Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 84 (1993)

Heft: 25

Artikel: Auf der Jagd nach Software-Lausen : Software-Metriken

Autor: Schild, Rudolf

DOl: https://doi.org/10.5169/seals-902767

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-902767
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Softwarequalitiit

Software dringt in immer neue Gebiete vor, und gleichzeitig nimmt ihre Komplexitat in
starkem Masse zu. In dhnlichem Ausmass gewinnt in der Folge die Qualitatssicherung an
Bedeutung, wobei man sich dariber einig ist, dass nicht nur die Qualitat der Produkte
selbst, sondern auch diejenige der Entwicklungsprozesse Giberwacht und verbessert werden
muss. Dazu bedient man sich heute, wenn auch noch zégernd, der Technik der Software-
Metriken. Was man sich darunter vorzustellen hat, zeigt dieser Artikel anhand einiger

Beispiele.

Auf der Jagd nach Software-Liusen

Software-Metriken

Dieser Aufsatz ist die erweiterte Fassung eines Vor-
trags, den der Autor an der ITG-Friihjahrstagung 1993
vom 11. Mirz 1993 iiber Softwarequalitiit technischer
Systeme in Ziirich gehalten hat.

Adresse des Autors:
Dr. Rudolf Schild,
Infogem AG, Riitistrasse 9, 5401 Baden.

Bulletin SEV/VSE 25/93

W Rudolf Schild

Fehlerhafte Software ruiniert
Versicherungsgesellschaft

In der «Montreal Gazette» vom 22. Febru-
ar 1992 fand sich ein Artikel von Jay Bryan
tiber die Auswirkungen von Fehlern in einem
integrierten Computerprogramm einer Ver-
sicherungsgesellschaft (frei iibersetzt und
zitiert nach [1]):

«Als die Montreal Life Insurance Co., ein
florierendes Versicherungsunternehmen, vor
zehn Jahren beschloss, ihr Informations-
system auszubauen, wurden keine halben Sa-
chen geplant. Das neue <integrierte> System
wiirde sdmtliche Bereiche und Aspekte der
Firma miteinander verkniipfen und alle Be-
diirfnisse abdecken. Es gab allerdings ein
kleines Problem. Das umfangreiche Pro-
gramm — eine Million Zeilen — musste in
ziemlicher Eile angepasst und installiert wer-
den. So geschah es denn, dass sich hier und
dort im Programm auch einige unentdeckt
gebliebene Bugs, wie die Software-Leute
ihre Fehler gerne liebevoll und verharmlo-
send zu bezeichnen pflegen, versteckten.
Und weil das System ja integriert war, wur-
den durch einen Fehler in den Daten einer
Abteilung jedesmal auch die Daten von meh-
reren anderen Abteilungen gleichzeitig mit-
betroffen und verfilscht.

Es ging kein Jahr ins Land, da waren die
Auswirkungen bereits zu spiiren: Montreal
Life schrieb rote Zahlen. Nach drei Jahren
war das Unternehmen dem Zusammenbruch

nahe. Fehler in den Provisionszahlungen ver-
triecben die meisten der Agenten, welche
gleich auch ihre Kunden mitnahmen. Wenn
die Agenten nicht unterbezahlt waren, so wa-
ren sie iiberbezahlt, was sich zu einem weite-
ren Millionenverlust summierte. Schliesslich
wurde das, was von Montreal Life noch {ibrig
war, von den Eigentiimern verkauft; die
meisten der obersten Manager verloren ihre
Stelle ...»

Horrorgeschichten dieser und &#hnlicher
Art gibt es viele, einige mit noch schlimme-
rem Ausgang (Verlust von Menschenleben),
die meisten aber harmloser, wenn auch ldstig
fiir die Betroffenen. Und immer wieder lduft
es auf dasselbe hinaus: fehlerhafte Software.
Natiirlich kommt es auch bei Nicht-Soft-
ware-Produkten vor, dass etwas schief geht,
zum Teil ebenfalls mit katastrophalen Fol-
gen. Aber zwischen Software und konventio-
nellen Produkten besteht ein grundlegender
Unterschied, der sich auch auf die Zuverlas-
sigkeit auswirkt:

