Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 83 (1992)

Heft: 17

Artikel: Leichterer Zugang zu Operations Research : die Modelliersprache LPL

Autor: Hurlimann, Tony

DOl: https://doi.org/10.5169/seals-902861

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-902861
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Operations Research

Leichterer Zugang zu Operations Research

Die Modelliersprache LPL

Tony Hiirlimann

Operations Research, ein
etabliertes mathematisches In-
strumentarium zur Lésung von
Optimierungsaufgaben, leistet
auf vielen Gebieten hervor-
ragende Dienste. Es kénnte aller-
dings noch wesentlich breiteren
Einsatz finden, wenn nicht
mathematische Hiirden vielen
Praktikern den Zugang zu den
Methoden des Operations Rese-
arch versperren wiirden. Der vor-
liegende Artikel beschreibt eine
an der Universitét Freiburg ent-
wickelte Modelliersprache, mit
welcher der Zugang erheblich
vereinfacht wird.

Operations Research, un instru-
ment mathématique établi pour
résoudre des taches d’optimisa-
tion, opére de remarquables per-
formances dans beaucoup de
domaines. Il trouverait cepen-
dant une utilisation notablement
plus vaste si des obstacles
mathématiques ne bloquaient
pas a beaucoup de practiciens
I'accés aux méthodes d’Opera-
tions Research. L article décrit un
langage de modeélisation déve-
loppé a I’'Université de Fribourg,
qui simplifie grandement I'acceés.

Adresse des Autors

Tony Hiirlimann, Dr lic.rer.pol..

Institut for Automation and Operations Research.
Université de Fribourg, 1700 Freiburg.

In der Praxis muss man in der Lage
sein, komplexe Entscheidungen rasch
zu treffen. Quantitative Aspekte sind
dabei oft ebenso wichtig wie die quali-
tativen. Das Operations Research hat
Methoden entwickelt, welche Ent-
scheidungsprozesse bewiltigen helfen.
und dank Computern konnen heute
grosse mathematische Modelle in eini-
gen Minuten gerechnet werden. Die
Operations Research-Forschung hat
sich in den letzten Jahrzehnten haupt-
sdchlich darauf konzentriert, mathe-
matische Losungsmethoden und -ver-
fahren fiir bestimmte Modelle zu ent-
wickeln. Diese Arbeiten erlauben —
zusammen mit immer leistungsfahige-
ren Computern —, auch grossere Mo-
delle zu losen. Doch wurden Fragen
des Modellmanagements (Modellfor-
mulierung, Modellbau und Modell-
wartung) langezeit stiefmiitterlich be-
handelt und sind immer noch relativ
unterentwickelt. Vor allem in der
praktischen Anwendung des OR, wo
der Einsatz grosserer Modelle fiir
komplexe Entscheidungsprozesse un-
umginglich ist, sind Modellmanage-
ment-Instrumente nicht nur niitzlich.
sondern unerldsslich. Wenn die Lo-
sung eines Modells auf einem Gross-
computer hochstens Minuten dauert,
die Modellformulierung und -wartung
sich aber tiber Wochen. ja Monate er-
streckt, was durchaus nicht uniiblich
ist, so besteht hier ein krasses Miss-
verhiltnis, und der Einsatz von gut
entwickelten Methoden lohnt sich
nicht. Der Einsatz von OR-Methoden
in der Praxis hingt direkt von der In-
vestition ab, die es braucht, um solche
Modelle zu erstellen und zu warten.
Leider aber gibt es noch keine Instru-
mente, mit denen man grosse Modelle
auch bequem manipulieren kann.
Deswegen sind die finanziellen Mittel,
die man bendtigt, um grosse Modelle
aufzustellen, zu warten und zu verin-

dern, immer noch gewaltig. Die hohen
Kosten sind einer der Hauptgriinde,
wieso die Methoden des Operations
Research nur zogernd in die Praxis
Eingang finden.

Die Einsicht, dass es fiir die praxis-
orientierte Anwendung des Opera-
tions Research mehr braucht als nur
effiziente Losungsalgorithmen, und
dass ein Modell nicht von Anfang an
in einer Form vorliegt, welche der Lo-
sungsalgorithmus verlangt, hat sich in
der letzten Zeit, wenn auch zégernd,
durchgesetzt. Zwar wurden schon
in den siebziger Jahren effiziente
und michtige Matrix-Generatoren
und Report-Generatoren geschaffen
[1...4], doch typischerweise arbeitet
man mit diesen Instrumenten so, dass
der Modellierer ein Computerpro-
gramm schreibt, welches das Modell
in eine vom Matrix-Generator lesbare
Form bringt. Wird das Modell gein-
dert, muss auch dieses Ubersetzungs-
programm neu geschrieben oder abge-
dndert werden. Ein solches Vorgehen
verlangt vom Modellierer nicht nur
Kenntnisse in der Programmierung,
sondern ist auch mit einem erhebli-
chen Aufwand verbunden. Zudem
liegt das Modell in einer Form vor —
ndmlich als Fortran-Programm —, das
eher vom Programmierer als vom Mo-
dellierer interpretiert und manipuliert
werden kann. Dieses Vorgehen ist
auch heute noch verbreitet.

