
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 84 (1993)

Heft: 25

Artikel: Auf der Jagd nach Software-Läusen : Software-Metriken

Autor: Schild, Rudolf

DOI: https://doi.org/10.5169/seals-902767

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-902767
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Softwarequalität

Software dringt in immer neue Gebiete vor, und gleichzeitig nimmt ihre Komplexität in

starkem Masse zu. In ähnlichem Ausmass gewinnt in der Folge die Qualitätssicherung an

Bedeutung, wobei man sich darüber einig ist, dass nicht nur die Qualität der Produkte
selbst, sondern auch diejenige der Entwicklungsprozesse überwacht und verbessert werden
muss. Dazu bedient man sich heute, wenn auch noch zögernd, der Technik der Software-
Metriken. Was man sich darunter vorzustellen hat, zeigt dieser Artikel anhand einiger
Beispiele.

Auf der Jagd nach Software-Läusen

Software-Metriken

Rudolf Schild

Dieser Aufsatz ist die erweiterte Fassung eines

Vortrags, den der Autor an der ITG-Frühjahrstagung 1993

vom 11. März 1993 über Softwarequalität technischer

Systeme in Zürich gehalten hat.

Adresse des Autors:
Dr. RudolfSchild,

Infogem AG, Rütistrasse 9, 5401 Baden.

Fehlerhafte Software ruiniert
Versicherungsgesellschaft

In der «Montreal Gazette» vom 22. Februar

1992 fand sich ein Artikel von Jay Bryan
über die Auswirkungen von Fehlern in einem

integrierten Computerprogramm einer

Versicherungsgesellschaft (frei übersetzt und
zitiert nach [1]):

«Als die Montreal Life Insurance Co., ein

florierendes Versicherungsunternehmen, vor
zehn Jahren beschloss, ihr Informationssystem

auszubauen, wurden keine halben
Sachen geplant. Das neue <integrierte> System
würde sämtliche Bereiche und Aspekte der

Firma miteinander verknüpfen und alle
Bedürfnisse abdecken. Es gab allerdings ein

kleines Problem. Das umfangreiche
Programm - eine Million Zeilen - musste in
ziemlicher Eile angepasst und installiert werden.

So geschah es denn, dass sich hier und

dort im Programm auch einige unentdeckt

gebliebene Bugs, wie die Software-Leute
ihre Fehler gerne liebevoll und verharmlosend

zu bezeichnen pflegen, versteckten.

Und weil das System ja integriert war, wurden

durch einen Fehler in den Daten einer

Abteilung jedesmal auch die Daten von
mehreren anderen Abteilungen gleichzeitig
mitbetroffen und verfälscht.

Es ging kein Jahr ins Land, da waren die

Auswirkungen bereits zu spüren: Montreal
Life schrieb rote Zahlen. Nach drei Jahren

war das Unternehmen dem Zusammenbruch

nahe. Fehler in den Provisionszahlungen
vertrieben die meisten der Agenten, welche

gleich auch ihre Kunden mitnahmen. Wenn
die Agenten nicht unterbezahlt waren, so waren

sie überbezahlt, was sich zu einem weiteren

Millionenverlust summierte. Schliesslich
wurde das, was von Montreal Life noch übrig
war, von den Eigentümern verkauft; die

meisten der obersten Manager verloren ihre
Stelle...»

Horrorgeschichten dieser und ähnlicher
Art gibt es viele, einige mit noch schlimmerem

Ausgang (Verlust von Menschenleben),
die meisten aber harmloser, wenn auch lästig
für die Betroffenen. Und immer wieder läuft
es auf dasselbe hinaus: fehlerhafte Software.
Natürlich kommt es auch bei Nicht-Soft-
ware-Produkten vor, dass etwas schief geht,

zum Teil ebenfalls mit katastrophalen
Folgen. Aber zwischen Software und konventionellen

Produkten besteht ein gmndlegender
Unterschied, der sich auch auf die Zuverlässigkeit

auswirkt:

