
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 84 (1993)

Heft: 21

Artikel: Modellbasiertes Messen : Strukturen des Messens an Beispielen : Teil
2

Autor: Ruhm, Karl

DOI: https://doi.org/10.5169/seals-902744

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-902744
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Messtechnik

Nachdem im ersten Teil des Artikels (Heft 17/93) die Grundstrukturen des Messens aufgezeigt

wurden, werden in diesem zweiten und letzten Teil die Vorteile der Zustandsraum-

beschreibung dynamischer Systeme sichtbar, auf der die modernen Methoden der

Messsignalrekonstruktion (Beobachter) basieren.

Modellbasiertes Messen

Strukturen des Messens an Beispielen, Teil 2

Karl Ruhm

6. Zustandsraumbeschreibung bei

Messsystemen

Zur quantitativen Beschreibung der

Rekonstruktionsaufgaben wird hier die Zu-

standsraumdarstellung gewählt, da sie eine

einheitliche Betrachtungsweise ermöglicht
(Bild 11). In dieser Darstellungsweise spielt
es keine Rolle, wieviele Signale beteiligt
sind. Die lineare Algebra fasst mehrere

gleichartige Grössen in Signalvektoren
zusammen, im Signalwirkbild erkennt man sie

an den fettgedruckten Signallinien. Die
dynamischen und nichtdynamischen Beziehungen

zwischen den Signalvektoren beschreiben

Matrizen.
Weiter ist zu beachten, dass ein lineares,

stabiles System in einen dynamischen und
einen nichtdynamischen Teil aufgespalten
wird. Der nichtdynamische Teil wird durch

die Durchgangsmatrix D repräsentiert. In
der Zustandsraumdarstellung wird eine

Differentialgleichung höherer Ordnung eines

Systems immer in mehrere Differentialgleichungen

1. Ordnung umgeformt und in Vek-
tor-Matrix-Form angeschrieben. Dies ergibt
die kompakte Darstellung zweier
Gleichungssysteme, nämlich die Systemgleichung

und die Ausgangsgleichung. Zum
dynamischen Teil gehören Eingangsmatrix
B, Systemmatrix A und Ausgangsmatrix C.

x(0 Ax(f) + Bu(f)

y (t) C\(t) + Du(/) (2)

Häufig wird die Ausgangsmatrix C des

Prozesses Messmatrix genannt. Dies sollte
vermieden werden, um Verwechslungen mit
Eigenschaften der Messeinrichtungen auszu-
schliessen. Denn jede Messeinrichtung ist ein

selbständiges System, das ebenfalls durch die
Grundstruktur der Zustandsraumdarstellung
beschrieben wird (Index M). Das Gesamtverhalten

Prozess-Messeinrichtung erhält man
durch Serienschaltung zweier solcher
Grundstrukturen. Allerdings wünscht man sich von

Adresse des Autors
Karl Ruhm, Dipl. Masch.-Ing., Institut für Mess- und

Regeltechnik, ETH Zentrum, B092 Zürich. Bild 11 Grundstruktur der Zustandsraumdarstellung eines dynamischen Systems
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Bild 12 Signalwirkbild des dynamischen Systems im Gleichgewichtszustand

y(t) y(t)

Op{...} Op"1{...)

Abbildung Rekonstruktion

p/bar UpIM
^

p/bar

dM=5V/bar d 1/5 bar /V
Mr

einer Messeinrichtung, dass sie keine
dynamischen Effekte zeigt, dass sie unendlich
schnell ist. Dies bedeutet in der Zustands-

raumdarstellung, dass nur die Durchgangsmatrix

Dm vorhanden ist, was die
Gesamtbeschreibung vereinfacht. Zudem erwartet

man, dass die einzelnen Sensoren keinen Ein-
fluss von anderen Grössen, als den der
interessierenden Grössen zulassen. Dann wird die

Durchgangsmatrix DM sogar zu einer
Diagonalmatrix, da die nebendiagonalen Elemente,
welche die Querempfindlichkeiten beschreiben,

entfallen.

Schliesslich interessiert noch der häufige
Fall, dass wir es wohl mit dynamischen
Prozessen und mit dynamischen Messeinrichtungen

zu tun haben, dass diese sich jedoch
beim Messen im Gleichgewichtszustand
befinden. Dies bedeutet für die Differentialgleichungen,

dass alle zeitlichen Ableitungen
Null sind. Man spricht dann vom statischen

Übertragungsverhalten eines dynamischen
Systems im Gleichgewichtszustand. Das

Differentialgleichungssystem der Zustands-

raumdarstellung reduziert sich zu einem

algebraischen Gleichungssystem (Bild 12).

