
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 83 (1992)

Heft: 17

Artikel: Leichterer Zugang zu Operations Research : die Modelliersprache LPL

Autor: Hürlimann, Tony

DOI: https://doi.org/10.5169/seals-902861

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-902861
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Operations Research

Leichterer Zugang zu Operations Research
Die Modelliersprache LPL

Tony Hürlimann

Operations Research, ein
etabliertes mathematisches
Instrumentarium zur Lösung von
Optimierungsaufgaben, leistet
auf vielen Gebieten
hervorragende Dienste. Es könnte
allerdings noch wesentlich breiteren
Einsatz finden, wenn nicht
mathematische Hürden vielen
Praktikern den Zugang zu den
Methoden des Operations Research

versperren würden. Der
vorliegende Artikel beschreibt eine
an der Universität Freiburg
entwickelte Modelliersprache, mit
welcher der Zugang erheblich
vereinfacht wird.

Operations Research, un instrument

mathématique établi pour
résoudre des tâches d'optimisation,

opère de remarquables
performances dans beaucoup de
domaines. Il trouverait cependant

une utilisation notablement
plus vaste si des obstacles
mathématiques ne bloquaient
pas à beaucoup de practiciens
l'accès aux méthodes d'Opérations

Research. L'article décrit un
langage de modélisation
développé à l'Université de Fribourg,
qui simplifie grandement l'accès.

Adresse des Autors
Tony Hürlimann, Dr.lic.rer.pol.,
Institut for Automation and Operations Research
Université de Fribourg, 1700 Freiburg.

In der Praxis muss man in der Lage
sein, komplexe Entscheidungen rasch
zu treffen. Quantitative Aspekte sind
dabei oft ebenso wichtig wie die
qualitativen. Das Operations Research hat
Methoden entwickelt, welche Ent-
scheidungsprozesse bewältigen helfen,
und dank Computern können heute
grosse mathematische Modelle in einigen

Minuten gerechnet werden. Die
Operations Research-Forschung hat
sich in den letzten Jahrzehnten
hauptsächlich darauf konzentriert,
mathematische Lösungsmethoden und
-verfahren für bestimmte Modelle zu
entwickeln. Diese Arbeiten erlauben -
zusammen mit immer leistungsfähigeren

Computern -, auch grössere
Modelle zu lösen. Doch wurden Fragen
des Modellmanagements (Modellformulierung.

Modellbau und
Modellwartung) langezeit stiefmütterlich
behandelt und sind immer noch relativ
unterentwickelt. Vor allem in der
praktischen Anwendung des OR, wo
der Einsatz grösserer Modelle für
komplexe Entscheidungsprozesse
unumgänglich ist, sind Modellmanage-
ment-Instrumente nicht nur nützlich,
sondern unerlässlich. Wenn die
Lösung eines Modells auf einem
Grosscomputer höchstens Minuten dauert,
die Modellformulierung und -Wartung
sich aber über Wochen, ja Monate
erstreckt, was durchaus nicht unüblich
ist. so besteht hier ein krasses
Missverhältnis, und der Einsatz von gut
entwickelten Methoden lohnt sich
nicht. Der Einsatz von OR-Methoden
in der Praxis hängt direkt von der
Investition ab. die es braucht, um solche
Modelle zu erstellen und zu warten.
Leider aber gibt es noch keine
Instrumente, mit denen man grosse Modelle
auch bequem manipulieren kann.
Deswegen sind die finanziellen Mittel,
die man benötigt, um grosse Modelle
aufzustellen, zu warten und zu verän¬

dern. immer noch gewaltig. Die hohen
Kosten sind einer der Hauptgründe,
wieso die Methoden des Operations
Research nur zögernd in die Praxis
Eingang finden.

Die Einsicht, dass es für die
praxisorientierte Anwendung des Operations

Research mehr braucht als nur
effiziente Lösungsalgorithmen, und
dass ein Modell nicht von Anfang an
in einer Form vorliegt, welche der
Lösungsalgorithmus verlangt, hat sich in
der letzten Zeit, wenn auch zögernd,
durchgesetzt. Zwar wurden schon
in den siebziger Jahren effiziente
und mächtige Matrix-Generatoren
und Report-Generatoren geschaffen
[1...4], doch typischerweise arbeitet
man mit diesen Instrumenten so, dass
der Modellierer ein Computerprogramm

schreibt, welches das Modell
in eine vom Matrix-Generator lesbare
Form bringt. Wird das Modell geändert,

muss auch dieses Übersetzungsprogramm

neu geschrieben oder
abgeändert werden. Ein solches Vorgehen
verlangt vom Modellierer nicht nur
Kenntnisse in der Programmierung,
sondern ist auch mit einem erheblichen

Aufwand verbunden. Zudem
liegt das Modell in einer Form vor -
nämlich als Fortran-Programm -, das
eher vom Programmierer als vom
Modellierer interpretiert und manipuliert
werden kann. Dieses Vorgehen ist
auch heute noch verbreitet.