Software ist nicht stetig

Anders ausgedrückt: In einem Softwareprodukt

kann eine beliebig kleine Änderung
eine beliebig grosse Auswirkung haben. Das

hat in zwei Bereichen einen wesentlichen
Einfluss: Zum ersten kann man aus kleinen
Änderungen an den Eingangsdaten nicht
unbedingt auf kleine, mehr oder weniger
proportionale Änderungen der Ausgangsdaten
schliessen; Interpolation und Extrapolation
sind grundsätzlich nicht zulässig, was das

Testen von Software äusserst schwierig
macht. Wenn ein Balken mit 10 Tonnen bela-

Bulletin SEV/VSE 25/93 15



Informatik

Bild 1 Regelkreis für
ProduktivitätRahmenbedingungen

Anforderungen
Entwicklung

Produkt

Regeln und
Massnahmen

Beobachtungen
und Messungen

Interpretation y
stet wird und sich um 1 cm durchbiegt, dann

kann man daraus schliessen, dass die
Durchbiegung bei kleinerer Belastung höchstens

gleich gross sein wird. Nicht so bei der
Software: wenn die Eingangswerte von 1 bis 9

und von 100 bis 199 die richtigen Resultate

liefern, ist für die Werte von 10 bis 99 prinzipiell

noch nichts ausgesagt. Es könnte zum
Beispiel sein, dass zweistellige Zahlen nicht

richtig verarbeitet werden.

Zum zweiten können kleine Fehler im
Programmcode beliebig grosse, vollkommen un-

vorhersagbare Auswirkungen auf die Funktion

des Systems haben. Das macht das Testen

von Software noch schwieriger. Wenn in
einem elektrischen Schwingkreis ein Widerstand

ein wenig von seinem Soll-Wert
abweicht, dann wird die Resonanzfrequenz des

Kreises ebenfalls ein wenig von ihrem Soll-
Wert abweichen, aber diese Abweichung ist,
zumindest für kleine Störungen, beschränkt.

Nicht so bei Software. Ein einziges falsches

Bit im Code kann unter Umständen - zum
Beispiel bei einer ganz bestimmten zeitlichen

Abfolge von Eingangssignalen - das System

zum Abstürzen bringen; das heisst es funktioniert

nicht ein wenig anders, sondern

überhaupt nicht mehr.

Es ist also nicht verwunderlich, dass

ausgelieferte Software mit Fehlern behaftet ist,
manchmal sogar noch nach jahrelangem Einsatz

und praktischer Erprobung. Und es ist
auch verständlich, dass die Verantwortlichen
sich mehr und mehr mit der Frage beschäftigen,

was man dagegen unternehmen kann.

Wie, so lautet die Frage, kann man das Ziel,
qualitativ hochwertige Software zu produzieren,

erreichen?

Kann man Softwarequalität
messen?

Um zu wissen, ob man sich diesem Ziel
wirklich nähert, muss man sich zunächst im

klaren sein, worüber man spricht. Meistens
wird eine Entwicklerin oder ein Anwender
intuitiv sagen können: «Diese Software ist
besser als jene» oder «Die Qualität dieser

Version wurde gegenüber der vorhergehenden

verbessert». Was aber ist genau darunter

zu verstehen? Wenn wir eindeutige,
nachprüfbare, quantifizierbare Aussagen über

Softwarequalität machen wollen, dann müssen

wir sie zunächst einmal messen können.

Aus den gemessenen Werten hoffen wir
anschliessend, bei richtiger Interpretation,
Schlüsse bezüglich der Qualität ziehen zu
können. Auf diese Art entsteht der Regelkreis
von Bild 1, der uns dem Ziel immer näher

bringt.
Solche Kennzahlen, ermittelt nach

Software-Metriken, werden heute bereits an
verschiedenen Orten mit Erfolg eingesetzt, zum
Beispiel im Zusammenhang mit Software-

Qualitätssicherung und Verbesserung des

Entwicklungsprozesses. Warum also wird
diese Technik nicht in grösserem Umfang
eingesetzt? Wo noch nicht gemessen wird,
hört man im allgemeinen die folgenden
Einwände:

Softwareprodukte
sind zu unterschiedlich

Denselben Einwand könnte man bei manchen

anderen Produkten auch anführen,
beispielsweise bei Automobilen. Dennoch werden

für Automobile umfangreiche Mengen

von Kennzahlen ermittelt, und es hängt von
den Prioritäten des Kunden ab, welche
Kennzahlen er verwenden und wie er sie interpretieren

will.