Das Zeitargument t wird weggelassen und

der wesentliche Parameter ist nun die statische

Übertragungsmatrix K.

Bild 13 Rekonstruktion
durch inverse Funktion

Bild 14 Beispiel eines

Drucksensors

y (D-CA 'B)u Ku (3)

7. Rekonstruktion äusserer Grössen
in der Serienschaltung

Wir können nun die Rekonstruktion
äusserer und innerer Grössen auch quantitativ
behandeln. Wir betrachten die Verhältnisse
bei nichtdynamischen Messeinrichtungen,
bei dynamischen Messeinrichtungen im

Gleichgewichtszustand und bei dynamischen
Messeinrichtungen ohne Einschränkungen.
Wegen dieser Unterscheidungen müssen die

Zeitabhängigkeiten in den Symbolen und

Gleichungen konsequent vermerkt sein.

Bei der Rekonstruktion äusserer Grössen

geht es um die Rekonstruktion der messbaren

Eingangssignale u(f) und Ausgangssignale

y(t) eines Prozesses. Das Vorgehen ist bei

beiden identisch, so dass in den folgenden
Abschnitten nur die Ausgangsgrössen
erwähnt werden.

7.1 Rekonstruktion äusserer Grössen
mittels einer nichtdynamischen Messeinrichtung

Wir nehmen für die Serienrekonstruktion
zunächst einmal an, dass P Ausgangsgrössen

y(t) des Prozesses rekonstruiert werden müssen

und dass die Messeinrichtung keine
dynamischen Eigenschaften zeigt. Nichtdynamische

Eigenschaften darf man insbesondere

dann voraussetzen, wenn die Messeinrichtung

von vornherein so ausgelegt wurde, dass

sie wesentlich schneller als die zu messenden

Prozesssignale ist, das heisst, dass die
wesentlichen Frequenzen der Prozesssignale

y(t) tiefer hegen als die Eckfrequenzenfc der
einzelnen Sensorkanäle.

Damit ist das Übertragungsverhalten der
idealen Messeinrichtung gegeben:

a) monovariabler Fall: yM(f) dMy(t) (4a)

b) multivariabler Fall: yM(t) DMy(f) (4b)

Wie bekommen wir nun aus den abbildenden

Grössen yM(f) die Rekonstruktion der
erfassten Grössen y(t)l

Beispiele:

- Die Skala des Quecksilberthermometers
wandelt die Fadenlänge / in einen ablesbaren

Zahlenwert, welcher der gemessenen
Temperatur ê in °C entspricht.

- Die nichtlineare Skala am (veralteten)
Hitzdrahtspannungsmesser wandelt den

Ausschlag a in einen ablesbaren Zahlenwert,

welcher der gemessenen Spannung u

in Volt entspricht.

- Die Digitalanzeige eines Spannungsmessers

wandelt das Spannungssignal u in
einen ablesbaren Zahlenwert, welcher der

gemessenen Temperatur # in °C
entspricht.

In den beiden ersten Beispielen wird die
Rekonstruktion auch Skalierung (Scaling)
genannt. Die Skala der Anzeigegeräte
übernimmt die Rekonstruktion. Der an der Skala

abgelesene Wert y ist die rekonstruierte
interessierende Messgrösse y.

Die Gesetze der Abbildung sind durch die

Messwerterfassung gegeben und werden

durch Kalibrierung ermittelt. Wie muss nun
das Gesetz der Rekonstruktion lauten? Man
erhält es aus der Bedingung, dass im fehlerfreien

Fall die rekonstruierten Signale den

Originalsignalen entsprechen müssen. Die

Beziehung über die ganze Kette kann dann

nur lauten:

a) monovariabler Fall:

y(t) iy(t) [{y}]1 (5a)

b) multivariabler Fall:

y(0 Iy(0 (5b)

Da im Abbildungsteil normalerweise eine

von eins abweichende Übertragungsbezie-

1 Einheiten in eckigen Klammern
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hung vorhanden ist, muss diese durch den

Rekonstruktionsteil kompensiert werden.

Wir können also formulieren:

a) monovariabler Fall:

dMdR =![-]-» dR =-p- [{yyM }]

(6a)

b) multivariabler Fall:

DRDM=l-^ DR=D^ (6b)

Das einfache und einleuchtende Resultat

verlangt, dass die Rekonstruktion die inverse
Funktion oder das inverse Modell der Abbildung

sei (Bild 13).