Eine Modelliersprache
für Operations Research

Eine Modelliersprache als Instrument

einer Modellformulierung könnte
diese Nachteile umgehen, da sie

eine Formulierung erlaubt, die dem
Modellbauer näher steht. Die Idee
einer Modelliersprache ist nicht neu,
und verschiedene Sprachen wie Garns
[5], AMPL [6]. Lingo [7] sind bereits

Bulletin SEV/VSE 83(1992)17, 28. August 27



Informatik

Modelliersprache
für Operations Research
Am Institut für Automation und Operations

Research an der Universität Freiburg

werden seit einiger Zeit Instrumente
des Modellmanagements entwickelt.
Eines davon ist die in diesem Beitrag
vorgestellte Modelliersprache LPL f : (l.inear
Programming Language). Sie erlaubt
auch grosse, mathematische Modelle in
der bekannten, algebraischen Notation zu
schreiben. Die LPL-Sprache wurde zum
Erstellen von MPS Input-Dateien und
Resultate-Tabellen grösserer LP-Modelle
erfolgreich eingesetzt. Der LPL-Compiier
übersetzt ein LPL-Programm, das ein
vollständiges Modell repräsentiert, in den
Eingabecode eines LP/MIP-Lösungspro-
gramrns, ruft den Lösungsalgorithmus auf
und liest die Lösung; ein integrierter
Tabellengenerator gibt vom Benutzer
definierte Resultate-Tabellen aus. Ein
Dateneingabe-Generatorerlaubt zudem, die Daten

in verschiedenen Formaten zu lesen.

entwickelt worden und verfügbar.
Erwähnt werden soll auch der Ansatz
SML [8], bei dem nicht nur eine
Modelliersprache, sondern eine ganze
Modellierumgebung im Zentrum
steht. Eine Modelliersprache ist sicher
nur ein, wenn auch wichtiger,
Bestandteil einer Modellumgebung. Dazu

gehören nämlich auch Instrumente
der Modell-Datenverwaltung [9; 10],
der ModelVerifikation [11], der
Modelldokumentation [12; 8] sowie
Instrumente, die den gesamten
Lebenszyklus und die Evolution eines
Modells unterstützen.

Dieser Artikel stellt eine Modelliersprache,

genannt LPL (Linear
Programming Language), vor, mit der
man auch grössere mathematische
Modelle formulieren und bequem
warten kann. Die Formulierung eines
Modells in der LPL-Form kann direkt
dazu verwendet werden, das Modell
automatisch in den vom Lösungsalgorithmus

verlangten Kode zu übersetzen.

LPL unterscheidet sich von den
oben genannten Spachen folgender-
massen: Die Sprache besitzt eine
offene Schnittstelle zu den meisten
Lösungsalgorithmen. Der Dateneingabe-
Generator ist in keiner andern Sprache

vorhanden und nur Garns besitzt
auch einen Resultate-Generator. Die
Syntax von LPL ist flexibler. Entitä-
ten können mehrmals definiert und
zugewiesen werden wie in Garns, aber
im Gegensatz zu Garns kann in LPL
die Modelstruktur unabhängig von
den Daten verarbeitet werden. LPL

besitzt zudem als einzige Sprache die
Möglichkeit, Masseinheiten selber zu
definieren. Die wichtigsten Punkte
seien kurz zusammengefasst:

- Ein LPL-Modell besteht aus einer
einfachen Syntax - ähnlich der
mathematischen Notation mit in-
dexierten Ausdrücken.

- Es können kleine und grosse
Modelle definiert werden, dank der
Aufspaltung des Modells in
Modellstruktur und Modelldaten.

- Ein mächtiger Indexmechanismus
ist eingebaut, mit dem die
Modellstruktur sehr flexibel gestaltet und
das Modell «aufgeblasen» werden
kann.

- Ein innovativer Tabellen- und
Dateneingabe-Generator ist eingebaut.

- Beliebige indexierte Ausdrücke
sind formulier- und sofort
auswertbar.

- Die Variablen- und Restriktionennamen

können automatisch oder
vom Benutzer gesteuert generiert
werden.

- Mit Hilfe von verschiedenen
Instrumenten kann das Modell auf Fehler
untersucht werden.