Softwareprojekte
sind zu unterschiedlich

Dagegen lässt sich sagen: Es ist gewiss
nicht sinnvoll, völlig verschiedene Projekte
miteinander zu vergleichen; hingegen wird
ein Vergleich zwischen ähnlichen Projekten
in ähnlicher Umgebung sehr wohl aussagekräftig

sein.

Die Anwendungsgebiete
sind zu unterschiedlich

Natürlich ist es nur sinnvoll, Produkte aus

demselben Anwendungsgebiet miteinander

zu vergleichen.

Messungen haben keinen Einfluss
auf die Qualität oder Produktivität

Das ist prinzipiell überall wahr, wo
Messungen gemacht werden. Eine Messung
verbessert die Qualität nicht direkt; sie sagt aber

etwas aus über die Qualität und kann damit
dazu beitragen, dass die Qualität des nächsten

Produktes besser sein wird.

Es besteht die Gefahr der Fälschung
von Kennzahlen

Das ist vor allem dann wahr, wenn
Messungen zur Beurteilung von Einzelpersonen
und nicht von Produkten, Prozessen oder
auch Teams verwendet - oder eher
missbraucht - werden. Wenn aber die Messungen
den Entwicklern zugute kommen, so ist der
Anreiz zur Verfälschung kaum noch vorhanden.

Messungen sind zu teuer
Die Frage ist in Wirklichkeit nicht, ob wir

es uns leisten können, Messungen durchzuführen,

sondern ob wir es uns leisten können,
sie nicht durchzuführen.

Was spricht für Messungen?

Nachdem die Einwände entkräftet sind,
stellt sich die Frage, welchen Nutzen wir aus

Messungen ziehen können. Dabei kann man
vier Gebiete unterscheiden:

- Überwachung des Projektfortschritts, mit
Abschätzung des weiteren Verlaufs

- Sicherung der Produktqualität, das heisst

der Qualität des ausgelieferten Softwareprodukts

- Sicherung der Projektqualität, das heisst

der Qualität des Entwicklungsprozesses,
nicht des entwickelten Produkts

16 Bulletin ASE/UCS 25/93



Softwarequalität

- Entscheidungshilfen für die Produktentwicklung,

beispielsweise Kennzahlen für
zugekaufte Software

Auf allen vier Gebieten, mit unterschiedlicher

Ausprägung, lassen sich drei Arten von
Nutzanwendungen für Kennzahlen ausmachen:

1. Das Erkennen von Schwachstellen: Wo
sind im Produkt am ehesten Fehler zu
erwarten? Wo kann der Entwicklungs-

prozess verbessert werden?

2. Die Beobachtung von Trends und

Verteilungen: Lassen sich Vermutungen
aufstellen oder erhärten?

3. Die Verwendung von Bezugsgrössen für
Vorhersagen: Welcher Aufwand wird
benötigt? Wie gross ist die Anzahl der
verbliebenen Fehler?

Dazu könnte in Zukunft, wenn sich Software-

Metriken etabliert haben, vielleicht noch das

folgende Gebiet kommen: Vorgaben für
Spezifikation und Entwicklung. Wenn Begriffe
wie Benutzerfreundlichkeit - heute schon in
aller Munde - nicht mehr nur Schlagwörter
sind, sondern auch messbar werden, könnte

beispielsweise eine «Benutzerfreundlichkeit

von mindestens 15 Smiles» verlangt werden

(1 Smile Einheit der Benutzerfreundlichkeit).

Was sind Software-Metriken?