Der Fall der linearen, nichtdynamischen,
monovariablen Messeinrichtung ist der
einfachste (Bild 14): dR dM-f

Im Fall der nichtlinearen, nichtdynamischen,

monovariablen Messeinrichtung
bedeutet dies, dass man gerätetechnisch die

Umkehrfunktion der nichtlinearen
Abbildungsfunktion realisieren muss (Bild 15):

fR f-Hy). Im allgemeinen ist dies nicht

schwierig.
Bei der linearen, multivariablen

Messeinrichtung ist die Rekonstruktionsmatrix

Dr Dm-!. Die Matrix DM muss invertierbar
sein. Dies ist normalerweise nur möglich,
wenn sie quadratisch und regulär (nichtsingu-
lär) ist. Die Matrix DM wird dann automatisch

quadratisch, wenn die Zahl der Sensoren

gleich der Zahl der zu rekonstruierenden
Grössen ist (Bild 16). Und bei technischen

Anwendungen wird die Matrix auch meistens

regulär sein. Es gilt dann:

zähliger Informationen wird - ähnlich wie
der Fall mehrfacher Messung - durch Mittelung

behandelt; dies wäre überflüssig, wenn
wir es nur mit deterministischen (systematischen)

Fehlem zu tun hätten. Eine optimale
Mittelung wird mit Hilfe der Methode der
kleinsten Fehlerquadrate (Gauss) erreicht.
Wie das geht, soll im folgenden nur gezeigt,
aber nicht erklärt werden. Eine normale
Rekonstruktion wird mit Hilfe der G1.7

vorgenommen. Wenn DM nun aber keine quadratische

Matrix ist, ist die Lösung (Inversion) der
Gl. 7 unmöglich. Man kann zeigen, dass im
Sinne einer Mittelung folgendes gilt (Bild 17)

[4]:

yW (DMDMr'DSÜyM(0 DSyM(0

(8)

Die lineare Algebra erzwingt die Inversion,

indem die rechteckige Matrix DM mit
ihrer transponierten DMT multipliziert wird,
was eine quadratische Matrix mit maximalem

Rang P ergibt. Diese Matrix muss regulär

sein. Nach der Inversion wird das Resultat
nochmals mit der transponierten rechteckigen

Matrix DMT multipliziert, was die
rechteckige Pseudoinverse «von links» DMPI

ergibt. Damit ist eine approximierende
Rekonstruktionsgleichung gegeben, mit der man
weiterarbeiten kann.

y(0 DMyMW (7)

7.2 Rekonstruktion äusserer Grössen
mittels einer dynamischen Messeinrichtung

im Gleichgewichtszustand
Ein dynamisches System befindet sich im

Gleichgewichtszustand, wenn bei konstanten ^
Eingangsgrössen die transienten Terme der ——(l + TM s)
inneren Grössen und der Ausgangsgrössen M

abgeklungen sind. Alle zeitlichen Ableitun¬

gen am System werden Null sein. Es ist dann

nur noch das statische Übertragungsverhalten

der dynamischen Messeinrichtung wirksam,

das durch die statische Übertragungs-
matrix KM gegeben ist. Für diesen Fall gelten
die gleichen Beziehungen wie beim nichtdy-
namischen System, wobei dM durch kM DM
durch Km und DMPI durch KMPI zu ersetzen
sind.

7.3 Rekonstruktion äusserer Grössen
mittels einer dynamischen Messeinrichtung

Bei einer dynamischen Messeinrichtung
ist an sich entsprechend systematisch
vorzugehen. Die Dynamik wird durch die

Übertragungsfunktion Gm(j) beschrieben. Die
Serienrekonstruktion wird theoretisch durch
die Inverse der Übertragungsfunktion der

Messeinrichtung erfolgen müssen, da

dadurch das Produkt der in Serie geschalteten
dynamischen Systeme gerade 1 wird. In der
Praxis sind die Inversen der Übertragungsfunktionen

nicht zu realisieren, denn es

würde sich um eine Folge von D-Elemen-
ten handeln (Inversion der Integration ist
Differentiation). Bei Verzögerungselementen

1. Ordnung ist eine solche Kompensation
gerade noch möglich.

Das folgende Beispiel zeigt die Inversion

der Übertragungsfunktion 1. Ordnung
(Bild 18)

Gm(*) 7Tt£—>Gr(S)=
1

+ tm* Gm(5)

(9)

Falls die Zahl der abbildenden Grössen yM
kleiner als P, der Anzahl der Messgrössen y
ist, lässt sich das Problem wegen mangelnder
Information nicht lösen. Die Matrix DM ist
nicht quadratisch, das Gleichungssystem ist
unterbestimmt. Daraus ergeben sich die
Forderungen:

- Die Zahl der Sensoren muss gleich der

Zahl der beteiligten Grössen sein.