Software ist nicht stetig

Anders ausgedriickt: In einem Software-
produkt kann eine beliebig kleine Anderung
eine beliebig grosse Auswirkung haben. Das
hat in zwei Bereichen einen wesentlichen
Einfluss: Zum ersten kann man aus kleinen
Anderungen an den Eingangsdaten nicht un-
bedingt auf kleine, mehr oder weniger pro-
portionale Anderungen der Ausgangsdaten
schliessen; Interpolation und Extrapolation
sind grundsitzlich nicht zuldssig, was das
Testen von Software dusserst schwierig
macht. Wenn ein Balken mit 10 Tonnen bela-

15

informatik

Rahmenbedingungen

Anforderungen

Regeln und
Massnahmen

Entwicklung

Produkt

Bild 1 Regelkreis fiir
Produktivitat

Beobachtungen
und Messungen

Interpretation

stet wird und sich um 1 cm durchbiegt, dann
kann man daraus schliessen, dass die Durch-
biegung bei kleinerer Belastung hochstens
gleich gross sein wird. Nicht so bei der Soft-
ware: wenn die Eingangswerte von 1 bis 9
und von 100 bis 199 die richtigen Resultate
liefern, ist fiir die Werte von 10 bis 99 prinzi-
piell noch nichts ausgesagt. Es konnte zum
Beispiel sein, dass zweistellige Zahlen nicht
richtig verarbeitet werden.

Zum zweiten konnen kleine Fehler im Pro-
grammcode beliebig grosse, vollkommen un-
vorhersagbare Auswirkungen auf die Funkti-
on des Systems haben. Das macht das Testen
von Software noch schwieriger. Wenn in ei-
nem elektrischen Schwingkreis ein Wider-
stand ein wenig von seinem Soll-Wert ab-
weicht, dann wird die Resonanzfrequenz des
Kreises ebenfalls ein wenig von ihrem Soll-
Wert abweichen, aber diese Abweichung ist,
zumindest fiir kleine Storungen, beschrénkt.
Nicht so bei Software. Ein einziges falsches
Bit im Code kann unter Umstinden — zum
Beispiel bei einer ganz bestimmten zeitlichen
Abfolge von Eingangssignalen — das System
zum Abstiirzen bringen; das heisst es funktio-
niert nicht ein wenig anders, sondern iiber-
haupt nicht mehr.

Es ist also nicht verwunderlich, dass aus-
gelieferte Software mit Fehlern behaftet ist,
manchmal sogar noch nach jahrelangem Ein-
satz und praktischer Erprobung. Und es ist
auch verstindlich, dass die Verantwortlichen
sich mehr und mehr mit der Frage beschifti-
gen, was man dagegen unternehmen kann.
Wie, so lautet die Frage, kann man das Ziel,
qualitativ hochwertige Software zu produzie-
ren, erreichen?

Kann man Softwarequalitat
messen?

Um zu wissen, ob man sich diesem Ziel
wirklich ndhert, muss man sich zundchst im

16

klaren sein, wortiber man spricht. Meistens
wird eine Entwicklerin oder ein Anwender
intuitiv sagen konnen: «Diese Software ist
besser als jene» oder «Die Qualitit dieser
Version wurde gegeniiber der vorhergehen-
den verbessert». Was aber ist genau darunter
zu verstehen? Wenn wir eindeutige, nach-
priifbare, quantifizierbare Aussagen {iber
Softwarequalitdt machen wollen, dann miis-
sen wir sie zundchst einmal messen konnen.
Aus den gemessenen Werten hoffen wir
anschliessend, bei richtiger Interpretation,
Schliisse beziiglich der Qualitit ziehen zu
konnen. Auf diese Art entsteht der Regelkreis
von Bild 1, der uns dem Ziel immer néher
bringt.

Solche Kennzahlen, ermittelt nach Soft-
ware-Metriken, werden heute bereits an ver-
schiedenen Orten mit Erfolg eingesetzt, zum
Beispiel im Zusammenhang mit Software-
Qualititssicherung und Verbesserung des
Entwicklungsprozesses. Warum also wird
diese Technik nicht in grosserem Umfang
eingesetzt? Wo noch nicht gemessen wird,
hort man im allgemeinen die folgenden Ein-
winde:

Softwareprodukte
sind zu unterschiedlich

Denselben Einwand konnte man bei man-
chen anderen Produkten auch anfiihren, bei-
spielsweise bei Automobilen. Dennoch wer-
den fiir Automobile umfangreiche Mengen
von Kennzahlen ermittelt, und es hdngt von
den Priorititen des Kunden ab, welche Kenn-
zahlen er verwenden und wie er sie interpre-
tieren will.