Wenn man sich einmal dafür entschieden

hat, Software zu messen, geht es als nächstes

dämm, festzustellen, was man messen will
und was man aus den gemachten Messungen

o

o
Kante

Knoten

Anzahl Kanten E=15

Anzahl Knoten N=11

- eine Interpretation, welche angibt, was wir
für unseren Problemkreis aus der Zahl
schliessen können

Zwei Beispiele sollen das verdeutlichen.
Das erste ist absichtlich aus einem völlig an1

deren Gebiet gewählt, während das zweite
eine Software-Kennzahl liefert, welche in der

Praxis verwendet wird.

Komplexität V=6 (=E-N+2)

Bild 2 Zyklometrische Komplexität
eines Programmgraphen

schliessen kann. Für eine Metrik müssen

folgende fünf Eigenschaften definiert sein:

- ihr Name

- eine Regel, was zu messen oder zu zählen

ist

- der Algorithmus, nach welchem die Kennzahl

aus den Messungen berechnet wird

- ihre Einheit

Beispiel 1

Name

Regel

Algorithmus
Einheit

Interpretation

Beispiel 2

Name

Regel

Algorithmus
Einheit

Interpretation

Ackerfläche
Schreite die Länge (L) und

die Breite (B) ab und zähle

die Schritte

F LB
Quadratschritte
Die benötigte Saatmenge und

die erwartete Ernte sind

proportional zur Ackerfläche F

Zyklometrische Komplexität
Zähle die Kanten (£) und die

Knoten (N) im Steuerflussgraphen

des Programms

V=E-N+2
Dimensionslos
Je grösser V ist, desto

schwieriger wird das Testen

des Codes sein

Bild 2 veranschaulicht diese Metrik. Man
beachte, dass die Angabe der Interpretation
nicht etwa fakultativ ist. Eine Grösse kann
fast immer auf verschiedene, unter anderem

auch unzulässige Arten, interpretiert werden,
und es muss daher angegeben werden, wozu
die Kennzahl wirklich brauchbar ist. So ist es

beispielsweise nicht statthaft, die zyklometrische

Komplexität als Gütemass zu postulieren,

in der Art, dass etwa vorgeschrieben würde,

keine Routine darf ein V> 15 aufweisen.

Anweisungszeilen 3 • Std. Abweichung
+ 3 • Std. Abweichung Mittelwert

Bild 3 Schwachstellen erkennen: Grössen von Moduln

Bulletin SEV/VSE 25/93

Was bringt der Einsatz

von Software-Metriken?

Wie oben erwähnt, können Metriken auf
verschiedene Art zur Qualitätsüberprüfung
und -Verbesserung eingesetzt werden. Einige
Beispiele sollen das erläutern.

Erkennen von Schwachstellen
Eine der ersten verwendeten Software-

Kennzahlen war die Programmgrösse, wobei
verschiedene Möglichkeiten zu deren Definition

verwendet wurden. Die wohl am häufigsten

angewandte Regel bestand darin, ganz
einfach die Programmzeilen zu zählen -
vielleicht unter Ausschluss der Kommentare und

der Leerzeilen -, denn das war praktisch ohne

Aufwand zu machen. Die Kennzahl Lines of
Code (LOC, häufig auch KLOC Kilo Lines

of Code, also tausend Programmzeilen) ist

allerdings ziemlich umstritten. Ohne hier auf
die Argumente dafür und dagegen einzuge-

17

600

j- 500
a>

5? 400N
CA

O)
C 300
3
CA

O 200

c^ 100

Modul



Informatik

Bild 4b Kiviat-Diagramm mit Soll-Bereich

hen, kann doch gesagt werden, dass LOC in
beschränktem Masse durchaus als Kennzahl

beigezogen werden kann, wie das Beispiel
von Bild 3 zeigt. Wenn die Anzahl einzelner

Moduln genügend gross ist, kann LOC als

statistische Grösse betrachtet werden. Bei den

Ausreissern ausserhalb des Bereichs von drei

Standardabweichungen wird speziell sorgfältig

untersucht, ob es für sie einen guten Grund

gibt, so klein bzw. so gross zu sein. Unter
Umständen müssen einzelne von ihnen
überarbeitet werden. Moduln, welche begründe-
termassen ausnehmend gross sind, müssen

möglicherweise auch auf spezielle Art getestet

werden.