- Die Störgrössen müssen mitgemessen
werden.

Zu den beteiligten Grössen gehören also

auch die an sich nicht interessierenden, aber

systematisch oder zufällig störenden Grössen

(Querempfindlichkeiten, Übersprechen). Da
diese meistens nicht gemessen werden können,

stösst man hier auf ein Problem.

Falls die Zahl der abbildenden Grössen yM

grösser als die Anzahl P der Messgrössen y
ist, ist auch diese Matrix DM nicht quadratisch

und damit nicht invertierbar. Die
algebraische Messgleichung ist überbestimmt
(redundante Informationen). Dieser Fall über¬

Bild 15 Nichtlineare
Rekonstruktion

y(t) V" y y(t)

Abbildung Rekonstruktion

Bild 16 Beispiel einer
multivariablen Inversion

Bild 17 Signalwirkbild
einer Rekonstruktion
durch eine Pseudoinverse

h)y» Vm(')

gesucht gemessen geschätzt
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Wirklichkeit -<a • Rekonstruktion

Bild 19 Rekonstruktion der inneren Grössen x(t) eines multivariablen dynamischen Prozesses

8. Rekonstruktion innerer Grössen
eines dynamischen Prozesses in der
Serienschaltung

Die bisherigen Überlegungen gelten auch

dann, wenn innere Grössen x(f) eines Prozesses

rekonstruiert werden müssen. Wir nehmen

einen linearen, dynamischen Prozess

(Bild 11) und eine nichtdynamische
Messeinrichtung ohne Prozessstörungen und

Messfehler an. Die Ausgangsmatrix C des

Prozesses ist zu invertieren und die Ein-

gangsgrössen u(r) des Prozesses müssen

gemessen und verarbeitet werden, falls die

Durchgangsmatrix D des Prozesses existiert,
also ungleich Null ist. Durch Messung erhalten

wir:

yMÜ) DMy(Cx(r) + Du(f))
und

uM(f) DMuu(/) (10)

Gesucht ist x(0 als Rekonstruktion für
den inneren Zustand x(f) aus uM(f) und y^it).
Wir müssen also die beiden Messgleichun¬

gen nach dem inneren Zustand x(f) auflösen
und diesen mit einem A versehen (Bild 19).

Ä(0 C-1(D"1yyM(0-DDM1uuM(/))

(11)

Zusammenfassung: Rekonstruktion
durch Serienschaltung (Kompensation) ist
in einfachen Fällen (Messgeräte) möglich.
Die Inversion von Sensor- und Prozessaus-

gangsgleichung erfolgt durch analytische
oder numerische Auflösung des

Gleichungssystems nach den Ausgangs-
beziehungsweise Zustandsgrössen. Voraussetzung

ist eine genaue Kenntnis der Gesetze

der Abbildung. Invertierbarkeit bedingt unter

anderem, dass mindestens gleich viele

Messgrössen wie Zustandsgrössen vorhanden

sind: N — Pm- Dies ist an sich erfüllbar,
führt aber eventuell zu grossem gerätetechnischem

Aufwand. Die Ausgangsmatrix C
des Prozesses muss invertierbar sein. Die
Rekonstruktion durch Serienschaltung hat
den Vorteil, dass keine Stabilitätsprobleme
auftreten können; es gibt keine
Anfangswertprobleme.

Bild 20 Signalwirkbild
einer Rückführschaltung

Erwünscht wäre an sich eine analytische
Rekonstruktion, da dann Echtzeitschätzungen

möglich würden. Es könnten dann die

gemessenen Daten direkt in die invertierte

Gleichung eingesetzt werden. Leider wird
dies bei nichtlinearen Ausgangsgleichungen

wegen häufig auftretender transzendenter

Gleichungen kaum möglich sein. Bei linearen

Beziehungen ist eine analytische Inversion

meistens möglich.
Wenn die Inversion analytisch nicht erledigt

werden kann, muss man mit Hilfe geeigneter

Programme numerisch invertieren, wobei

auf schnelle und gesicherte Konvergenz
zu achten ist. In jedem Fall ist die numerische
Inversion langsamer, was ein Problem bei der

Echtzeitdatenverarbeitung darstellt.