Eine Modelliersprache
fiir Operations Research

Eine Modelliersprache als Instru-
ment einer Modellformulierung kénn-
te diese Nachteile umgehen, da sie
eine Formulierung erlaubt, die dem
Modellbauer ndher steht. Die Idee
einer Modelliersprache ist nicht neu,
und verschiedene Sprachen wie Gams
[5]. AMPL [6]. Lingo [7] sind bereits

Bulletin SEV/VSE 83(1992)17, 28. August

27

Informatik

Modelliersprache
fiir Operations Research

Am Institut fir Automation und Opera-
tions Research an der Universitdt Frei-
burg werden seit einiger Zeit Instrumente
des Modellmanagements entwickelt. Ei-
nes davon ist die in diesem Beitrag vorge-
stellte Modelliersprache LPL (Linear
Programming Language). Sie erlaubt
auch grosse, mathematische Modelle in
der bekannten, algebraischen Notation zu
schreiben. Die LPL-Sprache wurde zum
Erstellen von MPS Input-Dateien und
Resultate-Tabellen grissserer LP-Modelle
erfolgreich eingesetzt. Der LPL-Compiler
tibersetzt ein LPL-Programm, das ein
vollstdndiges Modell représentiert, in den
Eingabecode eines LP/MIP-Losungspro-
gramms, ruft den Losungsalgorithmus auf
und liest die Losung; ein integrierter Ta-
bellengenerator gibt vom Beniitzer defi-
nierte Resultate-Tabellen aus. Ein Daten-
eingabe-Generator erlaubt zudem, die Da-
ten in verschiedenen Formaten zu lesen.

entwickelt worden und verfiigbar. Er-
wihnt werden soll auch der Ansatz
SML [8], bei dem nicht nur eine Mo-
delliersprache, sondern eine ganze
Modellierumgebung im Zentrum
steht. Eine Modelliersprache ist sicher
nur ein, wenn auch wichtiger, Be-
standteil einer Modellumgebung. Da-
zu gehoren ndmlich auch Instrumente
der Modell-Datenverwaltung [9; 10],
der Modelverifikation [11], der
Modelldokumentation [12; 8] sowie
Instrumente, die den gesamten Le-
benszyklus und die Evolution eines
Modells unterstiitzen.

Dieser Artikel stellt eine Modellier-
sprache, genannt LPL (Linear Pro-
gramming Language), vor, mit der
man auch grossere mathematische
Modelle formulieren und bequem
warten kann. Die Formulierung eines
Modells in der LPL-Form kann direkt
dazu verwendet werden, das Modell
automatisch in den vom Losungsalgo-
rithmus verlangten Kode zu iiberset-
zen. LPL unterscheidet sich von den
oben genannten Spachen folgender-
massen: Die Sprache besitzt eine of-
fene Schnittstelle zu den meisten Lo-
sungsalgorithmen. Der Dateneingabe-
Generator ist in keiner andern Spra-
che vorhanden und nur Gams besitzt
auch einen Resultate-Generator. Die
Syntax von LPL ist flexibler. Entiti-
ten konnen mehrmals definiert und
zugewiesen werden wie in Gams, aber
im Gegensatz zu Gams kann in LPL
die Modelstruktur unabhingig von
den Daten verarbeitet werden. LPL

besitzt zudem als einzige Sprache die
Moglichkeit, Masseinheiten selber zu
definieren. Die wichtigsten Punkte
seien kurz zusammengefasst:

- Ein LPL-Modell besteht aus einer
einfachen Syntax — dhnlich der ma-
thematischen Notation mit in-
dexierten Ausdriicken.

— Es konnen kleine und grosse Mo-
delle definiert werden, dank der
Aufspaltung des Modells in Modell-
struktur und Modelldaten.

— Ein maichtiger Indexmechanismus
ist eingebaut, mit dem die Modell-
struktur sehr flexibel gestaltet und
das Modell «aufgeblasen» werden
kann.

— Ein innovativer Tabellen- und Da-

teneingabe-Generator ist einge-
baut.

- Beliebige indexierte Ausdriicke
sind formulier- und sofort aus-
wertbar.

— Die Variablen- und Restriktionen-
namen konnen automatisch oder
vom Beniitzer gesteuert generiert
werden.

— Mit Hilfe von verschiedenen Instru-
menten kann das Modell auf Fehler
untersucht werden.

- Ein eingebauter Texteditor erlaubt
ein Modell zu formulieren und zu
andern.

— Fir LP/MIP-Modelle wird der
MPS-Standard-Kode schnell produ-
ziert.

— Die Schnittstelle zu einem LP/MIP-
Losungsalgorithmus ist offen und
kann vom Beniitzer definiert
werden.

Anhand eines einfachen Modells
aus der Elektrizititswirtschaft sollen
im weiteren die Grundideen von LPL
kurz vorgestellt werden.

Beispiel

aus der Elektrizitatswirtschaft
Ein vereinfachtes Modellbeispiel
aus der Elektrizitdtswirtschaft soll

Ausgangspunkt fiir die Beschreibung
der Modeliersprache LPL sein [13]. In

Tageszeit-Zone Stromverbrauch

Mitternacht bis 6 Uhr |15 000 Megawatt
6-9 Uhr 30 000 Megawatt
9-15 Uhr 25 000 Megawatt
15-18 Uhr 40 000 Megawatt

18 Uhr bis Mitternacht |27 000 Megawatt

Tabelle I

einem Elektrizititswerk miissen die
Stromgeneratoren stindig ein- und
ausgeschaltet werden, um die stiind-
lichen Schwankungen des Stromver-
brauchs zu decken. Angenommen, ein
Tag werde in 5 Zeitzonen eingeteilt,
in welchen wir einen konstanten, ge-
schitzten Stromverbrauch annehmen
(Tab. I). Nehmen wir weiter vereinfa-
chend an, dass im Elektrizititswerk
drei verschiedene Generatorentypen
installiert sind, und zwar zwdlf vom
Typ 1, zehn vom Typ 2 und fiinf vom
Typ 3. Jeder Generatortyp, einmal in
Betrieb, liefert eine minimale Strom-
menge. kann aber ein bestimmtes Ma-
ximum nicht ubersteigen. Die Be-
triebskosten iiber dem Minimum sind
hoher als auf dem Minimum. Zudem
miissen Anschaltkosten in Betracht
gezogen werden. Die Daten sind in
der Tabelle II zusammengestellt. Um
die geschitzte Nachfrage jederzeit
decken zu kénnen, ist zudem vorgese-
hen, dass eine plotzliche Zunahme
von 15% der Nachfrage abgefangen
werden kann, ohne dass neue Genera-
toren in Betrieb genommen werden
miissen.