Eine ausgezeichnete Methode, verdächtige

Moduln zu erkennen, besteht im
Aufzeichnen eines Satzes von Kennwerten in
einem Kiviat-Diagramm (auch Radardiagramm

oder Fussspur genannt), von denen

zwei Arten in Bild 4 gezeigt sind. Pro Modul
wird ein Diagramm erstellt. Beim Diagramm
4a sind Werte zwischen 0 und 100% möglich,
wobei 100% immer das Optimum ist; der

angestrebte Soll-Wert und der gemessene Ist-
Wert werden eingetragen. Beim Diagramm
4b liegen die Soll-Werte innerhalb eines

Bereichs, der sowohl über- wie unterschritten
werden kann. Alle Axen werden hier so
normiert, dass der akzeptable Bereich die Form
eines Ringes erhält. Um Missverständnissen

vorzubeugen, wurden keine Zahlen
angeschrieben; in Wirklichkeit gehören sie natürlich

dazu. Ausreisser sind auf einen Blick
erkennbar und können einer zusätzlichen

Inspektion unterzogen werden. Werte der Art,
wie sie in Diagramm 4b vorkommen, sind

leicht automatisch zu erfassen; es existieren
auch Softwarewerkzeuge, welche die Werte
nicht nur ermitteln, sondern sie auch in der

gezeigten Form darstellen.

Verfolgen von Trends
Absolute Zahlen sagen wenig aus. Wichtiger

ist das Entdecken und Verfolgen von
Trends: dieselben Messungen werden zu
verschiedenen Zeitpunkten wiederholt. Aus den

daraus entstehenden Graphiken können
sowohl lauernde Probleme wie auch

vorgenommene Verbesserungen erkannt werden.

Aus Bild 5 lassen sich zwei Dinge ablesen:

a. Die Anzahl der Programmzeilen pro Modul

bleibt - auch über längere Zeit hinweg -
ungefähr konstant, was auf einen stabilen

Entwicklungsprozess schliessen lässt.

b. Die Releases werden abwechselnd grösser
und kleiner. Das stimmt vollkommen überein

mit der Strategie des Projektleiters: Nach
jeder Auslieferung mit neuen Funktionalitäten

folgt eine Konsolidierungsphase, welche mit
einer weiteren Ausüefemng abschliesst. Erst
dann wird wieder neu ausgebaut.

Aufspüren einer Verteilung
Das Bild 6 zeigt die Schachtelungstiefe

von Routineaufrufen. Dabei bedeutet zum
Beispiel die Tiefe 3: eine Routine ruft eine

zweite auf, welche selbst wieder eine dritte
aufruft. Auf den ersten Blick zieht man aus

dieser Graphik den Schluss: hier wurde eine
reichlich komplexe und daher fehleranfällige
Lösung gewählt; die maximale
Schachtelungstiefe beträgt 17.

Bei genauerem Hinsehen erkennt man
aber in der Kurve zwei Buckel, welche drei
Schichten trennen: die oberste Schicht

(rechts, mit der grössten Schachtelungstiefe)

Bild 5 Trends verfolgen: Release-Strategie

18 Bulletin ASE/UCS 25/93



Softwarequalität

Anzahl Aufrufe
1000

800

600

400

200

1109

60
im.I

x—x

'135

im
!®1 74

53 47
Éjiffi ^ i ij

i pi Pli piI m j

36 28 25 „ 14!31
s

13 2zIii 10 3 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Verschachtelungstiefe der Aufrufe

-^Aufrufe kumuliert — 80% der Aufrufe

Bild 6 Verteilung aufspüren: Schachtelungstiefe von Routinen

ist die eigentliche Anwendung, darunter

liegt ein Graphikpaket, und die unterste
Schicht machen die hardwarenahen Routinen

aus. Unter Berücksichtigung dieser

Aufteilung erscheint nur noch die mittlere
Schicht als komplex, weil sie in sich selbst

immer noch eine maximale Schachtelungstiefe

von 9 aufweist.