9. Serienrekonstruktion mit
Rückführung

Die folgende Methode geht von der Idee

der Serienrekonstruktion aus, versucht aber,

die Inversion mit Hilfe einer Rückführschaltung

zu realisieren, beziehungsweise zu
umgehen.

Die Rückführ- oder Kreisschaltung hat

verschiedene nützliche Aspekte. Sie kann
auch bei der Rekonstruktion von Messdaten

gute Dienste leisten. Wir beginnen bei der

bekannten Grundschaltung des Kreises mit
negativer Rückführung für ein dynamisches
System im Gleichgewichtszustand (Bild 20).

Die statische Übertragungsgleichung lautet

für den linearen, monovariablen Fall:

y K. k"
u ku [{y}] (12a)

l + kvkr

Man macht in der Gerätetechnik den
statischen Vorwärtsverstärkungskennwert kv gerne

gross, dadurch hängt das Gesamtübertra-

gungsverhalten k nur noch vom Eingangsund

Rückführübertragungsverhalten ab:

k u [{y}]
(12b)

Bekannteste Anwendungsbeispiele sind
die Operationsverstärkerschaltungen in der

Analogtechnik, bei der der statische Vor-
wärtsübertragungskennwert kv des

sogenannten offenen Verstärkers etwa 105 bis 106

beträgt. Das Gesamtübertragungsverhalten
des beschalteten Verstärkers hängt damit nur
noch von den Werten der Eingangs- und

Rückführwiderstände ab.

Wir können uns dieses Prinzip für die
Rekonstruktion zunutze machen. Das Gesamt-
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Bild 21 Rekonstruktion durch Rückführschaltung

übertragungsverhalten dieser Schaltung wird
dann 1 sein, wenn Eingangsnetzwerk und

Rückführnetzwerk gleiches Übertragungsverhalten

haben. Wir müssen also in der

Rückführung die Abbildungsoperation noch

einmal realisieren, um das ursprüngliche
Signal, nämlich die innere Grösse x des Prozesses

rekonstruieren zu können (Bild 21). Dies
ist in vielen praktischen Fällen einfacher als

die Bildung der Umkehrfunktion. Auch
taucht zwangsläufig der früher definierte
Fehler ey auf.

Beispiel: Das nichtlineare Verhalten eines

Sensors wird durch ein gleiches Halbleiterverhalten

in der Rückführung kompensiert
(invertiert).

Interessanter ist allerdings eine modifizierte

Darstellung der obigen Rekonstruktionsart,

die auf spätere Strukturen
(Parallelstrukturen, Beobachter) weist (Bild 22).

Diese Schaltung (Serienrekonstruktion
mit Rückführung: Bild 21 und 22) hat den

zusätzlichen Vorteil, dass im Vorwärtszweig
normalerweise auch noch die Ausgangs-, das

heisst Energiesteuerstellen untergebracht
sind, deren nichtideale Eigenschaften durch
das Rückführprinzip kompensiert werden.

Grenzen der Schaltung bilden die Stabilitätsprobleme.

Die Stabilität wird nämlich mit
wachsendem statischen Übertragungskennwert

kD ky 1^ des offenen Kreises immer
stärker gefährdet.

10. Beobachter-Rekonstruktion
durch Parallel- und Kreisschaltung

10.1 Idee des Beobachters
Die bisherigen Ansätze zur Rekonstruktion

von Daten haben immer Teilmodelle des

Prozesses verwendet. Es liegt nun der Gedanke

nahe, dass man nicht messbare Grössen

aus anderen Grössen berechnen könnte,
sofern man das Verhalten des ganzen
interessierenden dynamischen Prozesses sowie
auch die treibenden Eingangsgrössen u(f)
kennt. Umfassende Prozesskenntnis wird
sich als die Voraussetzung für eine Realisierung

dieses gedanklichen Ansatzes erweisen.

Dies bedeutet, dass in der Planungsphase die

Struktur technischer Gebilde bekannt sein

muss und dass spätestens in der Inbetriebsetzungsphase

auch die zugehörigen Koeffizienten

(Parameter) zahlenmässig vorliegen
müssen.

Eine gerätetechnische Anordnung, die aus

verschiedenen anderen Grössen eine nicht
messbare Grösse (Vektor) \(t) schätzt,

beziehungsweise rekonstruiert, wird als Beobachter

(Observer) bezeichnet (Bild 23). Der
Beobachter wird im Kern ein möglichst getreues

Modell des interessierenden Prozesses
enthalten müssen. In diesem Sinne ist der
Beobachter ein Rechner, der Echtzeitsimulationen
durchführen muss.