Die Frage ist nun, welche Genera-
toren miissen zu jeder Tageszeit in Be-
trieb sein oder in Betrieb genommen
werden, wenn die Betriebskosten zu
minimieren sind. Ausserdem interes-
siert uns die Frage, welches die margi-
nalen Produktionskosten des Stroms
zu jeder Tageszeit ist. Dieses Problem
kann in ein lineares Optimierungsmo-
dell umgewandelt werden, welches in
Bild 1 aufgelistet ist. Da die Zeitzonen
zyklisch definiert sind, d.h. die Vor-
periode der ersten Zeitzone ist die
letzte Zeitzone (des Vortages) und die
nachfolgende Periode der Iletzten
Zeitzone ist die erste Zeitzone (des
ndchsten Tages), ist die Restriktion s;,
= n;—n;_1. auch fir + = 1 definiert als
S;7 = nj—h;r. Die Struktur dieses Mo-
dells kann direkt in der LPL-Sprache
wiedergegeben werden. Das entspre-
chende LPL-Programm ist in Bild 2
aufgelistet.

Das Modell in Bild 1 gibt die alge-
braische Formulierung des vereinfach-
ten Modells wieder. Es besteht aus
einer Liste von Deklarationen: In-
dexmengen, Datentabellen, Unbe-
kannte, eine minimierende Funktion
und lineare Restriktionen. Keine Da-
ten sind definiert. Die Beschreibung
ist dimensionsunabhingig und repri-
sentiert die Modellstruktur., Die LPL-
Formulierung in Bild 2 ist dhnlich auf-
gebaut. Die verschiedenen Deklara-
tionen werden jeweils durch ein reser-

28

Bulletin ASE/UCS 83(1992)17, 28 aout

Operations Research

Typ 1 Typ 2 Typ 3 Tabelle IT
minimale Kapazitat (G W) 850 1'250 1'500
maximale Kapazitat (GW) 2'000 1'750 4'000
minimale Betriebskosten (SFr/Std)| 1'000 2'600 3'000
zusatzliche Betriebskosten pro GW
tiber dem Minimum (SFr/MW) 2. 1.30 3.--
Anschaltkosten 2'000 1'000 500
Anzahl Generatoren 12 10 5

viertes Wort SET, UNIT, COEF
VAR, MODEL usw. eingeleitet und
durch einen Strichpunkt abgeschlos-
sen. Es ist wichtig zu sehen, dass diese
Formulierung ebenfalls ganz unab-
hingig von den Daten ist. Die Daten
sind definiert in den beiden Dateien
Stroml.dat und Strom2.dat (s. Tab.
III und IV fiir unser konkretes Bei-
spiel). Die Grosse des Modells ist ein-
zig abhingig von der Grosse dieser
Datentabellen, die ausserhalb der
Modellstruktur definiert sind. Die
LPL-Formulierung zeigt noch einige
weitere Differenzen gegeniiber der al-
gebraischen Formulierung von Bild 1:
Kommentare stehen in Hochkommata
oder in geschweiften Klammern, die
Indexe sind geklammert statt tiefge-
stellt und Zeichen wie X sind durch
reservierte Worter wie SUM ersetzt
worden. Zudem wird die LPL-Formu-
lierung durch vier weitere Anweisun-
gen erganzt:

— UNIT wird verwendet, um Mass-
einheiten zu definieren.

— READ liest die Modelldaten von
externen Dateien ein.

- MINIMIZE ibergibt das Modell
dem Losungsalgorithmus und iiber-
nimmt anschliessend die Ldsungs-
daten.

— PRINT schreibt die entsprechenden
Resultate-Tabellen in Dateien.

Statt einzelne Buchstaben konnen
auch Worter als Namen verwendet
werden. So konnte z.B. x(i,t) durch
StromMenge(Typ.Zeitzone) ersetzt
werden.

Ein kurzer Uberblick
iiber die LPL-Sprache
Anhand des letzten Beispiels sollen

nun die einzelnen Elemente der LPL-
Sprache kurz vorgestellt werden.

Indexmengen

Eine Indexmenge ist eine ungeord-
nete (oder geordnete) Menge von Ob-

jekten. Die Menge der Generatoren-
typen i in unserem Beispiel ist eine
solche Menge. Sie wird in LPL dekla-
riert als

SET i; «Generatorentypen»

Die Elemente der Menge sind damit
noch nicht festgelegt; diese werden als
Teil der Modelldaten (Tab. III) be-
trachtet. Der Modellierer ist aller-
dings frei, bei der Deklaration auch

gleich die Elemente zu definieren. So
hitte man 7 auch als

SET i = /G1:G3/; « ist die Liste
aller Generatorentypen»

deklarieren kénnen. Die beiden Ele-
mente G/ und G3 getrennt durch ei-
nen Doppelpunkt definieren einen
Bereich als untere und obere Grenze.
Die explizite Deklaration

SETj = /G1 G2 G3/;

wire dazu dquivalent. Fiir die Modell-
dokumentation noch besser wire, die
Kiirzel GI.....G3 durch sprechende
Namen zu ersetzen.