- Ein eingebauter Texteditor erlaubt
ein Modell zu formulieren und zu
ändern.

- Für LP/MIP-Modelle wird der
MPS-Standard-Kode schnell produziert.

- Die Schnittstelle zu einem LP/MIP-
Lösungsalgorithmus ist offen und
kann vom Benutzer definiert
werden.

Anhand eines einfachen Modells
aus der Elektrizitätswirtschaft sollen
im weiteren die Grundideen von LPL
kurz vorgestellt werden.

Beispiel
aus der Elektrizitätswirtschaft

Ein vereinfachtes Modellbeispiel
aus der Elektrizitätswirtschaft soll
Ausgangspunkt für die Beschreibung
der Modeliersprache LPL sein [13]. In

Tageszeit-Zone Stromverbrauch

Mitternacht bis 6 Uhr

6-9 Uhr

9-15 Uhr

15-18 Uhr

18 Uhr bis Mitlernacht

15 000 Megawatt

30 000 Megawatt

25 000 Megawatt

40 000 Megawatt

27 000 Megawatt

Tabelle I

einem Elektrizitätswerk müssen die
Stromgeneratoren ständig ein- und
ausgeschaltet werden, um die stündlichen

Schwankungen des Stromverbrauchs

zu decken. Angenommen, ein
Tag werde in 5 Zeitzonen eingeteilt,
in welchen wir einen konstanten,
geschätzten Stromverbrauch annehmen
(Tab. I). Nehmen wir weiter vereinfachend

an, dass im Elektrizitätswerk
drei verschiedene Generatorentypen
installiert sind, und zwar zwölf vom
Typ 1, zehn vom Typ 2 und fünf vom
Typ 3. Jeder Generatortyp, einmal in
Betrieb, liefert eine minimale
Strommenge, kann aber ein bestimmtes
Maximum nicht übersteigen. Die
Betriebskosten über dem Minimum sind
höher als auf dem Minimum. Zudem
müssen Anschaltkosten in Betracht
gezogen werden. Die Daten sind in
der Tabelle II zusammengestellt. Um
die geschätzte Nachfrage jederzeit
decken zu können, ist zudem vorgesehen,

dass eine plötzliche Zunahme
von 15% der Nachfrage abgefangen
werden kann, ohne dass neue Generatoren

in Betrieb genommen werden
müssen.

Die Frage ist nun, welche Generatoren

müssen zu jeder Tageszeit in
Betrieb sein oder in Betrieb genommen
werden, wenn die Betriebskosten zu
minimieren sind. Ausserdem interessiert

uns die Frage, welches die marginalen

Produktionskosten des Stroms
zu jeder Tageszeit ist. Dieses Problem
kann in ein lineares Optimierungsmodell

umgewandelt werden, welches in
Bild 1 aufgelistet ist. Da die Zeitzonen
zyklisch definiert sind, d.h. die
Vorperiode der ersten Zeitzone ist die
letzte Zeitzone (des Vortages) und die
nachfolgende Periode der letzten
Zeitzone ist die erste Zeitzone (des
nächsten Tages), ist die Restriktion sir
> auch für t 1 definiert als
Su — nu-niT. Die Struktur dieses
Modells kann direkt in der LPL-Sprache
wiedergegeben werden. Das entsprechende

LPL-Programm ist in Bild 2

aufgelistet.
Das Modell in Bild 1 gibt die

algebraische Formulierung des vereinfachten

Modells wieder. Es besteht aus
einer Liste von Deklarationen:
Indexmengen, Datentabellen,
Unbekannte, eine minimierende Funktion
und lineare Restriktionen. Keine Daten

sind definiert. Die Beschreibung
ist dimensionsunabhängig und
repräsentiert die Modellstruktur. Die LPL-
Formulierung in Bild 2 ist ähnlich
aufgebaut. Die verschiedenen Deklarationen

werden jeweils durch ein reser-

28 Bulletin ASE/UCS 83(1992)17, 28 août



Operations Research

Typ1 Typ 2 Typ 3

minimale Kapazität (GW) 850 1 '250 1 '500

maximale Kapazität (GW) 2'000 1750 4'000

minimale Betriebskosten SFr/Std 1 '000 2'600 3'000

zusätzliche Betriebskosten pro GW

über dem Minimum (SFr/MW) 2.-- 1.30 3.--

Anschaltkosten 2'000 rooo 500

Anzahl Generatoren 12 10 5

viertes Wort SET, UNIT, COEF
VAR. MODEL usw. eingeleitet und
durch einen Strichpunkt abgeschlossen.

