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Messtechnik

Nachdem im ersten Teil des Artikels (Heft 17/93) die Grundstrukturen des Messens aufge-
zeigt wurden, werden in diesem zweiten und letzten Teil die Vorteile der Zustandsraum-
beschreibung dynamischer Systeme sichtbar, auf der die modernen Methoden der
Messsignalrekonstruktion (Beobachter) basieren.
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Adresse des Autors
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6. Zustandsraumbeschreibung bei
Messsystemen

Zur quantitativen Beschreibung der Re-
konstruktionsaufgaben wird hier die Zu-
standsraumdarstellung gewdhlt, da sie eine
einheitliche Betrachtungsweise ermoglicht
(Bild 11). In dieser Darstellungsweise spielt
es keine Rolle, wieviele Signale beteiligt
sind. Die lineare Algebra fasst mehrere
gleichartige Grossen in Signalvektoren zu-
sammen, im Signalwirkbild erkennt man sie
an den fettgedruckten Signallinien. Die dyna-
mischen und nichtdynamischen Beziehun-
gen zwischen den Signalvektoren beschrei-
ben Matrizen.

Weiter ist zu beachten, dass ein lineares,
stabiles System in einen dynamischen und
einen nichtdynamischen Teil aufgespalten
wird. Der nichtdynamische Teil wird durch

die Durchgangsmatrix D représentiert. In
der Zustandsraumdarstellung wird eine Dif-
ferentialgleichung hoherer Ordnung eines
Systems immer in mehrere Differentialglei-
chungen 1. Ordnung umgeformt und in Vek-
tor-Matrix-Form angeschrieben. Dies ergibt
die kompakte Darstellung zweier Glei-
chungssysteme, ndmlich die Systemglei-
chung und die Ausgangsgleichung. Zum
dynamischen Teil gehoren Eingangsmatrix
B, Systemmatrix A und Ausgangsmatrix C.

x(t) = Ax(f) + Bu(?)
y (1) = Cx(7) + Du() (2)

Hiufig wird die Ausgangsmatrix C des
Prozesses Messmatrix genannt. Dies sollte
vermieden werden, um Verwechslungen mit
Eigenschaften der Messeinrichtungen auszu-
schliessen. Denn jede Messeinrichtung ist ein
selbstindiges System, das ebenfalls durch die
Grundstruktur der Zustandsraumdarstellung

beschrieben wird (Index M). Das Gesamtver-

halten Prozess-Messeinrichtung erhdlt man
durch Serienschaltung zweier solcher Grund-
strukturen. Allerdings wiinscht man sich von

y(t)
)

x(t)

(N)

Bild 11 Grundstruktur der Zustandsraumdarstellung eines dynamischen Systems
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Rekonstruktion Bild 13 Rekonstruktion
durch inverse Funktion
| plbar
= 1.
d,, =1/5bar/V
MR e Bild 14 Beispiel eines
Drucksensors
einer Messeinrichtung, dass sie keine dyna- y=(D-CA-'B)u=Ku (3)

mischen Effekte zeigt, dass sie unendlich
schnell ist. Dies bedeutet in der Zustands-
raumdarstellung, dass nur die Durchgangs-
matrix Dy vorhanden ist, was die Gesamt-
beschreibung vereinfacht. Zudem erwartet
man, dass die einzelnen Sensoren keinen Ein-
fluss von anderen Grossen, als den der inter-
essierenden Grossen zulassen. Dann wird die
Durchgangsmatrix Dy sogar zu einer Diago-
nalmatrix, da die nebendiagonalen Elemente,
welche die Querempfindlichkeiten beschrei-
ben, entfallen.

Schliesslich interessiert noch der haufige
Fall, dass wir es wohl mit dynamischen Pro-
zessen und mit dynamischen Messeinrich-
tungen zu tun haben, dass diese sich jedoch
beim Messen im Gleichgewichtszustand be-
finden. Dies bedeutet fiir die Differentialglei-
chungen, dass alle zeitlichen Ableitungen
Null sind. Man spricht dann vom statischen
Ubertragungsverhalten eines dynamischen
Systems im Gleichgewichtszustand. Das
Differentialgleichungssystem der Zustands-
raumdarstellung reduziert sich zu einem
algebraischen Gleichungssystem (Bild 12).
Das Zeitargument ¢ wird weggelassen und
der wesentliche Parameter ist nun die stati-
sche Ubertragungsmatrix K.
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7. Rekonstruktion ausserer Grossen
in der Serienschaltung

Wir konnen nun die Rekonstruktion dus-
serer und innerer Grossen auch quantitativ
behandeln. Wir betrachten die Verhiltnisse
bei nichtdynamischen Messeinrichtungen,
bei dynamischen Messeinrichtungen im
Gleichgewichtszustand und bei dynamischen
Messeinrichtungen ohne Einschriinkungen.
Wegen dieser Unterscheidungen miissen die
Zeitabhingigkeiten in den Symbolen und
Gleichungen konsequent vermerkt sein.