Indexmengen konnen selber in-
dexiert sein. In diesem Fall besteht die
Indexmenge aus einer Tupelliste und
die Indexmenge heisst indexiert.
Wenn p und ¢ zwei einfache Mengen
bezeichnen, die definiert sind als

SET p = / P1:P180 /; «180 Ele-
mente»
SETt=/TI1:T15/; «15 Elemente»

Gegeben

EEF ©"
&
5

Minimiere die Kosten:

mit den Restriktionen
N .
> i Kie 2Dy mite=1,T

N 115 .
l.=1M,-n,-, 2 WDI mit r=1,..,T

Sir Zn,-, — Mg mit ;/=1,..,N, =1,...T

n; SL, mit i=1,..N, =1,...T

=

Generatortypen (i=1,..,N) mit N=3
Zeitzonen (t=1,..,7) mit 7=5...(zyklisch)

minimaler Betriebsoutput pro Generatortyp / (in Gigawatt)
maximale Kapazitit des Generatortyps ¢ (in Gigawatt)

Ci minimale Betriebskosten pro Generatortyp / (in Franken)

E; Extra Betriebskosten pro Megawatt iiber dem Minimum je Typ i
F; Anschaltkosten pro Generatortyp i

Lj Anzahl Generatoren des Typs i

D, geschitzte Stromnachfrage in der Zeitzone ¢

N, Linge der Zeitzone f (in Stunden)

Unbekannte

nit Anzahl Generatoren vom Typ / in Betrieb zur Zeit ¢

Sit Anzahl gestartete Generatoren vom Typ / zur Zeit ¢

Xjg Stromproduktion von Generatoren des Typs i zur Zeit ¢ (in gW)

)y Z}Z ’T=I(N,E,-(x,-, —miny,)+ N,Cimy, + E'Sit)

m;n;, < Xir < M,-n,-, mit i=1,...N, =1,..,T

x; 20, 5,20, n; 20 und ganzzahlig

(Nachfragedeckung)

(15% extra Produktionsmarge)

(Strommengenproduktion)
(Anzahl gestartete Generatoren)
(maximale Anzahl Generatoren)

Bild1 Optimierungsmodell

Bulletin SEV/VSE 83(1992)17, 28. August

29

Informatik

dann konnte eine indexierte Tupel-
menge Tupel deklariert werden als

SET Tupel(p.t) = / P1 T2, P2 T6,
P3T7/,

Diese Tupelliste definiert eine Re-
lation zwischen den Elementen p und
den Elementen . Wichtig ist, dass da-
mit nicht die gesamte Tupelliste (das
Kartesische Produkt), sondern nur
eine kleine Untermenge, bestehend
aus nur drei Elementen, definiert
wird. Ein weiteres Beipiel definiert

zwei Untermengen der einfachen
Menge p als
SET Spl(p) =/ P1 P45 P56 P67 P78
riz22/,

SET Sp2(p) = / P2 P67 P123 P145
PI12P178/;

Statt eine explizite Liste anzugeben,
koénnen die indexierten Mengen auch

aus mathematischen und logischen
Ausdriicken gebildet werden. Die
Vereinigungs- Schnitt- und Differenz-
menge von Spl und Sp2 werden fol-
gendermassen generiert:

SET Vereinigung(p) = Spl or Sp2;
SET Schnitt(p) = Spl and Sp2;

SET Differenz(p) = Spl and not
Sp2;

Numerische Daten

Unter Koeffizienten werden nume-
rische Werte verstanden, die in das
Modell eingehen. Die einfachsten Ko-
effizienten besitzen nur einen Wert.

COEF TMAX INTEGER [0.100]
= 50;

Koeffizienten konnen durch Bedin-
gungen eingeschrinkt werden. So be-

PROGRAM Stromproduktion;

E(i) UNIT SFr/MW;
F(i) UNIT SFr;
L
D(t) UNIT GW;
N(t) UNIT hour;

VAR
n(it);

i,t) UNIT GW;
n,s,x INTEGER,;

MODEL {Modellrestriktionen}
Nachfrage(t) UNIT GW: SUM(i) x >= D;

MinK,MaxK(t) UNIT GW: m*n <= x <= M*n;
ObereSchranke(i,t): ni,t] <= L[i];

READ FROM 'STROM1.DAT":
READ FROM 'STROM2.DAT" :

PRINT /VAR/; Kosten;
END

"minimaler Betriebsmenge pro Generatortyp i (in Gigawatt)"
"maximale Kapazitat des Generatortyps t (in Gigawatt)"
"minimale Betriebskosten pro Generatortyp i (in SFr)"
"Extra Betriebskosten pro MW uber dem Minimum je Typ i"
"Anschaltkosten pro Generatortyp i"

(HE ~ "Anzahl von Generatoren des Typs i"

" "geschatzte Stromnachfrage zur Zeit t"

"Lange der Zeitzone t (in Stunden)”

SET

i: "Generatorentypen "
15 "Zeitzonen"
UNIT

SFr; "Geldeinheit"
MW; "Megawatt"
GW=1000*MW; "Gigawatt"
hour; "Stunden”
COEF

m(i) UNIT GW;

M(i) UNIT GW;
C(i) UNIT SFr;

(i "Anzahl Generatoren vom Typ i in Betrieb zur Zeit t"
s(i,b); "Anzahl gestartete Generatoren vorh Typ i zur Zeit t"
x(i, "Stromproduktion des Typs i zur Zeit t (in GW)"
{Variablen sind ganzzahlig}

Extrakapazitaet(t) UNITGW: M*n >= 1.15"D;

Gestartet(i,t): s[i,t] >= n[i,t] - n[i, (#t+t- 2)%#t+1]
COEF dummy; {Hilfskoeffizient, wird zum Lesen verwendet}
ROW() (i,m,M,C,E,F,D);
ROW(t) (t, dummy, N, L);

MINIMIZE Kosten UNIT SFr: SUM(i,t) (N*E*(x-m*n) + N*C*n + F*s);

Bild2 LPL-Programm

stimmt INTEGER [0,100], dass
TMAX nur einen ganzzahligen Wert
zwischen 0 und 100 annehmen darf.
Der LPL-Compiler wird einen Wert
ausserhalb dieses Bereichs als Fehler

erkennen. LPL besitzt auch die
CHECK-Anweisung, mit welcher
komplexere Bedingungen getestet

und verschiedene Modellkomponen-
ten auf Konsistenz gepriift werden
konnen.