Softwareprojekte
sind zu unterschiedlich

Dagegen ldsst sich sagen: Es ist gewiss
nicht sinnvoll, vollig verschiedene Projekte
miteinander zu vergleichen; hingegen wird
ein Vergleich zwischen éhnlichen Projekten
in dhnlicher Umgebung sehr wohl aussage-
kriftig sein.

Die Anwendungsgebiete
sind zu unterschiedlich

Natiirlich ist es nur sinnvoll, Produkte aus
demselben Anwendungsgebiet miteinander
zu vergleichen.

Messungen haben keinen Einfluss
auf die Qualitit oder Produktivitit

Das ist prinzipiell tiberall wahr, wo Mes-
sungen gemacht werden. Eine Messung ver-
bessert die Qualitéit nicht direkt; sie sagt aber
etwas aus iiber die Qualitdt und kann damit
dazu beitragen, dass die Qualitit des néchsten
Produktes besser sein wird.

Es besteht die Gefahr der Filschung
von Kennzahlen

Das ist vor allem dann wahr, wenn Mes-
sungen zur Beurteilung von Einzelpersonen
und nicht von Produkten, Prozessen oder
auch Teams verwendet — oder eher miss-
braucht — werden. Wenn aber die Messungen
den Entwicklern zugute kommen, so ist der
Anreiz zur Verfilschung kaum noch vorhan-
den.

Messungen sind zu teuer

Die Frage ist in Wirklichkeit nicht, ob wir
es uns leisten konnen, Messungen durchzu-
fiihren, sondern ob wir es uns leisten konnen,
sie nicht durchzufiihren.

Was spricht fiir Messungen?

Nachdem die Einwinde entkriftet sind,
stellt sich die Frage, welchen Nutzen wir aus
Messungen ziehen konnen. Dabei kann man
vier Gebiete unterscheiden:

— Uberwachung des Projektfortschritts, mit
Abschitzung des weiteren Verlaufs

— Sicherung der Produktqualitit, das heisst
der Qualitit des ausgelieferten Software-
produkts

— Sicherung der Projektqualitit, das heisst
der Qualitit des Entwicklungsprozesses,
nicht des entwickelten Produkts

Bulletin ASE/UCS 25/93

— Entscheidungshilfen fir die Produktent-
wicklung, beispielsweise Kennzahlen fiir
zugekaufte Software

Auf allen vier Gebieten, mit unterschiedli-
cher Ausprdgung, lassen sich drei Arten von
Nutzanwendungen fiir Kennzahlen ausma-
chen:

1. Das Erkennen von Schwachstellen: Wo
sind im Produkt am ehesten Fehler zu er-
warten? Wo kann der Entwicklungs-
prozess verbessert werden?

2. Die Beobachtung von Trends und Vertei-
lungen: Lassen sich Vermutungen auf-
stellen oder erhdrten?

3. Die Verwendung von Bezugsgrossen fiir
Vorhersagen: Welcher Aufwand wird be-
notigt? Wie gross ist die Anzahl der ver-
bliebenen Fehler?

Dazu konnte in Zukunft, wenn sich Software-
Metriken etabliert haben, vielleicht noch das
folgende Gebiet kommen: Vorgaben fiir Spe-
zifikation und Entwicklung. Wenn Begriffe
wie Benutzerfreundlichkeit — heute schon in
aller Munde — nicht mehr nur Schlagworter
sind, sondern auch messbar werden, konnte
beispielsweise eine «Benutzerfreundlichkeit
von mindestens 15 Smiles» verlangt werden
(1 Smile = Einheit der Benutzerfreundlich-
keit).

Was sind Software-Metriken?