Bei der Rekonstruktion dusserer Grossen
geht es um die Rekonstruktion der messbaren
Eingangssignale u(f) und Ausgangssignale
y(f) eines Prozesses. Das Vorgehen ist bei
beiden identisch, so dass in den folgenden
Abschnitten nur die Ausgangsgrossen er-
wihnt werden.

7.1 Rekonstruktion dusserer Grossen
mittels einer nichtdynamischen Messein-
richtung

Wir nehmen fiir die Serienrekonstruktion
zunéchst einmal an, dass P Ausgangsgrossen

y(#) des Prozesses rekonstruiert werden miis-
sen und dass die Messeinrichtung keine dy-
namischen Eigenschaften zeigt. Nichtdyna-
mische Eigenschaften darf man insbesondere
dann voraussetzen, wenn die Messeinrich-
tung von vornherein so ausgelegt wurde, dass
sie wesentlich schneller als die zu messenden
Prozesssignale ist, das heisst, dass die we-
sentlichen Frequenzen der Prozesssignale
y(7) tiefer liegen als die Eckfrequenzen f, der
einzelnen Sensorkanile.

Damit ist das Ubertragungsverhalten der
idealen Messeinrichtung gegeben:

a) monovariabler Fall: yy (1) = dyy(r)  (4a)

b) multivariabler Fall: y\(7) = Dyy() (4b)

Wie bekommen wir nun aus den abbilden-
den Grossen yy(f) die Rekonstruktion der
erfassten Grossen y(f)?

Beispiele:

— Die Skala des Quecksilberthermometers
wandelt die Fadenldnge / in einen ablesba-
ren Zahlenwert, welcher der gemessenen
Temperatur 9 in °C entspricht.

— Die nichtlineare Skala am (veralteten)
Hitzdrahtspannungsmesser wandelt den
Ausschlag « in einen ablesbaren Zahlen-
wert, welcher der gemessenen Spannung u
in Volt entspricht.

— Die Digitalanzeige eines Spannungsmes-
sers wandelt das Spannungssignal u in
einen ablesbaren Zahlenwert, welcher der
gemessenen Temperatur 9 in °C ent-
spricht.

In den beiden ersten Beispielen wird die
Rekonstruktion auch Skalierung (Scaling)
genannt. Die Skala der Anzeigegerite {iber-
nimmt die Rekonstruktion. Der an der Skala
abgelesene Wert  ist die rekonstruierte in-
teressierende Messgrosse y.

Die Gesetze der Abbildung sind durch die
Messwerterfassung gegeben und werden
durch Kalibrierung ermittelt. Wie muss nun
das Gesetz der Rekonstruktion lauten? Man
erhilt es aus der Bedingung, dass im fehler-
freien Fall die rekonstruierten Signale den
Originalsignalen entsprechen miissen. Die
Beziehung iiber die ganze Kette kann dann
nur lauten:

a) monovariabler Fall:

Yo =Iy(n [{y}]! (5a)
b) multivariabler Fall:
y(r)=Ty(1) (5b)

Da im Abbildungsteil normalerweise eine
von eins abweichende Ubertragungsbezie-

! Einheiten in eckigen Klammern
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hung vorhanden ist, muss diese durch den
Rekonstruktionsteil  kompensiert werden.
Wir konnen also formulieren:

a) monovariabler Fall:
1 -
dydg =1[-] = dg i [{Y)’M] }]
M
(6a)
b) multivariabler Fall:

DyD,,=1— D, =D}/ (6b)

Das einfache und einleuchtende Resultat
verlangt, dass die Rekonstruktion die inverse
Funktion oder das inverse Modell der Abbil-
dung sei (Bild 13).

Der Fall der linearen, nichtdynamischen,
monovariablen Messeinrichtung ist der ein-
fachste (Bild 14): dg = dy!.

Im Fall der nichtlinearen, nichtdynami-
schen, monovariablen Messeinrichtung be-
deutet dies, dass man gerdtetechnisch die
Umkehrfunktion der nichtlinearen Abbil-
dungsfunktion realisieren muss (Bild 15):
fr = f1(y). Im allgemeinen ist dies nicht
schwierig.