Koeffizienten konnen auch durch
Indexmengen in Tabellen zusammen-
gefasst werden. mi(i) ist ein solcher
Koeffizient in unserem Beispiel. Er
deklariert fiir jeden Generatortyp den
minimalen Betriebsoutput in Giga-
watt. Die Daten konnen direkt in der
LPL-Formulierung eingegeben wer-
den. Gewohnlich werden sie jedoch
von externen Dateien mit Hilfe
des Dateneingabe-Generators (der
READ-Anweisung) gelesen und ms-
sen nicht in LPL-Form vorliegen. Ta-
bellen sind auch nicht auf einen Index
beschridnkt: zwei-, drei- oder mehr-
dimensionale Tabellen sind moglich.
So deklariert n(i,t) eine zweidimensio-
nale Variablentabelle, welche die An-
zahl Generatoren vom Typ i angibt,
die zur Zeit ¢ in Betrieb sind. Daten
konnen auch umdefiniert werden.
Folgende Anweisungsfolge illustriert
diesen Punkt:

COEF a = 10; «der Koeffizient a
erhilt den Wert 10»
COEF b = a: «dieser Wert wird

nach b kopiert»

COEF a = 20; «a erhilt einen
neuen Wert, der alte geht verloren, b
behilt aber den Wert 10».

Ferner ist auch mdglich, dass Da-
ten-Tabellen durch arithmetische
Ausdriicke aus anderen Tabellen ge-
bildet werden konnen.

COEF a(i.j) = b[j.i];

COEF d(i.j) = a[i.j] + b[i.j]:
EQUATION e(i.k) =
afi.jl*c[i.k];

PRINT(i.j): SUM(K) c[j.k] + ai.j];
COEFf{(ij | i.>1i):

Der erste Ausdruck kopiert die
transponierte Tabelle b in die Tabelle
a. Der zweite Ausdruck weist die Ma-
trixaddition von @ und b der Tabelle d
zu. Der dritte Ausdruck definiert eine
Matrixmultiplikation, fiihrt diese aber
nicht unmittelbar aus. Erst wenn e sei-
nerseits in einem Ausdruck verwendet
wird, wird der Ausdruck auf der rech-
ten Seite evaluiert (Delayed Evalua-
tion). Der vierte Ausdruck gibt die
Berechnung als zweidimensionale Ta-

SUM(j)

30

Bulletin ASE/UCS 83(1992)17, 28 aott

Operations Research

belle aus. Tabellen sind oft nur diinn
besetzt. Die letzte Deklaration der
zweidimensionalen Tabelle f, dekla-
riert eine trianguldre Matrix: Nur die
Elemente, welche die Bedingung i > j
erfiillen, sind definiert.

Unbekannte

Die Unbekannten werden gleich
definiert wie die Koeffizienten. Auch
sie besitzen einen numerischen Wert,
der allerdings von einem Lésungsalgo-
rithmus bestimmt werden soll. Eine
typische Deklaration einer Unbe-
kannten ist

VAR x(i,t); «Anzahl Generatoren
in Betrieb».

Nichts hindert den Modellierer daran,
den Unbekannten auch Werte zuzu-
weisen, wie das fiir Koeffizienten
moglich ist. Dadurch hat die <Unbe-
kannte> einen bestimmten Wert, bis
der Losungsalgorithmus diesen Wert
unter Umstidnden iiberschreibt. Auch
die Werte der Unbekannten kénnen
durch Restriktionen eingeschrinkt
werden. Geldufig sind fiir Unbe-
kannte eine obere oder untere
Schranke. Héufig findet man auch die
Beschrinkung, dass eine Variable nur
ganzzahlige Werte annehmen darf.
Die Deklaration

VAR, s, x INTEGER;

bestimmt, dass alle Variablen 7, s und
x ganzzahlig sein miissen. Wird das
reservierte Wort INTEGER durch
BOOLEAN oder LOGICAL ersetzt,
so darf die Variable nur die beiden
Werte 0 oder 1 annehmen. Der LPL-
Compiler tbergibt diese Informatio-
nen dem LP/MIP-Losungsalgorithmus
uber die BOUND-Section und iiber
INT-MARKERS in der COLUMN-
Section im MPS-Kode (fiir eine einge-
hendere Diskussion des MPS-Kodes
siehe [2]).