Wenn man sich einmal dafiir entschieden
hat, Software zu messen, geht es als néchstes
darum, festzustellen, was man messen will
und was man aus den gemachten Messungen

Kante || Anzahl Kanten E=15
Q Knoten || Anzahl Knoten N=11

Komplexitat V=6 (=E-N+2)

Bild 2 Zyklometrische Komplexitat
eines Programmgraphen

schliessen kann. Fiir eine Metrik miissen fol-

gende fiinf Eigenschaften definiert sein:

— ihr Name

— eine Regel, was zu messen oder zu zédhlen
ist

— der Algorithmus, nach welchem die Kenn-
zahl aus den Messungen berechnet wird

— ihre Einheit

600
c 500
2
D .
N 400
(1)
(=]
= 300
-z +36
D 200 -
(e
< 100 /N
\1 \[v _.// -3¢ ||
Y g T TR T e P T e e T T P T L T
ABCDEFGHI| JKLMNOPQRSTUVWXYZ1234
Modul
—— Anweisungszeilen —— - 3. Std. Abweichung
—— + 3 - Std. Abweichung — — Mittelwert

Bild 3 Schwachstellen erkennen: Gréssen von Moduln

Bulletin SEV/VSE 25/93

Softwarequalitat

— eine Interpretation, welche angibt, was wir
fiir unseren Problemkreis aus der Zahl
schliessen konnen

Zwei Beispiele sollen das verdeutlichen.
Das erste ist absichtlich aus einem vollig an-
deren Gebiet gewdhlt, wihrend das zweite
eine Software-Kennzahl liefert, welche in der
Praxis verwendet wird.

Beispiel 1

Name Ackerfldche

Regel Schreite die Lange (L) und
die Breite (B) ab und zéhle
die Schritte

Algorithmus F=L-B

Einheit Quadratschritte

Interpretation Die bendtigte Saatmenge und
die erwartete Ernte sind pro-
portional zur Ackerflidche F

Beispiel 2

Name Zyklometrische Komplexitit

Regel Zihle die Kanten (E) und die
Knoten (N) im Steuerfluss-
graphen des Programms

Algorithmus V=E-N+2

Einheit Dimensionslos

Interpretation Je grosser V ist, desto

schwieriger wird das Testen
des Codes sein

Bild 2 veranschaulicht diese Metrik. Man
beachte, dass die Angabe der Interpretation
nicht etwa fakultativ ist. Eine Grosse kann
fast immer auf verschiedene, unter anderem
auch unzuldssige Arten, interpretiert werden,
und es muss daher angegeben werden, wozu
die Kennzahl wirklich brauchbar ist. So ist es
beispielsweise nicht statthaft, die zyklometri-
sche Komplexitit als Giitemass zu postulie-
ren, in der Art, dass etwa vorgeschrieben wiir-
de, keine Routine darf ein V> 15 aufweisen.

Was bringt der Einsatz
von Software-Metriken?

Wie oben erwihnt, konnen Metriken auf
verschiedene Art zur Qualititsiiberpriifung
und -verbesserung eingesetzt werden. Einige
Beispiele sollen das erldutern.

Erkennen von Schwachstellen

Eine der ersten verwendeten Software-
Kennzahlen war die Programmgrosse, wobei
verschiedene Moglichkeiten zu deren Defini-
tion verwendet wurden. Die wohl am héufig-
sten angewandte Regel bestand darin, ganz
einfach die Programmzeilen zu zihlen — viel-
leicht unter Ausschluss der Kommentare und
der Leerzeilen —, denn das war praktisch ohne
Aufwand zu machen. Die Kennzahl Lines of
Code (LOC, hdufig auch KLOC = Kilo Lines
of Code, also tausend Programmzeilen) ist
allerdings ziemlich umstritten. Ohne hier auf
die Argumente dafiir und dagegen einzuge-

17

iﬁférmsilk

Kommentarzeilen pro Anweisung

* |st-Resultat :
e Ki ktheit 919
o SollR esulat orrekthei 3
Zuverl758§/sigkeit Anzahl Gesamt-
2 Operanden
Sicherheit ") .\, | Wartbar-
27% J : keit
‘ 91%
B e Anzahl
Efg;!,z e Fle)é;lz}lltat verschiedene
2 Operanden
Gebrauchstauglichkeit
a) 90% b)

Anweisungen

v(G)

Bild 4a Kiviat-Diagramm mit Prozent-Darstellung

hen, kann doch gesagt werden, dass LOC in
beschrinktem Masse durchaus als Kennzahl
beigezogen werden kann, wie das Beispiel
von Bild 3 zeigt. Wenn die Anzahl einzelner
Moduln geniigend gross ist, kann LOC als
statistische Grosse betrachtet werden. Bei den
Ausreissern ausserhalb des Bereichs von drei
Standardabweichungen wird speziell sorgfil-
tig untersucht, ob es fiir sie einen guten Grund
gibt, so klein bzw. so gross zu sein. Unter
Umstdnden miissen einzelne von ihnen iiber-
arbeitet werden. Moduln, welche begriinde-
termassen ausnehmend gross sind, miissen
moglicherweise auch auf spezielle Art gete-
stet werden.