Bei der linearen, multivariablen Mess-
einrichtung ist die Rekonstruktionsmatrix
Dy = Dyr!. Die Matrix Dy; muss invertierbar
sein. Dies ist normalerweise nur moglich,
wenn sie quadratisch und regulir (nichtsingu-
ldr) ist. Die Matrix Dy; wird dann automatisch
quadratisch, wenn die Zahl der Sensoren
gleich der Zahl der zu rekonstruierenden
Grossen ist (Bild 16). Und bei technischen
Anwendungen wird die Matrix auch meistens
reguldr sein. Es gilt dann:

(1) =Dyy (1) @)

Falls die Zahl der abbildenden Grossen yy
kleiner als P, der Anzahl der Messgrossen y
ist, ldsst sich das Problem wegen mangelnder
Information nicht 16sen. Die Matrix Dy ist
nicht quadratisch, das Gleichungssystem ist
unterbestimmt. Daraus ergeben sich die For-
derungen:

— Die Zahl der Sensoren muss gleich der
Zahl der beteiligten Grossen sein.

— Die Storgrossen miissen mitgemessen
werden.

Zu den beteiligten Grossen gehoren also
auch die an sich nicht interessierenden, aber
systematisch oder zufillig stérenden Grossen
(Querempfindlichkeiten, Ubersprechen). Da
diese meistens nicht gemessen werden kon-
nen, stosst man hier auf ein Problem.

Falls die Zahl der abbildenden Grossen yy
grosser als die Anzahl P der Messgrossen y
ist, ist auch diese Matrix Dy, nicht quadra-
tisch und damit nicht invertierbar. Die alge-
braische Messgleichung ist tiberbestimmt (re-
dundante Informationen). Dieser Fall iiber-
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zdhliger Informationen wird — dhnlich wie
der Fall mehrfacher Messung — durch Mitte-
lung behandelt; dies wire tiberfliissig, wenn
wir es nur mit deterministischen (systemati-
schen) Fehlern zu tun hitten. Eine optimale
Mittelung wird mit Hilfe der Methode der
kleinsten Fehlerquadrate (Gauss) erreicht.
Wie das geht, soll im folgenden nur gezeigt,
aber nicht erkldrt werden. Eine normale Re-
konstruktion wird mit Hilfe der G1.7 vorge-
nommen. Wenn Dy, nun aber keine quadrati-
sche Matrix ist, ist die Losung (Inversion) der
Gl. 7 unmoglich. Man kann zeigen, dass im
Sinne einer Mittelung folgendes gilt (Bild 17)
[4]:
A ~1
y(t)= (DIADM) D’]{/lyM(t) = Di/:yM (1)
®)
Die lineare Algebra erzwingt die Inver-
sion, indem die rechteckige Matrix Dy; mit
ihrer transponierten DT multipliziert wird,
was eine quadratische Matrix mit maxima-
lem Rang P ergibt. Diese Matrix muss regu-
lar sein. Nach der Inversion wird das Resultat
nochmals mit der transponierten rechtecki-
gen Matrix DyT multipliziert, was die recht-
eckige Pseudoinverse «von links» DyP! er-
gibt. Damit ist eine approximierende Rekon-
struktionsgleichung gegeben, mit der man
weiterarbeiten kann.

7.2 Rekonstruktion dusserer Grossen
mittels einer dynamischen Messeinrich-
tung im Gleichgewichtszustand

Ein dynamisches System befindet sich im
Gleichgewichtszustand, wenn bei konstanten
Eingangsgrossen die transienten Terme der
inneren Grossen und der Ausgangsgrossen
abgeklungen sind. Alle zeitlichen Ableitun-

Messtechﬁfk

gen am System werden Null sein. Es ist dann
nur noch das statische Ubertragungsverhal-
ten der dynamischen Messeinrichtung wirk-
sam, das durch die statische Ubertragungs-
matrix Ky, gegeben ist. Fiir diesen Fall gelten
die gleichen Beziehungen wie beim nichtdy-
namischen System, wobei dy; durch ky; Dy
durch Ky und Dyt durch KyP! zu ersetzen
sind.

7.3 Rekonstruktion dusserer Grossen
mittels einer dynamischen Messeinrich-
tung

Bei einer dynamischen Messeinrichtung
ist an sich entsprechend systematisch vor-
zugehen. Die Dynamik wird durch die Uber-
tragungsfunktion Gy(s) beschrieben. Die
Serienrekonstruktion wird theoretisch durch
die Inverse der Ubertragungsfunktion der
Messeinrichtung erfolgen miissen, da da-
durch das Produkt der in Serie geschalteten
dynamischen Systeme gerade 1 wird. In der
Praxis sind die Inversen der Ubertragungs-
funktionen nicht zu realisieren, denn es
wiirde sich um eine Folge von D-Elemen-
ten handeln (Inversion der Integration ist
Differentiation). Bei Verzogerungselemen-
ten 1. Ordnung ist eine solche Kompensation
gerade noch moglich.