Der Beobachter könnte also ein interessantes

Instrument der Messtechnik sein. In
den folgenden Abschnitten werden die Struktur

eines Beobachters und die Voraussetzungen

für sein optimales Funktionieren vorgestellt.

Es wird sich zeigen, dass verschiedene

Stufen möglich sind. Vom einfachen

nichtdynamischen bis zum dynamischen
Beobachter, bei dem durch regelnden Eingriff der

Schätzfehler ey(t) mit der Zeit asymptotisch
zu Null wird, stehen der Praxis verschiedene

Varianten zur Verfügung.
Über die Verbreitung von Beobachtern

lässt sich sagen, dass fast alle Messverfahren
bereits Ansatzpunkte von nichtdynamischen
Beobachtern enthalten. Denn oftmals wird
eine Grösse nicht direkt gemessen, sondern

eine oder mehrere Ersatzmessgrössen, die

über einen deterministischen Zusammenhang

mit der gesuchten Grösse in Beziehung
stehen (Messprozesse). Andere Grössen setzen

sich aus verschiedenen Grössen zusam-

Bild 22 Variante der Rekonstruktion durch

Rückführschaltung

Bild 23 Prinzip des Beobachters

men, können also nicht durch einen einzigen
Sensor erfasst werden.

Wir nehmen irgendeine natürliche oder

technische Anordnung (Prozess) an, deren

Differentialgleichungssystem in Zustands-

raumdarstellung gegeben ist. Bekannt seien

die Matrizen A, B, C, D und messbar seien

die Eingangssignale u(f). Unbekannt seien

die Zustandsgrössen x(f) sowie deren

Anfangsbedingungen x(0).
Das Modell werden wir auf einem Analogoder

Digitalrechner implementieren. Und

wenn diesem Rechenmodell dieselben
Informationen bezüglich der Eingangsgrössen
zugeführt werden können, dann sollte es möglich

sein, an diesem Modell alle Grössen zu
erfassen, also auch jene, die am Original aus

irgendwelchen Gründen nicht messbar sind.

Wir wollen bei diesem Gedankenexperiment

zunächst annehmen, dass das Modell
exakt sei, das heisst, dass alle Matrizen nach

Struktur und Parametern genau bekannt seien

(ideales Modell).

10.2 Offener Beobachter
Die erste, einfachste Variante eines

Beobachters, die bei diesen Überlegungen entstanden

ist, wird offener Beobachter (Open-Loop
Observer) genannt (Bild 24).

Die Problematik des offenen Beobachters

wird sofort ersichtlich: Wenn man annimmt,
dass die meist unbekannten Anfangsbedingungen

x(0) für das Modell nicht richtig
waren, wird das Modell für alle Zukunft
fehlerbehaftete Schätzwerte, also systematische
Schätzfehler liefern.

Hinzu kommt, dass die Schätzung x(t)
auch fehlerhaft werden wird, wenn das Modell

ungenau ist und immer vorhandene Stör-

grössen nicht berücksichtigt sind.

Beim nichtdynamischen Prozess und beim

dynamischen Prozess im Gleichgewichtszustand

spielen die Anfangsbedingungen
jedoch keine Rolle. Ein offener Beobachter ist
hier zulässig. Diese Möglichkeit wird
deshalb in der Messtechnik häufig genutzt.

Beispiel: Wärmestrommessung
Wir betrachten den bekannten Prozess der

Wärmestrommessung (Heizkostenabrechnung).

Gesucht sind der Volumenstrom V
und der Wärmestrom Q. Der Volumenstrom

V kann mittels einer Messblende
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(V kVÄp) gemessen werden. Da es aber

keine Messprinzipien gibt, die den Wärmestrom

Q direkt zu messen erlauben - es

handelt sich also um eine nicht messbare

Grösse -, muss dieser über die Messung
anderer Grössen bestimmt werden. Hierzu wird
der offene Beobachter benutzt, der die

Prozessgleichung Q pcV(ûe- fia) enthält.

Gemessen werden die Eingangsgrössen
Volumenstrom V, Vorlauftemperatur êe und

Rücklauftemperatur ïïa. Das Bild 25 zeigt
den benötigten Messprozess für die

Volumenstrommessung V, die Sensoren für die

Temperaturen # und für die Druckdifferenz
Ap. Im Rechner werden die inversen
Funktionen der Sensoren und des Messprozesses

gebildet, so dass die Schätzungen der

Eingangssignale des Prozesses vorliegen. Diese

werden in das Modell des Prozesses eingeführt,

das die gesuchte Schätzung des Wär¬

mestromes liefert. Auch die ältesten
mechanischen Wärmestromzähler arbeiten nach

diesem Prinzip des offenen Beobachters, der

für nichtdynamische Messungen genaue
Resultate liefern kann.

