und die Testabdeckung.
Später sollten je nach Anforderungen weitere
Metriken und Indikatoren hinzukommen.
Eine Liste von Metriken mit Kurzbeschreibungen

enthält der IEEE-Standard 982.2 [2],
Die Auswahl hängt von der Art der Software
ab. Zudem muss das Kosten-Nutzen-Verhältnis

beachtet werden. Eine sehr sorgfältige
Auswahl wird empfohlen.

Bulletin SEV/VSE 25/93 23

Informatik

Vorgehen zur Fehlerreduktion
in Programmen

Software-Qualitätssicherung
als Rahmen

Software-Engineering befindet sich in
rascher Entwicklung und Case-Werkzeuge
finden immer weitere Verbreitung. Die

Software-Qualitätssicherung wird durch den

Zwang zur Zertifizierung gefördert. Die
Produktehaftung ist ein weiteres Stichwort, wobei

in diesem Zusammenhang der Fehlerfreiheit

besondere Bedeutung zukommt. Das

Ziel kann zunächst durch Konzentration auf
die Produktqualität und später durch den

Ausbau zu einer prozessorienten Fehlerbeseitigung

erreicht werden.

Vorgehensweise
Eine erste Voraussetzung ist die

Fehlerdatenerfassung. Sie beginnt mit der Ausfallpro-
tokollierung und soll zunächst in der Phase

des Systemtests eingeführt werden. Die
Anzahl Ausfälle pro Zeiteinheit, zum Beispiel

pro Testtag, werden erfasst und graphisch

aufgetragen. Die Ausfälle werden nach

Schwere unterschieden. Aus der Protokollierung

muss klar hervorgehen, wie sich ein

Ausfall geäussert hat und wo bzw. wann er

aufgetreten ist. Wenn möglich soll ein Beleg
den Ausfall illustrieren. Zusammen mit dem

Programmierer muss dann der Fehler im
Code gesucht werden.

Die Protokollierung muss durch die

Testabdeckung ergänzt werden. Sie kann funk-
tions- oder strukturbezogen vorgenommen
werden. Die Teilfunktionen werden aufgelistet.

In der Testplanung wird festgehalten,
wie vorzugehen ist. Während den Tests wird
protokolliert, welche Teilfunktionen getestet
wurden. Die Testabdeckung ist der Quotient

getestete Funktionen zu allen Funktionen.

Für die Testabdeckung ist eine Zielvorgabe
zu machen. Sie hängt ab vom Risiko, das man

zu tragen bereit ist, und vom Grad der

Detaillierung der Testplanung. Auch der Testaufwand

in Mannstunden soll erfasst werden.

Gegen Ende der Testphase soll eine Abschätzung

der Restfehler vorgenommen werden.

Das Vorgehen kann dem IEEE-Standard
982.2 entnommen werden. Die Restfehlerabschätzung

kann anfänglich zu einer Ernüchterung

führen.
Schliesslich wird ein Freigabekriterium

festgelegt. Berücksichtigt werden die Ausfälle,

die pro Zeiteinheit noch gefunden wurden,
die erreichte Testabdeckung und allenfalls
der Testaufwand. Zur Beurteilung der

Erfahrungswerte aus den Tests können auch

Normwerte aus der Literatur beigezogen
werden. Der Entscheid über die Freigabe
wird der Projektleiter zusammen mit dem

Testteam treffen. Durch die Berücksichtigung

von Metriken wird der Entscheid auf

eine objektive Grundlage gestellt, ein Vorgehen,

das den Projektleiter erheblich entlastet.

Worin liegt der Sinn des oben geschilderten

Vorgehens? Sein Hauptvorteil liegt darin,
dass man über die Fehlerhäufigkeit genauere
und objektive Informationen erhält. Damit
kann man das Risiko, das verbleibende Fehler

darstellen, erst richtig einschätzen. Die Erfahrung

zeigt, dass die Beurteilungssicherheit
den Freigabeentscheid wesentlich erleichert.

Da die Tests solange weitergeführt werden,
bis die Kriterien erfüllt sind, wird eine hohe

Zuverlässigkeit des Programms erreicht.
Zudem werden Erfahrungswerte für zukünftige
Projekte gewonnen. Die Fehlerdichte bei

Beginn und am Ende des Systemtests kann

abgeschätzt werden. Für die Anzahl der verbliebenen

Fehler wird die Restfehlerabschätzung
verwendet. Sie gibt nur die Grössenordnung
an. Daraus ist ersichtlich, welcher Teil aller
Fehler durch die Tests eliminiert wurde.