Das folgende Beispiel zeigt die Inver-
sion der Ubertragungsfunktion 1. Ordnung
(Bild 18)

Bild 15 Nichtlineare
Rekonstruktion

Ky, 1
Gu(s)= 1+ T, s = Gels)= Gy (s)
:é(HTMs)
©)
y(t) =1 RN it

Abbildung

Rekonstruktion

— () [r— 1Y) ——— . ___9&
(TzT‘:i__-_::‘ (P 2) u:.:.._.___.::x_(.’;>)
—] = = =2
Bild 16 Beispiel einer Dy Dp= I:’M1
multivariablen Inversion
v() wh o] Yo
[ Smmmmm——— DM s | (DM DM) DM o
Bild 17 Signalwirkbild gesucht gemessen geschatzt

einer Rekonstruktion
durch eine Pseudoinverse
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g P y(t)
ProzeB Y Lt
o UM(t) yM{t) + 1: Q(t)
oKy T =2 lky > Ty > d/dt ‘
| |
IIMII : :
| I“R“
Bild 18 Signalwirkbild einer dynamischen Rekonstruktion an einem Sensor
it A dty
DM“ I:’Mu : B
u(t)
D
X0 = ) — 1 ‘o
Ol C 2 My : DMy, > cC P
System i MeB- : inverses : inverses Ausgangsgleichungsmodell
(Ausgangsgleichung) :  system : MeBsystemmodell : A
. Wirkiichket ~<¢——————  Rekonstruktion

Bild 19 Rekonstruktion der inneren Grdssen x(f) eines multivariablen dynamischen Prozesses

8. Rekonstruktion innerer Grossen
eines dynamischen Prozesses in der
Serienschaltung

Die bisherigen Uberlegungen gelten auch
dann, wenn innere Grossen x(7) eines Prozes-
ses rekonstruiert werden miissen. Wir neh-
men einen linearen, dynamischen Prozess
(Bild 11) und eine nichtdynamische Mess-
einrichtung ohne Prozessstorungen und
Messfehler an. Die Ausgangsmatrix C des
Prozesses ist zu invertieren und die Ein-
gangsgrossen u(f) des Prozesses miissen ge-
messen und verarbeitet werden, falls die
Durchgangsmatrix D des Prozesses existiert,
also ungleich Null ist. Durch Messung erhal-
ten wir:

Y (1) =Dy, (Cx(1)+Du(r))

und

u,, (1) =Dy, u(r) (10)
Gesucht ist X(f) als Rekonstruktion fiir

den inneren Zustand x() aus uy(f) und yp(?).

Wir miissen also die beiden Messgleichun-

gen nach dem inneren Zustand x(7) auflosen
und diesen mit einem ” versehen (Bild 19).

%(t)=C"'(Dy} yy,(£) DD uy, (1))
(11

Zusammenfassung: Rekonstruktion
durch Serienschaltung (Kompensation) ist
in einfachen Fillen (Messgerdte) moglich.
Die Inversion von Sensor- und Prozessaus-
gangsgleichung erfolgt durch analytische
oder numerische Auflésung des Glei-
chungssystems nach den Ausgangs- bezie-
hungsweise Zustandsgrossen. Vorausset-
zung ist eine genaue Kenntnis der Gesetze
der Abbildung. Invertierbarkeit bedingt un-
ter anderem, dass mindestens gleich viele
Messgrossen wie Zustandsgrossen vorhan-
den sind: N = Py;. Dies ist an sich erfiillbar,
fiihrt aber eventuell zu grossem geritetech-
nischem Aufwand. Die Ausgangsmatrix C
des Prozesses muss invertierbar sein. Die
Rekonstruktion durch Serienschaltung hat
den Vorteil, dass keine Stabilitdtsprobleme
auftreten konnen; es gibt keine Anfangs-
wertprobleme.

Bild 20 Signalwirkbild
einer Riickfiihrschaltung
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Erwiinscht wire an sich eine analytische
Rekonstruktion, da dann Echtzeitschitzun-
gen moglich wiirden. Es konnten dann die
gemessenen Daten direkt in die invertierte
Gleichung eingesetzt werden. Leider wird
dies bei nichtlinearen Ausgangsgleichungen
wegen hdufig auftretender transzendenter
Gleichungen kaum mdglich sein. Bei linea-
ren Beziehungen ist eine analytische Inver-
sion meistens moglich.

Wenn die Inversion analytisch nicht erle-
digt werden kann, muss man mit Hilfe geeig-
neter Programme numerisch invertieren, wo-
bei auf schnelle und gesicherte Konvergenz
zu achten ist. In jedem Fall ist die numerische
Inversion langsamer, was ein Problem bei der
Echtzeitdatenverarbeitung darstellt.

9. Serienrekonstruktion mit Rick-
fiihrung

Die folgende Methode geht von der Idee
der Serienrekonstruktion aus, versucht aber,
die Inversion mit Hilfe einer Riickfiihrschal-
tung zu realisieren, beziehungsweise zu um-
gehen.