Verwendung von Bezugsgrössen
Regelmässig gemessene Kennwerte können

mit der Zeit als Bezugsgrössen für
gewisse Vorhersagen verwendet werden. Auch

wenn diese Prognosen nie exakt sein werden,
besser als über den Daumen gepeilte sind sie

auf jeden Fall.

Eine Kennzahl, welche schon lange an

vielen Orten ermittelt wird, ist die Fehlerdichte,

das heisst die Anzahl Fehler pro
KLOC, und zwar einerseits die Dichte aller
Fehler, die gemacht wurden, von welchen
aber ein grosser Teil bei den Prüfungen
entdeckt und eliminiert wurde, und andererseits

die Fehlerdichte nach der Auslieferung, also

der Fehler, welche später noch gefunden
wurden. Wenn diese, zugegebenermassen

wenig schmeichelhaften Daten sorgfältig er-
fasst und ausgewertet werden, so kann man
bei einem stabilen Entwicklungsprozess aus

der Programmgrösse auf die Anzahl noch
verbliebener Fehler schliessen, nachdem in
den Prüfungen bereits eine bestimmte
Anzahl davon gefunden wurde.

Eine weitere Anwendung von gesammelten

Kennwerten als Bezugsgrössen besteht in
der Erhärtung oder Widerlegung von
Hypothesen (inkl. überlieferter Softwaremythen).
Beispielsweise besagen die Prinzipien des

Software-Engineering, dass die Kopplung
von Moduln über Parameter der Kopplung
über gemeinsame Datenbereiche vorzuziehen
ist. Messungen ergeben, dass die Art der

Kopplung auf die Fehlerhäufigkeit keinen
Einfluss hat, wohl aber auf die Wartbarkeit
der Software.

Die Schachtelungstiefe von Routineaufrufen,

wie sie in Bild 6 dargestellt wurde,
hingegen hat, wie Messungen zeigen, einen

Einfluss auf die Fehlerhäufigkeit, so dass

damit im nachhinein die Bemerkung betreffend
der Fehleranfälligkeit des dort erwähnten

Graphikpakets gerechtfertigt ist.

Auch bei dieser Art der Verwendung der

Kennzahlen ist wichtig - und nicht immer
leicht -, diese richtig zu interpretieren. So

kann die Tatsache, dass in der Testphase relativ

wenig Fehler gefunden wurden, dahin
gedeutet werden, dass die Programme sehr

sorgfältig entwickelt und bereits vor dem

Testen, beispielsweise in Reviews, gründlich
geprüft wurden. Das ist die optimistische
Interpretation; die pessimistische Interpretation
besagt, dass die Testfälle nicht gut gewählt
sind, so dass sie die vorhandenen Fehler nicht

aufspüren können.

Qualitätsindikatoren
Es kann hier nicht darum gehen, eine

vollständige Liste von Indikatoren aufzuführen.

Vielmehr sollen einige Hinweise auf mögliche

Metriken gegeben werden; schliesslich
wird jeder Betrieb die für ihn wichtigen
Indikatoren selbst definieren müssen.

Produktindikatoren
Für die Softwareprodukte wird man sich

zunächst der Codemetriken bedienen, deren

es viele gibt. Sie sind relativ leicht zu ermitteln,

allerdings sind nicht alle gleich aussagekräftig.

Bei vernünftiger Interpretation sind

beispielsweise

- die Programmgrösse (in KLOC)

- die zyklometrische Komplexität

- die Anzahl numerischer Konstanten pro
KLOC (als Indikator für die Wartbarkeit)

nützliche Indikatoren. Je nach benötigtem
Einsatz werden mit etwas Phantasie leicht
weitere geeignete Metriken definiert.

Software besteht aber nicht nur aus

Programmen, sondern auch aus Dokumentation
und Daten, daher müssen auch diese Aspekte
in die Messung von Softwarequalität einbezogen

werden. Über die Datenqualität soll
hier nicht gesprochen werden, da deren

Bestimmung extrem von den spezifischen Daten

abhängt; im übrigen kann dazu gesagt werden:

Wenn schon die Daten qualitativ
ungenügend sind, dann ist die Qualität der

Programme und der Dokumentation gewiss nicht
das dringendste Problem!