Eine ausgezeichnete Methode, verdich-
tige Moduln zu erkennen, besteht im Auf-
zeichnen eines Satzes von Kennwerten in
einem Kiviat-Diagramm (auch Radardia-
gramm oder Fussspur genannt), von denen
zwei Arten in Bild 4 gezeigt sind. Pro Modul
wird ein Diagramm erstellt. Beim Diagramm
4a sind Werte zwischen 0 und 100% maglich,
wobei 100% immer das Optimum ist; der
angestrebte Soll-Wert und der gemessene Ist-
Wert werden eingetragen. Beim Diagramm
4b liegen die Soll-Werte innerhalb eines Be-
reichs, der sowohl iiber- wie unterschritten
werden kann. Alle Axen werden hier so nor-
miert, dass der akzeptable Bereich die Form
eines Ringes erhilt. Um Missverstindnissen
vorzubeugen, wurden keine Zahlen ange-
schrieben; in Wirklichkeit gehoren sie natiir-
lich dazu. Ausreisser sind auf einen Blick
erkennbar und konnen einer zusitzlichen In-
spektion unterzogen werden. Werte der Art,
wie sie in Diagramm 4b vorkommen, sind
leicht automatisch zu erfassen; es existieren
auch Softwarewerkzeuge, welche die Werte
nicht nur ermitteln, sondern sie auch in der
gezeigten Form darstellen.

18

Bild 4b Kiviat-Diagramm mit Soll-Bereich

Verfolgen von Trends

Absolute Zahlen sagen wenig aus. Wichti-
ger ist das Entdecken und Verfolgen von
Trends: dieselben Messungen werden zu ver-
schiedenen Zeitpunkten wiederholt. Aus den
daraus entstehenden Graphiken kdnnen so-
wohl lauernde Probleme wie auch vorge-
nommene Verbesserungen erkannt werden.
Aus Bild 5 lassen sich zwei Dinge ablesen:

a. Die Anzahl der Programmzeilen pro Mo-
dul bleibt — auch iiber lingere Zeit hinweg —
ungefdhr konstant, was auf einen stabilen
Entwicklungsprozess schliessen ldsst.

b. Die Releases werden abwechselnd grosser
und kleiner. Das stimmt vollkommen iiberein
mit der Strategie des Projektleiters: Nach je-
der Auslieferung mit neuen Funktionalititen

folgt eine Konsolidierungsphase, welche mit
einer weiteren Auslieferung abschliesst. Erst
dann wird wieder neu ausgebaut.

Aufspiiren einer Verteilung

Das Bild 6 zeigt die Schachtelungstiefe
von Routineaufrufen. Dabei bedeutet zum
Beispiel die Tiefe 3: eine Routine ruft eine
zweite auf, welche selbst wieder eine dritte
aufruft. Auf den ersten Blick zieht man aus
dieser Graphik den Schluss: hier wurde eine
reichlich komplexe und daher fehleranfillige
Losung gewihlt; die maximale Schachte-
lungstiefe betrédgt 17.

Bei genauerem Hinsehen erkennt man
aber in der Kurve zwei Buckel, welche drei
Schichten trennen: die oberste Schicht
(rechts, mit der grossten Schachtelungstiefe)

1600 160
c
1400 - o
Quelldateien 140 gl,
9o)
% 1000 120 g
B 3800 - -
T s
3 600 - - 100 £
(¢] Anweisungszeilen <

400 |
B Ee)
80 d:)
200 brd
=}
0 T T T 60 (©
Jun 84 Dez 84 Mai 85 Dez 85 Jiss F
Release
Bild 5 Trends verfolgen: Release-Strategie
Bulletin ASE/UCS 25/93

ist die eigentliche Anwendung, darunter
liegt ein Graphikpaket, und die unterste
Schicht machen die hardwarenahen Routi-
nen aus. Unter Beriicksichtigung dieser Auf-
teilung erscheint nur noch die mittlere
Schicht als komplex, weil sie in sich selbst
immer noch eine maximale Schachtelungs-
tiefe von 9 aufweist.