Das Modell

Das eigentliche Modell wird durch
die MODEL-Anweisung definiert.
Jede Restriktion beginnt mit einem
Namen, die Zielfunktion(en) einge-
schlossen. Gefolgt wird der Name von
einem Doppelpunkt und der linearen
Beziehung. Die Restriktionen konnen
gleich wie die Koeffizienten oder die
Unbekannten iiber mehrere Indexe
laufen. Dadurch wird nicht nur eine
einzige, sondern eine ganze Menge

Tabelle ITI Typ [min. max. Kostenbei extra Kosten pro Start - Anzahl
Kapa. Kapa. min. Betrieb produziete MW kosten Generatoren
G1 850 2000 1000 2 2000 12
G2 | 1250 1750 2600 1.3 1000 10
G3 | 1500 4000 3000 3 500 5

MODEL Nachfrage(t) UNIT gW:
SUM(i) x> =D;

definiert fiir jedes Element der Menge
t eine Nachfragerestriktion. Wieviele
Restriktionen definiert werden, hingt
einmal mehr von den Datentabellen
ab. Beliebige algebraische Ausdriicke
sind erlaubt, solange diese Beziehun-
gen linear sind. Indexierte Summen
werden mit dem reservierten Wort
SUM eingeleitet. Der Ausdruck

... SUM(i) x[i.t]...

summiert alle x der Zeitzone ¢ auf und
ist direkt mit der algebraischen Nota-
tion zu vergleichen. Die Indexe nach x
konnen bei Unzweideutigkeiten auch
weggelassen werden, was bei einfa-
chen Ausdriicken wie in diesem Falle
die Lesbarkeit erhoht:

... SUM(i) x...

Die Zielfunktion beginnt mit dem
reservieren Wort MINIMIZE oder
MAXIMIZE, je nachdem ob die
Funktion maximiert oder minimiert
werden soll. Diese Anweisung ruft
den Losungsalgorithmus als externes
Programm automatisch auf.

Der Losungsalgorithmus

Der Losungsalgorithmus gehort
nicht zur LPL-Sprache. LPL besitzt
aber eine offene und vom Modellierer
definierbare Schnittstelle zu den mei-
sten marktgidngigen LP/MIP-L&sungs-
paketen. Die Anweisung MINIMIZE
oder MAXIMIZE produziert zu-
néchst aus den in MODEL deklarier-
ten Restriktionen eine MPS-Datei,
die Eingabedatei der meisten LP/
MIP-Paketen. Danach wird der Lo-
sungsalgorithmus mit den richtigen
Parametern aufgerufen. Wurde das
Modell erfolgreich gelost, so werden
die Losungsdaten von LPL iibernom-
men und den Unbekannten zugewie-
sen. Diese Schnittstelle ist ausfiihrlich
im Beniitzermanual [14] beschrieben.
Um korrekt zu funktionieren, muss
der Losungsalgorithmus mindestens
eine MPS-Datei iibernehmen konnen.
Die Schnittstelle zum Losungspaket

sungspakete wie CPLEX oder Hyper-
Lingo sind ebenfalls moglich.

Resultate

Mit LPL kann nicht nur ein Modell
formuliert, sondern es konnen auch
die entsprechenden Resultatetabellen
produziert werden. Das reservierte
Wort PRINT leitet die Tabellen-Ge-
nerierung ein. Die einfachsten Tabel-
len liefert LPL, indem PRINT gefolgt
wird von den Namen der Tabellen, die
der Modellierer ausgeben mochte wie
im Modell:

PRINT n;s; x; Kosten;

Diese Instruktion produziert vier
Tabellen in einem vordefinierten For-
mat. Die Anweisung kann auch kom-
plexe Tabellen produzieren, bei de-
nen der Beniitzer das Format und eine
Ausgabemaske angeben kann.

Masseinheiten

Numerische Daten werden meistens
in einer Masseinheit (Meter, Kilo-
gramm usw.) angegeben. In LPL kann
die Deklaration jeder numerischen
Entitit erweitert werden mit der An-
gabe der Masseinheit. Die Massein-
heiten kann der Modellierer selber de-
finieren. Dies erhoht die Lesbarkeit
eines Modells. Ausserdem erlaubt
dies, Ausdriicke automatisch auf
Masseinheitsvertriglichkeit zu priifen.
Eine fehlerhafte Formel kann dadurch
vom Compiler eher entdeckt werden.

Masseinheiten werden deklariert in
der UNIT-Anweisung, welche durch
das reservierte Wort UNIT eingeleitet
wird. Basismasse (wie Meter) werden
durch den blossen Namen deklariert.
Bei abgeleiteten Masseinheiten muss
der entsprechende Ausdruck angege-
ben werden.

UNIT
meter; «Basismass der Linge»
kilo = 1000; «Mass in 1000 Ein-
heiten»
km = kilo X meter; «ein von Me-
ter abgeleitetes Mass»
cm = m/100; «ein weiteres von
Meter abgeleitetes Mass»

von Restriktionen definiert. Die Re- XA [15] ist standardmissig im LPL- speed = meter/sec; «Mass der
striktion Compiler eingebaut. Andere Lo- Geschwindigkeit»
Bulletin SEV/VSE 83(1992)17, 28. August 31

Informatik

Zeitzonen geschatzte Nachfrage Anzahl Tabelle IV
(in Megawatt) Stunden
t1 "Mitternacht bis 6 Uhr" 15000 6
2 "6-9Uhr 30000 3
t3 "9-15Uhr 25000 6
t4 "15-18 Uhr" 40000 3
t5 "18 Uhr bis Mitternacht” 27000 6
Die Verwendung der Masseinheiten Zusammenfassung

in LPL ist einfach: die Deklaration
muss um die Masseinheitsangabe er-
weitert werden. Eine Zahl innerhalb
eines Ausdrucks wird von der Angabe
[<Masseinheit>] gefolgt. Auch der
Tabellen-Generator akzeptiert Mass-
einheiten. So mochte man beispiels-
weise die Tabelle m in Megawatt statt
Gigawatt ausgeben. Folgende Anwei-
sung fiihrt dies aus:

PRINT m UNIT mW;

Zu bemerken bleibt, dass die Anga-
ben der Masseinheiten in LPL nicht
obligatorisch sind.