Bulletin SEVWSE 25/93 19



Informatik

Brauchen wir die Güte der Dokumentation

überhaupt zu messen? Die Antwort auf diese

Frage ist ein klares Ja. Man gebe sich keinen

Illusionen hin: die teuersten Fehler beruhen

sehr häufig auf Missverständnissen, welche
sich letztlich auf die mangelhafte Qualität
irgendwelcher Dokumente, zum Beispiel
der Anforderungs-Spezifikationen, zurückführen

lässt.

Aber wie messen wir sie? Metriken für die

Dokumentation sind nicht sehr leicht zu
finden. Fünf Vorschläge sollen hier gemacht
werden; einige werden an einzelnen Orten

bereits verwendet, bei den andern muss die

Erfahrung zeigen, wie brauchbar sie wirklich
sind. Die fünf Metriken sind:

• die Grösse

• die Unzweideutigkeit
• der Fog-Index
• die Bilddichte
• das Jury-Urteil

Die Grösse (in Seiten, Wörtern usw.) ist
leicht zu messen und kann eine Aussage über

den Aufwand bei der Wartung (der
Dokumentation) machen. Die Unzweideutigkeit
könnte nach unserem Schema wie folgt
definiert werden:

Name Unzweideutigkeit
Regel Ermittle Z Anzahl Wörter

wie «auch, immer, nie,

usw., anders,...», und
W Anzahl Wörter gesamt

Algorithmus U (1 - Z/W) • 100

Einheit Prozent

Interpretation Je grösser U, desto klarer
das Dokument

Ein Beispiel soll zeigen, warum die

erwähnten Wörter gefährlich sind. Eine
Spezifikation enthält den Satz «Die Anzahl
Elemente in der X-Tabelle wird auch in der

Datei D abgespeichert». Das kann (und

wird!) auf zwei wesentlich verschiedene Arten

interpretiert werden:

Interpretation 1: Ein weiterer Eintrag in D
ist die Grösse von X.

Interpretation 2: Die Grösse von X ist so¬

wohl in D wie auch sonstwo

gespeichert.

Für den Fog-Index werden die Anzahl
Buchstaben pro Wort, die Anzahl Wörter pro
Satz und die Anzahl Sätze pro Abschnitt
ermittelt. Je länger im Durchschnitt die Wörter,
die Sätze und die Abschnitte sind, desto

mühsamer ist es, den Text zu verstehen. Die
Bilddichte ist definiert als der Quotient Anzahl
Bilder pro Anzahl Wörter. Die zugehörige

Interpretation heisst: je gösser die Bilddichte,
desto kleiner der Wartungsaufwand pro Fehler.

Das Jury-Urteil kann verwendet werden,

wenn objektiv messbare Kennzahlen nicht

gefunden werden können. Wie die Erfahrung
aus dem Eiskunstlauf zeigt, ist eine derartige

Metrik zwar nicht ideal, aber durchaus

brauchbar.

Projektindikatoren
Bei der Überwachung und Messung der

Softwareprojekte, also der Entwicklung von
Produkten, sind die ermittelten Werte jeweils
mit den geplanten zu vergleichen, um daraus

auf den Stand des Projekts schliessen zu können.

Vier Möglichkeiten seien hier erwähnt;
viele andere bieten sich ebenfalls an:

- die Anzahl Mitarbeiter

- die Anzahl fertiggestellter Softwareeinhei¬

ten in den verschiedenen Phasen der

Entwicklung (Entwurf, Test, Integration)

- der Projektfortschritt, speziell die aktuell

geschätzten noch zu erwartenden Kosten

(Cost to Completion)

- der Testfortschritt

Wer misst wann wieviel?

Wer soll die Messungen durchführen?
Die Entwickler selber messen erfah-

rungsgemäss noch zu wenig, selbst wenn
ihnen Werkzeuge zur Verfügung stehen.