Die Riickfiihr- oder Kreisschaltung hat
verschiedene niitzliche Aspekte. Sie kann
auch bei der Rekonstruktion von Messdaten
gute Dienste leisten. Wir beginnen bei der
bekannten Grundschaltung des Kreises mit
negativer Riickfiihrung fiir ein dynamisches
System im Gleichgewichtszustand (Bild 20).

Die statische Ubertragungsgleichung lau-
tet fiir den linearen, monovariablen Fall:

Lu=ku

“1+k k

ver

y=k (12a)

[{v}]

Man macht in der Gerétetechnik den stati-
schen Vorwirtsverstirkungskennwert k, ger-
ne gross, dadurch hiingt das Gesamtiibertra-
gungsverhalten k& nur noch vom Eingangs-
und Riickfiihriibertragungsverhalten ab:

1 ) k.

y=k S
L-{-kr u kr u
kV

=ku  [{y}]

(12b)

Bekannteste Anwendungsbeispiele sind
die Operationsverstirkerschaltungen in der
Analogtechnik, bei der der statische Vor-
wirtstibertragungskennwert  k, des soge-
nannten offenen Verstéirkers etwa 105 bis 106
betridgt. Das Gesamtiibertragungsverhalten
des beschalteten Verstirkers hiingt damit nur
noch von den Werten der Eingangs- und
Riickfiihrwiderstinde ab.

Wir konnen uns dieses Prinzip fiir die Re-
konstruktion zunutze machen. Das Gesamt-
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tibertragungsverhalten dieser Schaltung wird
dann 1 sein, wenn Eingangsnetzwerk und
Riickfiihretzwerk gleiches Ubertragungs-
verhalten haben. Wir miissen also in der
Riickfiihrung die Abbildungsoperation noch
einmal realisieren, um das urspriingliche Si-
gnal, ndmlich die innere Grosse x des Prozes-
ses rekonstruieren zu konnen (Bild 21). Dies
ist in vielen praktischen Fillen einfacher als
die Bildung der Umkehrfunktion. Auch
taucht zwangsldufig der frither definierte
Fehler e, auf.

Beispiel: Das nichtlineare Verhalten eines
Sensors wird durch ein gleiches Halbleiter-
verhalten in der Riickfiihrung kompensiert
(invertiert).

Interessanter ist allerdings eine modifi-
zierte Darstellung der obigen Rekonstruk-
tionsart, die auf spitere Strukturen (Parallel-
strukturen, Beobachter) weist (Bild 22).

Diese Schaltung (Serienrekonstruktion
mit Riickfithrung: Bild 21 und 22) hat den
zusiitzlichen Vorteil, dass im Vorwértszweig
normalerweise auch noch die Ausgangs-, das
heisst Energiesteuerstellen untergebracht
sind, deren nichtideale Eigenschaften durch
das Riickfiihrprinzip kompensiert werden.
Grenzen der Schaltung bilden die Stabilitéts-
probleme. Die Stabilitdt wird ndmlich mit
wachsendem statischen Ubertragungskenn-
wert ko = k, k; des offenen Kreises immer
starker gefdhrdet.

10. Beobachter-Rekonstruktion
durch Parallel- und Kreisschaltung

10.1 Idee des Beobachters

Die bisherigen Ansitze zur Rekonstruk-
tion von Daten haben immer Teilmodelle des
Prozesses verwendet. Es liegt nun der Gedan-
ke nahe, dass man nicht messbare Grossen
aus anderen Grossen berechnen konnte, so-
fern man das Verhalten des ganzen interes-
sierenden dynamischen Prozesses sowie
auch die treibenden Eingangsgrossen u(r)
kennt. Umfassende Prozesskenntnis wird
sich als die Voraussetzung fiir eine Realisie-
rung dieses gedanklichen Ansatzes erweisen.
Dies bedeutet, dass in der Planungsphase die
Struktur technischer Gebilde bekannt sein
muss und dass spitestens in der Inbetriebset-
zungsphase auch die zugehorigen Koeffi-
zienten (Parameter) zahlenmissig vorliegen
miissen.

Eine geritetechnische Anordnung, die aus
verschiedenen anderen Grossen eine nicht
messbare Grosse (Vektor) x(7) schiitzt, bezie-
hungsweise rekonstruiert, wird als Beobach-
ter (Observer) bezeichnet (Bild 23). Der Be-
obachter wird im Kern ein moglichst getreu-
es Modell des interessierenden Prozesses ent-
halten miissen. In diesem Sinne ist der Beob-
achter ein Rechner, der Echtzeitsimulationen
durchfiihren muss.
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Modell

Bild 21 Rekonstruktion durch Riickfiihrschaltung

Der Beobachter konnte also ein interes-
santes Instrument der Messtechnik sein. In
den folgenden Abschnitten werden die Struk-
tur eines Beobachters und die Voraussetzun-
gen fiir sein optimales Funktionieren vorge-
stellt. Es wird sich zeigen, dass verschiedene
Stufen méglich sind. Vom einfachen nicht-
dynamischen bis zum dynamischen Beob-
achter, bei dem durch regelnden Eingriff der
Schéitzfehler ey(f) mit der Zeit asymptotisch
zu Null wird, stehen der Praxis verschiedene
Varianten zur Verfiigung.