10.3 Geschlossener Beobachter
Im nächsten Schritt wird die Steuerkette

mit den bekannten Nachteilen (Steuergesetze
müssen genau bekannt sein, auftretende

Störungen werden nicht erfasst) durch eine

Rückführung (Regelung) zu einem geschlossenen

Beobachter (Closed-Loop Observer)

ergänzt. Das Konzept ist das übliche: Die
geschätzten Ist-Werte y (t) lassen sich mit den

Soll-Werten vergleichen. Es entstehen die

Abweichungssignale (Fehlersignale):

ey(0 y(f)-y(0 O3)

Dieser Fehlervektor kann benutzt werden,

um über ein zu bestimmendes Regelgesetz
auf den Eingangssummator (Bilanzpunkt)
des Modells einzugreifen. Der bisherige offene

Beobachter wird erweitert (Bild 26).
In dieser Darstellung wurden der

Übersichtlichkeit wegen der Zweig der

Durchgangsmatrix D sowie die Messung und deren

invertierendes Modell für die Eingangsgrössen

u(t) und die Ausgangsgrössen y(t)
weggelassen.

Das Regelgesetz muss über die Rück-

führübertragungskennwerte der Matrix R so

gestaltet werden, dass der Fehler möglichst
schnell verschwindet. Dass dies nicht beliebig

schnell gehen kann, ohne die Stabilität zu

gefährden, weiss man aus der Regelungs-

U(t)
PROZESS

y(t)

y(t)
BEOBACHTER

IU

Bild 24 Signalwirkbild des offenen Beobachters

Meßprozesse Sensoren ' inverse
Modelle

der
Sensoren

inverse
Modelle

der

Meßprozesse

Modell des Prozesses;
Rekonstruktion

in Parallelschaltung;
offener Beobachter Bild 25 Signalwirk¬

bild der Wärmestrommessung
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Bild 26 Signalwirkbild des geschlossenen Beobachters

technik. Ein optimales Regelgesetz zu
finden, ist neben der Modellgenauigkeit das

wesentliche Problem der Beobachtertheorie;

man nennt diesen Vorgang Entwurf oder

Synthese des geschlossenen Beobachters.

Die Optimierungskriterien muss der Anwender

selbst aufstellen. Ein solcher Beobachter
ist ein neues dynamisches System, dessen

Verhalten nach bekannten Kriterien beurteilt
werden kann. Nach dem Einschwingen wird
der Beobachter den gesuchten Schätzwert

x(f) erreichen, die Ausgänge von Prozess

und Beobachter werden gleich und das

Fehlersignal verschwindet.
Das Problem der unbekannten Anfangsbedingungen

besteht hier zwar immer noch,

wird aber dadurch entschärft, dass die

anfänglichen Fehler ausgeregelt werden, wenn
der Beobachter asymptotisch stabil ist.

Störungen auf das System verursachen dynamische

Fehler zwischen Prozess und Beobachter.

Verschwindet der Störeinfluss, so
verschwindet der Fehler, ist der Störeinfluss

bleibend, so bleibt auch der Fehler.

Bedingung für das Funktionieren eines

Beobachters sind die Beobachtbarkeit und
die Steuerbarkeit des betreffenden Prozesses,

was bedeutet, dass alle Informationen über
die inneren Zustandsgrössen in irgendeiner
Form auch in den Ausgangsgrössen stecken

und dass man alle Zustandsgrössen über die
Bilanzstelle (durch R) steuern kann; eine an
sich einleuchtende Forderung. Da man das

System sowieso genau kennen muss, lässt

sich die Beobachtbarkeit einfach prüfen. Bei
geeigneten Strukturen kann man unter
Umständen erreichen, dass man N Zustandsgrössen

aus einer einzigen Ausgangsgrösse schätzen

kann, wenn die Beobachtbarkeit gewährleistet

ist [1],
Der Hauptvorteil des geschlossenen

Beobachters liegt darin, dass die Inversion umgangen

wird und die Ausgangsmatrix C eine fast

beliebige Form annehmen kann. Zudem kann
die Zahl der Sensoren kleiner gehalten

werden als die Zahl der Grössen, die

man bestimmen möchte. Dies war bei der
Serienrekonstruktion nicht möglich, da dort die

Ausgangsmatrix C invertiert werden musste.