Der Dateneingabe-Generator

Daten miissen nicht in LPL-Form
vorliegen. Sie konnen durch den Da-
teneingabe-Generator, in LPL repri-
sentiert durch die READ-Anweisung,
eingelesen werden. Dieser Generator
kann eine komplexe Struktur von Da-
ten einlesen. Ganze Tabellen konnen
mit einer einzigen Anweisung gelesen
werden. Die Anweisung

READ FROM STROMI.DAT:
ROW(i) (i.m. M. C. E.F.D);

liest von der Datei STROMI.DAT
sieben Daten pro Zeile ein. Die Daten
werden der Menge / und den numeri-
schen Tabellen m, M. C, E, F und D
in dieser Reihenfolge zugewiesen. Die
Angabe ROW(i) weist den Eingabe-
Generator an, das Einlesen zu wieder-
holen. Aus einer Datei konnen auch
nur Teile eingelesen werden, oder
Zeilen kénnen iibersprungen werden.
Diese Anweisung ist sehr flexibel und
michtig. Die Erfahrungen mit dem
Dateneingabe-Generator sind vielver-
sprechend: Fur ein konkretes LP-Mo-
dell von 1300 Restriktionen und 1500
Variablen musste ein Pascal-Pro-
gramm von 32 Seiten geschrieben wer-
den, welches die Modelldaten mani-
pulierte und in die richtige Form
brachte. Unter Beniitzung des Daten-
eingabe-Generators konnte dieses
Programm durch einen LPL-Kode von
2 Seiten [16] ersetzt werden!

Dieser Artikel ist eine notwendiger-
weise unvollstindige Zusammenfas-
sung der Modellierspache LPL. Das
Beniitzerhandbuch [14] gibt eine de-
taillierte Beschreibung der Sprache.
Eine umfangreiche Modellbibliothek
in LPL aus verschiedenen Anwen-
dungsgebieten wurde erstellt, um die
Niitzlichkeit der LPL-Sprache zu te-
sten.

Die Entwicklung von LPL war von
Anfang an motiviert durch den prakti-
schen Einsatz von grossen Modellen.
Verschiedene LP-Modelle mit
1500-2000 Restriktionen, 2000-3500
Unbekannten und einer Matrixbeset-
zung von 7500-12000 Elementen wer-
den am Institut fiir Automation und
Operations Research an der Universi-
tdt Freiburg im Auftrage des Bundes
gewartet. Sie sind in LPL formuliert
worden [17]. Da diese Modelle noch
vor kurzem einem Grossrechner zur
Losung iibergeben werden mussten,
stand fiir die LPL-Sprache die auto-
matische Produktion des MPS-Kodes
im Vordergrund. Dank der raschen
Entwicklung der Personal Computer
und den darauf implementierten Lo-
sungsalgorithmen (XA, CPLEX, u.a.)
ist es heute moglich, alle diese Mo-
delle lokal auf dem PC zu losen. Da-
mit riickt der Modellierungszyklus
(Modell dndern — Losen — Resultate
generieren) immer mehr in den Vor-
dergrund. Die Produktion und Selek-
tion von Resultate-Tabellen wird da-
her ebenso wichtig wie die Generie-
rung des Eingabekodes fiir den Lo6-
sungsalgorithmus. LPL unterstiitzt
diesen Zyklus voll, indem es automa-
tisch einen externen Losungsalgorith-
mus aufrufen und die Losung zur wei-
teren Verarbeitung iibernehmen
kann. Der eingebaute Tabellengene-
rator produziert die gewiinschten Re-
sultate-Tabellen. Der Modellierer
muss sich daher nicht mehr um die
vielen technischen Details kiimmern,
sondern kann sich der eigentlichen
Modellierung widmen. Die praktische

Erfahrung mit den genannten Model-
len hat gezeigt. dass sich der Modellie-
rungszyklus einer Modelldanderung
von einigen Stunden, ja sogar Tagen,
auf einige Minuten reduziert hat.

Der LPL Compiler wurde mit
Turbo Pascal 6.0 von Borland Inc.
entwickelt und lduft somit unter dem
Betriebssystem MS/DOS. Eine Ver-
sion in Ansi C wurde ebenfalls imple-
mentiert. Die Pascal-Version des
LPL-Compilers ist erhiltlich bei der
Adresse des Verfassers.

Literatur

[1] Control Data Corp.: APEX-II Reference Man-
ual. No. 59158100. Rev.C. Minneapolis.
Minn.. 1974.

[2] IBM World Trade Corporation: Matrix Gene-
rator and Report Writer (MGRW) Program
Reference Manual. No. SH19-5014, New-York
and Paris. 1972.

[3] Ketron Inc.: MPS III Dataform: User Manual.
Arlington. Va..1975.

[4] M.L.T. Center for Computational Research in
Economics and Management Science: Datamat
Reference Manual. 3rd ed.. No. D0078. Cam-
bridge. 1975.

[5] Brooke A., Kendrick D. and Meeraus A.:
GAMS. A User’s Guide. The Scientific Press.
1988.

[6] Fourer R., Gay D.M. and Kernighan B.W.: A
Modeling Language for Mathematical Pro-
gramming. Management Science 36:5 (May).
1990.

[7] Cunningham K. and Schrage L.: The Lingo
Modeling Language. University of Chicago.
Preliminary. Febr. 1989.

[8] Geoffrion A.M.: SML: A Model Definition
Language for Structured Modeling. Western
Management Science Institute, University of
California. Los Angeles. Working Paper No.
60. revised Nov. 1989.