Uber die Verbreitung von Beobachtern
ldsst sich sagen, dass fast alle Messverfahren
bereits Ansatzpunkte von nichtdynamischen
Beobachtern enthalten. Denn oftmals wird
eine Grosse nicht direkt gemessen, sondern
eine oder mehrere Ersatzmessgrossen, die
iber einen deterministischen Zusammen-
hang mit der gesuchten Grosse in Beziehung
stehen (Messprozesse). Andere Grossen set-
zen sich aus verschiedenen Grossen zusam-

v,

9;M (t)

Bild 22 Variante der Rekonstruktion durch
Riickfiihrschaltung

Bild 23 Prinzip des Beobachters

men, konnen also nicht durch einen einzigen
Sensor erfasst werden.

Wir nehmen irgendeine natiirliche oder
technische Anordnung (Prozess) an, deren
Differentialgleichungssystem in Zustands-
raumdarstellung gegeben ist. Bekannt seien
die Matrizen A, B, C, D und messbar seien
die Eingangssignale u(f). Unbekannt seien
die Zustandsgrossen x(f) sowie deren An-
fangsbedingungen x(0).

Das Modell werden wir auf einem Analog-
oder Digitalrechner implementieren. Und
wenn diesem Rechenmodell dieselben Infor-
mationen beziiglich der Eingangsgrossen zu-
gefiihrt werden konnen, dann sollte es mog-
lich sein, an diesem Modell alle Grossen zu
erfassen, also auch jene, die am Original aus
irgendwelchen Griinden nicht messbar sind.

Wir wollen bei diesem Gedankenexperi-
ment zundchst annehmen, dass das Modell
exakt sei, das heisst, dass alle Matrizen nach
Struktur und Parametern genau bekannt seien
(ideales Modell).

10.2 Offener Beobachter

Die erste, einfachste Variante eines Beob-
achters, die bei diesen Uberlegungen entstan-
den ist, wird offener Beobachter (Open-Loop
Observer) genannt (Bild 24).

Die Problematik des offenen Beobachters
wird sofort ersichtlich: Wenn man annimmt,
dass die meist unbekannten Anfangsbedin-
gungen x(0) fiir das Modell nicht richtig wa-
ren, wird das Modell fiir alle Zukuntft fehler-
behaftete Schitzwerte, also systematische
Schitzfehler liefern.

Hinzu kommt, dass die Schitzung x(r)
auch fehlerhaft werden wird, wenn das Mo-
dell ungenau ist und immer vorhandene Stor-
grossen nicht beriicksichtigt sind.

Beim nichtdynamischen Prozess und beim
dynamischen Prozess im Gleichgewichtszu-
stand spielen die Anfangsbedingungen je-
doch keine Rolle. Ein offener Beobachter ist
hier zuldssig. Diese Moglichkeit wird des-
halb in der Messtechnik hdufig genutzt.
Beispiel: Wirmestrommessung

Wir betrachten den bekannten Prozess der
Wiirmestrommessung  (Heizkostenabrech-
nung). Gesucht sind der Volumenstrom V
und der Wirmestrom Q. Der Volumenstrom
V  kann mittels einer Messblende
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Riicklauftemperatur J,. Das Bild 25 zeigt
den benotigten Messprozess fiir die Volu-
menstrommessung V, die Sensoren fiir die
Temperaturen ¢ und fiir die Druckdifferenz
Ap. Im Rechner werden die inversen Funk-
tionen der Sensoren und des Messprozesses
gebildet, so dass die Schitzungen der Ein-
gangssignale des Prozesses vorliegen. Diese
werden in das Modell des Prozesses einge-
fithrt, das die gesuchte Schétzung des Wir-

(V =kvA p) gemessen werden. Da es aber
keine Messprinzipien gibt, die den Wirme-
strom Q direkt zu messen erlauben — es
handelt sich also um eine nicht messbare
Grosse —, muss dieser tiber die Messung an-
derer Grossen bestimmt werden. Hierzu wird
der offene Beobachter benutzt, der die Pro-
zessgleichung Q = pc V(1, — 9,) enthilt.
Gemessen werden die Eingangsgrossen Vo-
lumenstrom 'V, Vorlauftemperatur 9, und

u(t) v()
PROZESS [

70)
BEOBACHTER [l

u) X(t) t t
A i
A A
7 x(t) Rct) A y(t)
B ‘ I > C P
e )
A o

Bild 24 Signalwirkbild des offenen Beobachters

mestromes liefert. Auch die iltesten mecha-
nischen Wirmestromzihler arbeiten nach
diesem Prinzip des offenen Beobachters, der
fiir nichtdynamische Messungen genaue Re-
sultate liefern kann.