Die Analyse der Art der Fehler und wo sie

entstanden sind, liefert klare Hinweise, wie
die Fehlerhäufigkeit reduziert werden kann.

Wenn neue Methoden und Werkzeuge eingesetzt

werden, kann mit Hilfe der Metriken
deren Einfluss auf die Fehlerhäufigkeit beurteilt

werden.

Information und Schulung
Information und Schulung waren bereits

bei der Einführung der Hardware-Qualitätssicherung

ein Muss. Wie sollte es da bei der

Software anders sein? Insbesondere der

Projektleiter muss von der Notwendigkeit und

vom Nutzen der Massnahmen überzeugt
sein. Bei der Einführung sollte er durch einen

internen oder externen Berater unterstützt
werden. Das ganze Projektteam muss rechtzeitig

über die Einführung informiert werden.

Motivation ist dringend nötig; teilweise
müssen vorgefasste Meinungen über die

Qualitätssicherung abgebaut werden. Am
besten sind die Voraussetzungen, wenn im

ganzen Softwarebereich eine gute
Qualitätsmotivation besteht. Die Schulung betrifft

vor allem das Testteam, das sich mit der

Fehlerdatenerfasssung befasst.

Prozessorientierte Fehlerbehebung

Produkt- und Prozessorientierung
In der Qualitätssicherung unterscheidet man

allgemein produkt- und prozessorientierte
Massnahmen. Grundsätzlich muss der Pro-

zess der Softwareentwicklung beherrscht

werden, damit eine hohe Produktqualität
erreicht werden kann. Die Abnehmer der

Programme sind an der Produktqualität interessiert.

Die prozessorientierte Qualitätssicherung

ist wegen der Neuerungen bei Methoden
und Werkzeugen eine langfristige Aufgabe,
die schrittweise zu realisieren ist. Case-Werkzeuge

werden dazu einen wesentlichen Bei¬

Phase Massnahme

Anforderungen Pflichtenheftreview

Entwurf Entwurfsreview

Implementierung Modultests

Integration Systemtests

Betrieb Fehlerkorrektur

Tabelle III Reviews und Tests nach Phasen

trag leisten. Als erste Massnahme wurde im
letzten Abschnitt der Ausbau der Testphase

vorgeschlagen. Damit kann das Ziel der Pro-

duktefehlerfreiheit weitgehend erreicht werden,

wobei allenfalls ein höherer Aufwand
für die Fehlerbehebung in Kauf zu nehmen

ist. Der Vorteil der Prozessorientierung
besteht darin, dass die Fehler phasenweise
eliminiert werden, das heisst, dass ein Teil der

Fehler früher beseitigt wird. Je früher ein

Fehler korrigiert wird, desto billiger. Ein
anderer Aspekt ist allerdings ebenso wichtig:
in jeder Phase werden bestimmte Arten von
Fehlern eliminiert. Dadurch wird der Systemtest

entlastet. Das Spektrum der Fehler ist

enger. Auf diese Weise erreicht man eine

grössere Testtiefe. Schliesslich können bei
Konzentration auf den Systemtest konzeptionelle

Fehler kaum noch eliminiert werden.

Bei phasenweisem Vorgehen gibt es ein
Entwurfsreview.

Prozessorientiertes Konzept
für nahezu fehlerfreie Programme

Die Reduktion der Fehler muss in allen
Phasen der Softwareentwicklung erfolgen.
Dazu ist ein Konzept von Reviews und Tests

erforderlich. Mängel sollen schon im
Pflichtenheft beseitigt werden. Es sind dies Lücken,
Widersprüche, Fehler und Unklarheiten. Sie

können in späteren Phasen zu Fehlem und,
auch wenn sie entdeckt werden, zu Mehraufwand

führen. In der Entwurfsphase sind

konzeptionelle Mängel besonders schwerwiegend,

weil sie in späteren Phasen kaum noch

zu beseitigen sind.

Ausgangspunkt ist ein einfaches Phasenmodell.

Reviews sind am Schluss der Anfor-
derungs- und Entwurfsphase, Modultests

Vorgehensschritte bei Reviews

1. Der Reviewer übernimmt die Unterlagen.
2. Der Reviewer prüft die Unterlagen.
3. Die gefundenen Mängel werden

besprochen.

4. Reviewer und Ersteller analysieren die

Ursachen.