Das kann sich in Zukunft, wenn das Erfassen

von Kennzahlen zur Gewohnheit
geworden ist, ändern. Bis dann müssen die
Produkt-Metriken von Qualitäts-Beauftragten

ermittelt werden. Die Resultate sollen
den Entwicklern aber auf jeden Fall zur
Verfügung stehen; nur dann helfen die Messungen

wirklich mit, die Qualität zu verbessern.

Die Projekt-Kennzahlen müssen vom
Projektleiter oder einem Qualitätsteam gemessen

werden; sowohl der Projektleiter wie
auch die Qualitätssicherung müssen die
Resultate erhalten.

Wann soll gemessen werden?
Zur laufenden Überprüfung und zur

Vorhersage des weiteren Verlaufs wird während
der Entwicklung gemessen. Nach Abschluss
des Projekts sollen Messungen gemacht werden,

welche für die Aufnahme in eine
Qualitätsdatenbank bestimmt sind, zur späteren

Verwendung für Vorhersagen, Vergleichen,
Trendbeobachtungen und als Bezugsgrössen.

Wieviel soll man messen?
Wenn man sich entschlossen hat, ein

Software-Metrik-Programm einzuführen, so soll

am Anfang nur wenig gemessen werden,
etwa ein halbes Dutzend verschiedener
Kennzahlen. Später lässt sich diese Zahl nach
Bedarf erhöhen. Wenn von Anfang weg grosse
Datenmengen vorliegen, so werden ungeübte
Teams überwältigt; die Auswertung und die

Interpretation wird darunter leiden, und das

Metrik-Programm ist von Anfang an gefährdet.

Das aber wäre der Qualität, um die es uns
hier ja letztlich geht, nicht zuträglich.

Zusammenfassung

Software-Metriken werden im grossen
ganzen noch zögernd eingesetzt. Die Erfahrung

zeigt aber, dass sie einen wesentlichen

Beitrag zur Qualität von Softwareprodukten
liefern können, einerseits, indem aus ihnen
Rückschlüsse auf das Produkt selber gezogen
werden können, andererseits, weil sie auch

dazu dienen, den Entwicklungsprozess zu
verbessern.

Hätte das eingangs erwähnte Debakel bei

der Montreal Life Insurance Co. mit Metriken
vermieden werden können? Das Programm
selbst wäre durch Messungen kaum verbessert

worden. Wie der Zeitungsartikel damals

aber weiter ausführte, beruhte der Untergang
der Firma wesentlich darauf, dass «die
System Manager prinzipiell nur ihren eigenen
Gesetzen gehorchen. Sie sind niemandem
Rechenschaft schuldig ...» Der Regelkreis
war also gar nicht vorhanden. Wären bei der

Einführung des neuen Programms die richtigen

Messungen gemacht und beachtet worden,

so hätten zwar nicht die ersten Verluste,
wohl aber der völlige Kollaps vermieden werden

können.

Angesichts des ständig zunehmenden
Einsatzes immer komplexerer Software und
ihres damit unaufhörlich wachsenden Einflusses

in allen Gebieten nimmt auch die Bedeutung

der Qualitätssicherung rapide zu.

Software-Metriken, richtig angewandt, können
dabei einen wichtigen Beitrag leisten.

Literatur
[1] P.G. Neumann (Moderator): Risks to the

public in computers and related systems. ACM Sigsoft
Software Engineering Notes, 17(1992)2, S. 3-27.

Métriques pour logiciels
Les logiciels deviennent toujours plus complexes, et le nombre de domaines qu'ils

envahissent croît partout. Aussi devient l'assurance de la qualité plus et plus importante.
Ce ne sont pas seulement les produits, mais aussi bien les processus de développement
dont il faut contrôler et améliorer la qualité. A cette fin on emploie la technique des

métriques. Quoiqu'elle ne soit pas encore très répandue, elle se montre très utile. Cet
article présente quelques exemples de métriques et de leur emploi.

20 Bulletin ASE/UCS 25/93


	Auf der Jagd nach Software-Läusen : Software-Metriken