10.3 Geschlossener Beobachter

Im néchsten Schritt wird die Steuerkette
mit den bekannten Nachteilen (Steuergesetze
miissen genau bekannt sein, auftretende Sto-
rungen werden nicht erfasst) durch eine
Riickfiihrung (Regelung) zu einem geschlos-
senen Beobachter (Closed-Loop Observer)
erginzt. Das Konzept ist das tibliche: Die ge-
schiitzten Ist-Werte y(t) lassen sich mit den
Soll-Werten vergleichen. Es entstehen die Ab-
weichungssignale (Fehlersignale):

e,(1)=y(1)-y() (13)

Dieser Fehlervektor kann benutzt werden,
um {iber ein zu bestimmendes Regelgesetz
auf den Eingangssummator (Bilanzpunkt)
des Modells einzugreifen. Der bisherige offe-
ne Beobachter wird erweitert (Bild 26).

In dieser Darstellung wurden der Uber-
sichtlichkeit wegen der Zweig der Durch-
gangsmatrix D sowie die Messung und deren
invertierendes Modell fiir die Eingangs-
grossen u(t) und die Ausgangsgrossen y(z)
weggelassen.

Das Regelgesetz muss iiber die Riick-
fithriibertragungskennwerte der Matrix R so
gestaltet werden, dass der Fehler moglichst
schnell verschwindet. Dass dies nicht belie-
big schnell gehen kann, ohne die Stabilitéit zu
gefihrden, weiss man aus der Regelungs-

B, ; ;
- ] A® L0
| + !
. o it
O 1
* [}
: m !
v Lol L
v . |
s aaderezess L TR
MESSEI_N_F}ICHTUNG MODELL VON PROZESS UND MESSEINRICHTUNG

I
MeBprozesse Sensoren -

| inverse inverse Modell des Prozesses;
| Modelle Modelle Rekonstruktion
i der der in Parallelschaltung; ’ : ;
Sensoren  MeBprozesse offener Beobachter Bild 25 Signalwirk-
bild der Warmestrom-
messung
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technik. Ein optimales Regelgesetz zu fin-
den, ist neben der Modellgenauigkeit das
wesentliche Problem der Beobachtertheorie;
man nennt diesen Vorgang Entwurf oder
Synthese des geschlossenen Beobachters.
Die Optimierungskriterien muss der Anwen-
der selbst aufstellen. Ein solcher Beobachter
ist ein neues dynamisches System, dessen
Verhalten nach bekannten Kriterien beurteilt
werden kann. Nach dem Einschwingen wird
der Beobachter den gesuchten Schitzwert
X(7) erreichen, die Ausgiinge von Prozess
und Beobachter werden gleich und das Feh-
lersignal verschwindet.

Das Problem der unbekannten Anfangsbe-
dingungen besteht hier zwar immer noch,
wird aber dadurch entschirft, dass die an-
fanglichen Fehler ausgeregelt werden, wenn
der Beobachter asymptotisch stabil ist. Sto-
rungen auf das System verursachen dynami-
sche Fehler zwischen Prozess und Beobach-
ter. Verschwindet der Storeinfluss, so ver-
schwindet der Fehler, ist der Storeinfluss
bleibend, so bleibt auch der Fehler.

Bedingung fiir das Funktionieren eines
Beobachters sind die Beobachtbarkeit und
die Steuerbarkeit des betreffenden Prozesses,
was bedeutet, dass alle Informationen {iber
die inneren Zustandsgrossen in irgendeiner
Form auch in den Ausgangsgrossen stecken
und dass man alle Zustandsgrossen iiber die
Bilanzstelle (durch R) steuern kann; eine an
sich einleuchtende Forderung. Da man das
System sowieso genau kennen muss, ldsst
sich die Beobachtbarkeit einfach priifen. Bei
geeigneten Strukturen kann man unter Um-
stinden erreichen, dass man N Zustandsgros-
sen aus einer einzigen Ausgangsgrosse schit-
zen kann, wenn die Beobachtbarkeit gewihr-
leistet ist [1].

Der Hauptvorteil des geschlossenen Beob-
achters liegt darin, dass die Inversion umgan-
gen wird und die Ausgangsmatrix C eine fast
beliebige Form annehmen kann. Zudem kann
die Zahl der Sensoren kleiner gehal-
ten werden als die Zahl der Grossen, die
man bestimmen mdchte. Dies war bei der Se-
rienrekonstruktion nicht moglich, da dort die
Ausgangsmatrix C invertiert werden musste.