5. Der Ersteller überarbeitet sein Programm.
6. Reviewer überprüft die Unterlagen

nochmals, allein oder mit dem Ersteller.

7. Die Unterlagen werden freigegeben.

Tabelle IV

24 Bulletin ASE/UCS 25/93

Softwarequalität

nach der Implementierung, der Systemtest
nach der Integration vorgesehen (Tab. III),
wobei zu beachten ist, dass der Kürze halber

nur die Überprüfungsinstrumente (Reviews,
Tests) erwähnt sind. Die Überprüfung der

Dokumentation soll hervorgehoben werden,
denn sie ist für die Fehlerbehebung in der

Betriebsphase von grundlegender Bedeutung.

Während Modultests nicht wesentlich

vom Systemtest verschieden sind, sind
Reviews wesentlich anders geartet. Gelegentlich

besteht eine Skepsis gegenüber der

Wirksamkeit von Reviews. Sie müssen gut
vorbereitet und systematisch durchgeführt
werden. Die Vorgehensschritte sind in Tabelle

IV angegeben. Werden Mängel in einzelnen

Phasen festgestellt, so müssen Massnahmen

veranlasst werden, die jeweils von
spezifischen Gegebenheiten abhängen. Es ist
klar, dass letztlich Faktoren wie professionelles

Projektmanagement, Methoden, Werkzeuge

usw. die Qualität erhöhen.

Änderungen als Fehlerquelle
Es ist eine Erfahrungstatsache, dass

Änderungen jeder Art Fehler erzeugen. Auch die

Fehlerbehebung ist mit Änderungen verbunden.

Erhebungen haben gezeigt, dass bei

Änderungen die Fehlerdichte bis zu fünfmal so

hoch liegt, wie bei der Erstprogrammierung.
Das ist ein weiteres Argument für die prozess-
orientierte Fehlerbehebung, wo die Fehler¬

dichte dauernd tief gehalten wird (Bild 1).

Das heisst aber auch, dass Pflichtenheftände-

rungen minimal gehalten werden müssen.

Änderungen produzieren nicht nur Fehler,
sondern auch Kosten. Dabei verleitet die
Änderbarkeit der Software geradezu dazu,

Änderungen in allen Phasen vorzunehmen.

Neben der Fehlerfreiheit gibt es weitere

Qualitätsmerkmale, die gewährleistet werden

müssen. Dafür ist ein analoges Vorgehen,

wie das hier beschriebene, zu entwickeln.

Nach Möglichkeit sind Metriken zu
verwenden. Es gibt aber auch Qualitätsmerkmale

wie die Robustheit, für die keine
Metriken existieren. In diesen Fällen gibt es oft
Indikatoren, die Hinweise auf die

Merkmalserfüllung geben. Die weitere Entwicklung,

die etwa in den USA schon absehbar ist,

dürfte in Richtung aussagefähiger Metriken
gehen, die allerdings auch höhere Anforderungen

an die Fehlerdatenerfassung stellen

und einige Erfahrungen voraussetzen.
Beispiele solcher Metriken sind die Ausfallrate
und der mittlere Ausfallabstand, also Metriken,

die für Hardware bereits eingeführt sind.

Die Fehlerdatenerfassung wird in Zukunft
vermehrt durch Case-Werkzeuge unterstützt.

Literatur
[1] Software Metriken, R. Schild, Bulletin SEV/

VSE 84(1993)25, S. 15-20.

[2] IEEE Standard 982.2, 1988: Guide for the
Use of IEEE Standard Dictionary of Measures to
Produce Reliable Software (in Überarbeitung). IEEE

Standard Office, 345 East 47th Street, New York N.Y.

10017-2394.

Logiciel sans fautes - un but réaliste?
Beaucoup d'appareils contiennent du hardware et du logiciel. Il y a des concepts pour

l'assurance de la qualité du hardware, qui sont assez répandus et éprouvés. Après 1985

de nouveaux concepts pour le logiciel ont été élaborés, qui ne sont pas encore très

connus. L'état actuel n'est pas tout à fait satisfaisant. Quelques pannes, qui ont gagnées

une grande publicité, prouve ce fait. On présente deux méthodes pour diminuer le
nombre des fautes dans les programmes, une méthode orientée vers l'assurance de la

qualité du produit et une autre pour améliorer le processus du développement du

logiciel.

Bulletin SEV/VSE 25/93 25

	Fehlerfreie Software : ein realistisches Ziel?