Verwendung von Bezugsgrossen

Regelmissig gemessene Kennwerte kon-
nen mit der Zeit als Bezugsgrossen fiir ge-
wisse Vorhersagen verwendet werden. Auch
wenn diese Prognosen nie exakt sein werden,
besser als iiber den Daumen gepeilte sind sie
auf jeden Fall.

Eine Kennzahl, welche schon lange an
vielen Orten ermittelt wird, ist die Fehler-
dichte, das heisst die Anzahl Fehler pro
KLOC, und zwar einerseits die Dichte aller
Fehler, die gemacht wurden, von welchen
aber ein grosser Teil bei den Priifungen ent-
deckt und eliminiert wurde, und andererseits
die Fehlerdichte nach der Auslieferung, also
der Fehler, welche spiter noch gefunden
wurden. Wenn diese, zugegebenermassen
wenig schmeichelhaften Daten sorgfiltig er-
fasst und ausgewertet werden, so kann man
bei einem stabilen Entwicklungsprozess aus
der Programmgrosse auf die Anzahl noch
verbliebener Fehler schliessen, nachdem in
den Priifungen bereits eine bestimmte An-
zahl davon gefunden wurde.

Eine weitere Anwendung von gesammel-
ten Kennwerten als Bezugsgrossen besteht in
der Erhirtung oder Widerlegung von Hypo-
thesen (inkl. iberlieferter Softwaremythen).
Beispielsweise besagen die Prinzipien des
Software-Engineering, dass die Kopplung
von Moduln iiber Parameter der Kopplung
liber gemeinsame Datenbereiche vorzuziehen
ist. Messungen ergeben, dass die Art der
Kopplung auf die Fehlerhdufigkeit keinen
Einfluss hat, wohl aber auf die Wartbarkeit
der Software.

Die Schachtelungstiefe von Routineauf-
rufen, wie sie in Bild 6 dargestellt wurde,
hingegen hat, wie Messungen zeigen, einen
Einfluss auf die Fehlerhdufigkeit, so dass da-
mit im nachhinein die Bemerkung betreffend
der Fehleranfilligkeit des dort erwéhnten
Graphikpakets gerechtfertigt ist.

Auch bei dieser Art der Verwendung der
Kennzahlen ist wichtig — und nicht immer
leicht —, diese richtig zu interpretieren. So
kann die Tatsache, dass in der Testphase rela-
tiv wenig Fehler gefunden wurden, dahin ge-
deutet werden, dass die Programme sehr
sorgfiltig entwickelt und bereits vor dem Te-
sten, beispielsweise in Reviews, griindlich
gepriift wurden. Das ist die optimistische In-
terpretation; die pessimistische Interpretation
besagt, dass die Testfille nicht gut gewahlt
sind, so dass sie die vorhandenen Fehler nicht
aufspiiren konnen.

Bulletin SEV/VSE 25/93

Softwarequalitat

Anzahl Aufrufe

1000

0 1

2 3 45 6 7 8 9 1011 12 13 14 15 16 17
Verschachtelungstiefe der Aufrufe

> Aufrufe kumuliert - 80% der Aufrufe

Bild 6 Verteilung aufspiiren: Schachtelungstiefe von Routinen

Qualitatsindikatoren

Es kann hier nicht darum gehen, eine voll-
standige Liste von Indikatoren aufzufiihren.
Vielmehr sollen einige Hinweise auf mogli-
che Metriken gegeben werden; schliesslich
wird jeder Betrieb die fiir ihn wichtigen Indi-
katoren selbst definieren miissen.

Produktindikatoren

Fiir die Softwareprodukte wird man sich
zundchst der Codemetriken bedienen, deren
es viele gibt. Sie sind relativ leicht zu ermit-
teln, allerdings sind nicht alle gleich aussage-
kriftig. Bei verniinftiger Interpretation sind
beispielsweise
— die Programmgrosse (in KLOC)
— die zyklometrische Komplexitit

— die Anzahl numerischer Konstanten pro
KLOC (als Indikator fiir die Wartbarkeit)

niitzliche Indikatoren. Je nach bendtigtem
Einsatz werden mit etwas Phantasie leicht
weitere geeignete Metriken definiert.