10.4 Kombination von Beobachter und
Inversion

Beide Verfahren, Beobachter und Inversi-
on, sind gleichzeitig realisierbar: Die Inversi-
on liefert dem Beobachter gute Startwerte fiir
den Anfang und der Beobachter liefert auf
Dauer die genaueren Resultate.

11. Zusammenfassung

Unter Messen versteht man heute fast nur
das Erfassen von Grossen durch Sensoren.
Weitergehende Funktionen werden dann
durch schlagkriftige Stichworte ,,verkauft:
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Bild 26 Signalwirkbild des geschlossenen Beobachters

— modellbasierte Messung

— intelligente Messung

— logikbasierte Messung

- lernende Messung (neuronale Netze)
— robuste Messung

— unscharfe Messung (Fuzzy Logic)

Alle speziellen Gesichtspunkte lassen sich
jedoch unter dem Begriff des modellgestiitz-
ten oder modellbasierten Messens (Model-
Based Measurement) zusammenfassen.

Messen besteht einerseits aus dem Erfas-
sen und Abbilden dusserer Systemgrossen
und andererseits im Rekonstruieren (Skalie-
ren) der urspriinglichen Grossen. Zur Rekon-
struktion verwendet man entweder eine Se-
rienstruktur (Inversion), die zwar einfach
ist, jedoch einige Beschriinkungen hat, oder
eine Parallelstruktur, allenfalls unter Einsatz
einer Kreisschaltung (Beobachter).

Die elegante Losung des geschlossenen
Beobachters bringt folgende Moglichkeiten:

— mehr und bessere Informationen tiber den
interessierenden Prozess

— Verzicht auf direkte Messung von Gros-
sen, die gar nicht oder nur schlecht und mit
grossem Aufwand messbar sind

— Uberwachung von Sensoren, wenn alle
Grossen gemessen werden konnen

— Ergiinzung unvollstandiger Messungen
— Bestimmung der nicht messbaren Zu-
standsgrossen.

Die Grenzen einer Anwendung des Beob-
achterprinzips liegen eindeutig an hiufig
mangelnden quantitativen Kenntnissen iiber
die Prozesse. Es fehlt das Modell, ohne das
ein Beobachter nicht erstellt werden kann.
Zwar gibt es einige Bereiche, wo man sich
auf detaillierte Kenntnisse stiitzen kann und
die Modelle einfach sind (Mechanik, Elek-
trotechnik, Astronomie). Wir kennen aber
auch viele Gebiete, wo entweder die qualita-
tiven Kenntnisse rudimentér oder die Model-
le extrem komplex sind (Stromungstechnik,
Verfahrenstechnik, Biotechnologie, Medi-
zin).
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Mesurage basé sur des modéles

Apres avoir expliqué les structures principales du mesurage dans la premicre partie
de cet article (cahier 17/93), I'auteur décrit dans cette seconde et derniere partie les
avantages de la description dans I’espace d’état des systemes dynamiques, qui se basent
sur les méthodes modernes de reconstruction de signaux (les observateurs).
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Meridian Systeme

Meridian Systeme sind konsequent auf ISDN ausgerichtet
und bringen im Netzwerk die volle Integration verschie-
dener Standorte.

Teilnehmervermittlungsanlagen

Mit der weltweit fihrenden Teilnehmervermittiungsanlage
Meridian 1 kénnen Sie von der Erfahrung der Gegenwart voll
profitieren. Das fangt bei der ISDN-fahigen Vernetzung von ver-
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dem Informations- und Management System SIMS. Fur lhre
Branche bieten Meridian Systeme massgeschneidert das, was Sie
brauchen. Und die Zukunft dazu, denn Meridian Systeme sind
modular aufgebaut und lassen sich Ihren wechselnden Bedurf-
nissen und neuen Technologien problemlos anpassen. Ein
Meridian System ist auf jedem Gebiet immer “State-of-the-Art"”:
bei Preis und Leistung, Zuverlassigkeit und Service und natirlich
beim “Return-on-Investment”. Rufen Sie uns an, wir informieren
Sie gerne weiter Uber den profitabelsten Evergreen von heute
und morgen.

ascom Geschaftsbereichbereich Meridian Systeme. Schwarztorstrasse 50, CH-3000
Bern 14. Telefon 031 999 24 50, FAX 031 999 44 51 oder bei lhrer nachsten Ascom-
Geschéftsstelle. Weitere Informationen und Beratung erhalten Sie bei lhrer

zustandigen Fernmeldedirektion (Tel. 113). PTT
TELECOM -

aASCOM denkt weiter.
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