10.4 Kombination von Beobachter und
Inversion

Beide Verfahren, Beobachter und Inversion,

sind gleichzeitig realisierbar: Die Inversion

liefert dem Beobachter gute Startwerte für
den Anfang und der Beobachter liefert auf
Dauer die genaueren Resultate.

11. Zusammenfassung

Unter Messen versteht man heute fast nur
das Erfassen von Grössen durch Sensoren.

Weitergehende Funktionen werden dann

durch schlagkräftige Stichworte „verkauft":

- modellbasierte Messung

- intelligente Messung

- logikbasierte Messung

- lernende Messung (neuronale Netze)

- robuste Messung

- unscharfe Messung (Fuzzy Logic)

Alle speziellen Gesichtspunkte lassen sich

jedoch unter dem Begriff des modellgestützten

oder modellbasierten Messens (Model-
Based Measurement) zusammenfassen.

Messen besteht einerseits aus dem Erfassen

und Abbilden äusserer Systemgrössen
und andererseits im Rekonstruieren (Skalieren)

der ursprünglichen Grössen. Zur
Rekonstruktion verwendet man entweder eine
Serienstruktur (Inversion), die zwar einfach

ist, jedoch einige Beschränkungen hat, oder
eine Parallelstruktur, allenfalls unter Einsatz
einer Kreisschaltung (Beobachter).

Die elegante Lösung des geschlossenen
Beobachters bringt folgende Möglichkeiten:

- mehr und bessere Informationen über den

interessierenden Prozess

- Verzicht auf direkte Messung von Grössen,

die gar nicht oder nur schlecht und mit

grossem Aufwand messbar sind

- Überwachung von Sensoren, wenn alle
Grössen gemessen werden können

- Ergänzung unvollständiger Messungen

- Bestimmung der nicht messbaren

Zustandsgrössen.

Die Grenzen einer Anwendung des

Beobachterprinzips liegen eindeutig an häufig
mangelnden quantitativen Kenntnissen über

die Prozesse. Es fehlt das Modell, ohne das

ein Beobachter nicht erstellt werden kann.

Zwar gibt es einige Bereiche, wo man sich

auf detaillierte Kenntnisse stützen kann und
die Modelle einfach sind (Mechanik,
Elektrotechnik, Astronomie). Wir kennen aber

auch viele Gebiete, wo entweder die qualitativen

Kenntnisse rudimentär oder die Modelle

extrem komplex sind (Strömungstechnik,
Verfahrenstechnik, Biotechnologie, Medizin).
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Mesurage basé sur des modèles
Après avoir expliqué les structures principales du mesurage dans la première partie

de cet article (cahier 17/93), l'auteur décrit dans cette seconde et dernière partie les

avantages de la description dans l'espace d'état des systèmes dynamiques, qui se basent

sur les méthodes modernes de reconstruction de signaux (les observateurs).
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In dieZukunft investieren und von der

Gegenwartprofitieren
Mit der weltweit führenden Teilnehmervermittlungsanlage

Meridian 1 können Sie von der Erfahrung der Gegenwart voll

profitieren. Das fängt bei der ISDN-fähigen Vernetzung von

verschiedenen Standorten an, und geht weiter mit Voice Mail,

automatischer Anrufverteilung ACD, Videokonferenzen oder mit

dem Informations- und Management System SIMS. Für Ihre

Branche bieten Meridian Systeme massgeschneidert das, was Sie

brauchen. Und die Zukunft dazu, denn Meridian Systeme sind

modular aufgebaut und lassen sich Ihren wechselnden Bedürfnissen

und neuen Technologien problemlos anpassen. Ein

Meridian System ist auf jedem Gebiet immer "State-of-the-Art":

bei Preis und Leistung, Zuverlässigkeit und Service und natürlich

beim "Return-on-lnvestment". Rufen Sie uns an, wir informieren

Sie gerne weiter über den profitabelsten Evergreen von heute

und morgen.

ascom Geschäftsbereichbereich Meridian Systeme. Schwarztorstrasse 50, CH-3000
Bern 14. Telefon 031 999 24 50, FAX 031 999 44 51 oder bei Ihrer nächsten Ascom-
Geschäftsstelle. Weitere Informationen und Beratung erhalten Sie bei Ihrer
zuständigen Fernmeldedirektion (Tel. 113). py|-

TELECOM

Meridian 1
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Meridian Systeme
Meridian Systeme sind konsequent auf ISDN ausgerichtet
und bringen im Netzwerk die volle Integration verschiedener

Standorte.

Teilnehmervermittlungsanlagen : dSCOITI denkt weiter.
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