Software besteht aber nicht nur aus Pro-
grammen, sondern auch aus Dokumentation
und Daten, daher miissen auch diese Aspekte
in die Messung von Softwarequalitiit einbe-
zogen werden. Uber die Datenqualitiit soll
hier nicht gesprochen werden, da deren Be-
stimmung extrem von den spezifischen Daten
abhingt; im {ibrigen kann dazu gesagt wer-
den: Wenn schon die Daten qualitativ unge-
niigend sind, dann ist die Qualitdt der Pro-
gramme und der Dokumentation gewiss nicht
das dringendste Problem!

19

Informatik

Brauchen wir die Giite der Dokumentation
tiberhaupt zu messen? Die Antwort auf diese
Frage ist ein klares Ja. Man gebe sich keinen
Illusionen hin: die teuersten Fehler beruhen
sehr héufig auf Missverstindnissen, welche
sich letztlich auf die mangelhafte Qualitit
irgendwelcher Dokumente, zum Beispiel
der Anforderungs-Spezifikationen, zuriick-
fithren lésst.

Aber wie messen wir sie? Metriken fiir die
Dokumentation sind nicht sehr leicht zu fin-
den. Fiinf Vorschldge sollen hier gemacht
werden; einige werden an einzelnen Orten
bereits verwendet, bei den andern muss die
Erfahrung zeigen, wie brauchbar sie wirklich
sind. Die fiinf Metriken sind:

o die Grosse

 die Unzweideutigkeit
e der Fog-Index

o die Bilddichte

o das Jury-Urteil

Die Grosse (in Seiten, Wortern usw.) ist
leicht zu messen und kann eine Aussage iiber
den Aufwand bei der Wartung (der Doku-
mentation) machen. Die Unzweideutigkeit
konnte nach unserem Schema wie folgt defi-
niert werden:

Name Unzweideutigkeit

Regel Ermittle Z = Anzahl Worter
wie «auch, immer, nie,
usw., anders, ...», und
W = Anzahl Wérter gesamt

Algorithmus U= (1-2/W) - 100

Einheit Prozent

Interpretation Je grosser U, desto klarer

das Dokument

Ein Beispiel soll zeigen, warum die er-
wihnten Worter gefahrlich sind. Eine Spezi-
fikation enthélt den Satz «Die Anzahl Ele-
mente in der X-Tabelle wird auch in der
Datei D abgespeichert». Das kann (und
wird!) auf zwei wesentlich verschiedene Ar-
ten interpretiert werden:

Interpretation 1: Ein weiterer Eintrag in D
ist die Grosse von X.

Interpretation 2: Die Grosse von X ist so-
wohl in D wie auch sonst-
wo gespeichert.

Fiir den Fog-Index werden die Anzahl
Buchstaben pro Wort, die Anzahl Wérter pro
Satz und die Anzahl Sétze pro Abschnitt er-
mittelt. Je linger im Durchschnitt die Worter,
die Sitze und die Abschnitte sind, desto miih-
samer ist es, den Text zu verstehen. Die Bild-
dichte ist definiert als der Quotient Anzahl
Bilder pro Anzahl Worter. Die zugehorige
Interpretation heisst: je gosser die Bilddichte,
desto kleiner der Wartungsaufwand pro Feh-
ler. Das Jury-Urteil kann verwendet werden,
wenn objektiv messbare Kennzahlen nicht
gefunden werden konnen. Wie die Erfahrung
aus dem Eiskunstlauf zeigt, ist eine derartige

20

Metrik zwar nicht ideal, aber durchaus
brauchbar.

Projektindikatoren

Bei der Uberwachung und Messung der
Softwareprojekte, also der Entwicklung von
Produkten, sind die ermittelten Werte jeweils
mit den geplanten zu vergleichen, um daraus
auf den Stand des Projekts schliessen zu kon-
nen. Vier Maoglichkeiten seien hier erwihnt;
viele andere bieten sich ebenfalls an:

— die Anzahl Mitarbeiter

— die Anzahl fertiggestellter Softwareeinhei-
ten in den verschiedenen Phasen der
Entwicklung (Entwurf, Test, Integration)

— der Projektfortschritt, speziell die aktuell
geschitzten noch zu erwartenden Kosten
(Cost to Completion)

— der Testfortschritt

Wer misst wann wieviel?

Wer soll die Messungen durchfiihren?