[9] Blanning R.W.: A Rational Theory of Model
Management. In C.W. Holsapple and A.B.
Whinston (eds.). Decision Support Systems:
Theory and Application, Springer Verlag,
1987.

[10] Dolk D.R.: Model Management and Struc-
tured Modeling: The Role of an Information
Resource Dictionary System. Communications
ACM. 31(1988)6. pp. 704-718.

[L1] Greenberg H.J.: A Primer for Analyse: A
Computer-Assisted Analysis System for Mathe-
matical Programming Models and Solutions.
University of Colorado. Denver. Draft. June 28
1990.

[12] Gass S.1.: Documenting a Computer-Based
Model. Interfaces. 14(1984)3. May-June. pp.
84-93.

[13] Day R.E., Williams H.P.: Magic: The Design
and Use of an Interactive Modelling Language
for Mathematical Programming. IMA Journal
of Mathematics in Management 1(1986)1. p.
53-65.

[14] Hiirlimann T.: Reference Manual for the LPL
Modeling Language. Version 3.5. Institute for
Automation and Operations Research, Work-
ing Paper No. 191. Fribourg, February 1992.

[15] Sunset Software: XA, A Professional Linear
and Mixed 0/1 Integer Programming System.
1613 Chelsea Road, Suite 153. San Marino, Ca
91108. 1990.

[16] Hiirlimann T.: The Input Generator of the Mo-
del RAP. Institute for Automation and Opera-
tions Research. Working Paper No. 190, No-
vember, Fribourg, 1991.

[17] Hittenschwiler P., Kohlas J.: Wissensbasierte
Systeme auf der Grundlage linearer Modelle —
Werkzeuge und Anwendungen. Output
18(1989)12. Goldach. Schweiz.

[18] Hiirlimann T., Kohlas J.: LPL: A Structured
Language for Linear Modeling. OR Spectrum
10(1988). pp. 55-63. Springer Verlag.

32

Bulletin ASE/UCS 83(1992)17, 28 aoit

D923

LFP 6 Tester fir die umfassende
Netzstorsimulation

pprozessorgesteuerter Netzstérsimulator fir verschiedene

Netze mit oder ohne harmonische Oberwellen, Spannungs-

unterbriichen, Spannungs- und Frequenzvariationen

B Netzunabhéngige Prifspannung bis 280V und Maximal-
strom von 6 A

B Netzfrequenzen von 1673 bis 400 Hz, Harmonische bis
zur 50. Ordnung

B Schnellere Prifung dank Speicherung und Programmierung
der Testsequenzen und -Parameter mit integriertem
pProzessor. Externe Ansteuerung Uber RS 232 und IEEE 488
Schnittstelle méglich

B Externe Ansteuerméglichkeit fir die Simulation von
Interharmonischen und Unsymmetrien

B Prifung der Stérfestigkeit nach IEC 66E, I[EC Draft 77/B-61
und EN50082-1 und pr50082-2 etc.

EMIL HAEFELY & CIE AG

BETRIEB REINACH, POSTFACH H A E F E LY .

CH-4153 REINACH 1/ BL HIGH VOLTAGE TECHNOLOGY

Inserieren Sieim

Bulletin SEV/VSE

86% der Leser sind
Elektroingenieure ETH/HTL

91% der Leser haben
Einkaufsentscheide zu treffen

Sie treffenihr
Zielpublikum

Wir beraten Sie kompetent
Tel. 01/207 86 32

for die rationelle Erfassung, Beorbenung
und Auswertung von

Vermessungs-, Planungs-, Versorgungs-
und Entsorgungs-Daten

i 7

/ _/ /] I ‘\ \ \\ \
/7 [KatasterY \ X
Abwasser
Elektrizitat
Fernmeldeanlagen
Fernwarme
Forderanlagen
Gas
Gemeinschaftsantennen
Luftschutz

Strassenunterhalt

Umweltschutz
Wasser
Zivilschutz

A
N
AN
/ N

Verlangen Sie eine ausfihrliche Dokumentation,
oder eine
eindrickliche VorfUhrung in unserem Betrieb!

Adasys AG

Soﬂwore Entwicklung
und Beratung

Kronenstr. 38, 8006 Zirich
Telefon 01/363 19 39

aad
SUS

33

o
v
Fa
o)
-4
o
%
=

. or it
Fiir Unternebhmer, Bl

die mit leamwork gross werden.
Ascoline.

Ob lhre Mitarbeiter gut zusammenspielen, ist oft eine Frage
der richtigen Einstellung. Deshalb fordert das Kommunika-
tionssystem Ascoline den Teamgeist mit flexiblen Team- und
Stellvertreterschaltungen, damit auch in hektischen Situatio-
nen keine Anrufe verlorengehen. Und dank einer gehdrigen
Portion High-Tech, bspw. die akustische Bedienerfihrung
mittels Sprechtexten, stehen Sie mit dem System jederzeit auf
du und du. Wie Sie also in Unternehmen mit 30 bis tber 300
Mitarbeitern bedeutend mehr vom Telefon haben, erfahren
Sie von der Ascom Business Systems AG. Rufen Sie noch
heute eines unserer Regionalzentren in lhrer Nahe an: Zirich:
01/823 1414, Bern: 031/999 44 93, Lausanne: 021/64142 11.

Das formschéne Brigit 100

mit Lautsprecher, Dfisplay und Oder kontaktieren Sie lhre zustandige .
Message-Anzeige fur . .
wirtschaftlichen Telefonkomfort. Fernmeldedirektion, Telefon 113. TELECOM -~

leilnehmervermittiungsanlagen: ASCOIM denkt weiter.

	Leichterer Zugang zu Operations Research : die Modelliersprache LPL