Die Entwickler selber messen erfah-
rungsgemiss noch zu wenig, selbst wenn
ihnen Werkzeuge zur Verfiigung stehen.
Das kann sich in Zukunft, wenn das Erfas-
sen von Kennzahlen zur Gewohnheit ge-
worden ist, dndern. Bis dann miissen die
Produkt-Metriken von Qualitits-Beauftrag-
ten ermittelt werden. Die Resultate sollen
den Entwicklern aber auf jeden Fall zur Ver-
fiigung stehen; nur dann helfen die Messun-
gen wirklich mit, die Qualitit zu verbessern.
Die Projekt-Kennzahlen miissen vom Pro-
jektleiter oder einem Qualitéitsteam gemes-
sen werden; sowohl der Projektleiter wie
auch die Qualitdtssicherung miissen die Re-
sultate erhalten.

Wann soll gemessen werden?

Zur laufenden Uberpriifung und zur Vor-
hersage des weiteren Verlaufs wird wihrend
der Entwicklung gemessen. Nach Abschluss
des Projekts sollen Messungen gemacht wer-
den, welche fiir die Aufnahme in eine Quali-
titsdatenbank bestimmt sind, zur spiteren
Verwendung fiir Vorhersagen, Vergleichen,
Trendbeobachtungen und als Bezugsgrossen.

Wieviel soll man messen?
Wenn man sich entschlossen hat, ein Soft-
ware-Metrik-Programm einzufiihren, so soll

am Anfang nur wenig gemessen werden,
etwa ein halbes Dutzend verschiedener Kenn-
zahlen. Spiter ldsst sich diese Zahl nach Be-
darf erhohen. Wenn von Anfang weg grosse
Datenmengen vorliegen, so werden ungeiibte
Teams tiberwiltigt; die Auswertung und die
Interpretation wird darunter leiden, und das
Metrik-Programm ist von Anfang an gefihr-
det. Das aber wiire der Qualitit, um die es uns
hier ja letztlich geht, nicht zutréglich.

Zusammenfassung

Software-Metriken werden im grossen
ganzen noch zogernd eingesetzt. Die Erfah-
rung zeigt aber, dass sie einen wesentlichen
Beitrag zur Qualitdt von Softwareprodukten
liefern konnen, einerseits, indem aus ihnen
Riickschliisse auf das Produkt selber gezogen
werden konnen, andererseits, weil sie auch
dazu dienen, den Entwicklungsprozess zu
verbessern.

Hitte das eingangs erwihnte Debakel bei
der Montreal Life Insurance Co. mit Metriken
vermieden werden konnen? Das Programm
selbst wire durch Messungen kaum verbes-
sert worden. Wie der Zeitungsartikel damals
aber weiter ausfiihrte, beruhte der Untergang
der Firma wesentlich darauf, dass «die Sy-
stem Manager prinzipiell nur ihren eigenen
Gesetzen gehorchen. Sie sind niemandem
Rechenschaft schuldig ..» Der Regelkreis
war also gar nicht vorhanden. Wiren bei der
Einfiihrung des neuen Programms die richti-
gen Messungen gemacht und beachtet wor-
den, so hiitten zwar nicht die ersten Verluste,
wohl aber der vollige Kollaps vermieden wer-
den konnen.

Angesichts des stindig zunehmenden Ein-
satzes immer komplexerer Software und ih-
res damit unaufhorlich wachsenden Einflus-
ses in allen Gebieten nimmt auch die Bedeu-
tung der Qualitétssicherung rapide zu. Soft-
ware-Metriken, richtig angewandt, kdnnen
dabei einen wichtigen Beitrag leisten.

Literatur

[11 P.G. Neumann (Moderator): Risks to the
public in computers and related systems. ACM Sigsoft
Software Engineering Notes, 17(1992)2, S. 3-27.

Métriques pour logiciels

Les logiciels deviennent toujours plus complexes, et le nombre de domaines qu’ils
envahissent croit partout. Aussi devient 1’assurance de la qualité plus et plus importante.
Ce ne sont pas seulement les produits, mais aussi bien les processus de développement
dont il faut controler et améliorer la qualité. A cette fin on emploie la technique des
métriques. Quoiqu’elle ne soit pas encore trés répandue, elle se montre tres utile. Cet
article présente quelques exemples de métriques et de leur emploi.

Bulletin ASE/UCS 25/93

	Auf der Jagd nach Software-Läusen : Software-Metriken