Es ist wichtig zu sehen, dass diese

Formulierung ebenfalls ganz
unabhängig von den Daten ist. Die Daten
sind definiert in den beiden Dateien
Stroml.dat und Strom2.dat (s. Tab.
III und IV für unser konkretes
Beispiel). Die Grösse des Modells ist einzig

abhängig von der Grösse dieser
Datentabellen, die ausserhalb der
Modellstruktur definiert sind. Die
LPL-Formulierung zeigt noch einige
weitere Differenzen gegenüber der
algebraischen Formulierung von Bild 1:

Kommentare stehen in Hochkommata
oder in geschweiften Klammern, die
Indexe sind geklammert statt tiefgestellt

und Zeichen wie Z sind durch
reservierte Wörter wie SUM ersetzt
worden. Zudem wird die LPL-Formu-
lierung durch vier weitere Anweisungen

ergänzt:

- UNIT wird verwendet, um
Masseinheiten zu definieren.

- READ liest die Modelldaten von
externen Dateien ein.

- MINIMIZE übergibt das Modell
dem Lösungsalgorithmus und
übernimmt anschliessend die Lösungsdaten.

- PRINT schreibt die entsprechenden
Resultate-Tabellen in Dateien.

Statt einzelne Buchstaben können
auch Wörter als Namen verwendet
werden. So könnte z.B. x(i,t) durch
StromMenge(Typ,Zeitzone) ersetzt
werden.

Ein kurzer Überblick
über die LPL-Sprache

Anhand des letzten Beispiels sollen
nun die einzelnen Elemente der LPL-
Sprache kurz vorgestellt werden.

Indexmengen
Eine Indexmenge ist eine ungeordnete

(oder geordnete) Menge von Ob-

Tabelle II

jekten. Die Menge der Generatorentypen

i in unserem Beispiel ist eine
solche Menge. Sie wird in LPL deklariert

als

SET i; «Generatorentypen»

Die Elemente der Menge sind damit
noch nicht festgelegt; diese werden als
Teil der Modelldaten (Tab. III)
betrachtet. Der Modellierer ist
allerdings frei, bei der Deklaration auch

gleich die Elemente zu definieren. So
hätte man i auch als

SET i /G1:G3/; «i ist die Liste
aller Generatorentypen»

deklarieren können. Die beiden
Elemente Gl und G3 getrennt durch
einen Doppelpunkt definieren einen
Bereich als untere und obere Grenze.
Die explizite Deklaration

SET j /Gl G2 G3/;

wäre dazu äquivalent. Für die
Modelldokumentation noch besser wäre, die
Kürzel Gl,...,G3 durch sprechende
Namen zu ersetzen.

Indexmengen können selber in-
dexiert sein. In diesem Fall besteht die
Indexmenge aus einer Tupelliste und
die Indexmenge heisst indexiert.
Wenn p und t zwei einfache Mengen
bezeichnen, die definiert sind als

SET p / PLP180 /; «180
Elemente»

SET t / TLT15 /; «15 Elemente»

Gegeben
i Generatortypen (/-l,..qV) mit N=3

t Zeitzonen (t=l,mit T=5...(zyklisch)

Daten

mj minimaler Betriebsoutput pro Generatortyp i (in Gigawatt)
M, maximale Kapazität des Generatortyps t (in Gigawatt)
Cj minimale Betriebskosten pro Generatortyp ; (in Franken)
Ej Extra Betriebskosten pro Megawatt über dem Minimum je Typ i

Fi Anschaltkosten pro Generatortyp i
Lj Anzahl Generatoren des Typs ;

Dt geschätzte Stromnachfrage in der Zeitzone t
Nt Länge der Zeitzone t (in Stunden)

Unbekannte

nu Anzahl Generatoren vom Typ / in Betrieb zur Zeit t
Sjt Anzahl gestartete Generatoren vom Typ / zur Zeit t
Xjt Stromproduktion von Generatoren des Typs ; zur Zeit t (in gW)

Minimiere die Kosten:

X f=7(w,£;U-, - rninil) + + F^,)

mit den Restriktionen

£ 'i' Xit > D, mitt=l,..,T (Nachfragedeckung)

A mit ZU,.., 7' (15% extra Produktionsmarge)

<Xj, < Afj/iji mit ;=l,..,iV, 1=1,..,7* (Strommengenproduküon)

sh > rij, — nit_i mit i=l,..t=\,..,T (Anzahl gestartete Generatoren)

nit < Lj mit ;=1...W, t=l,..,T (maximale Anzahl Generatoren)

Xit > 0, Sjj > 0, njt > 0 und ganzzahlig

Bild 1 Optimierungsmodell

Bulletin SEV/VSE 83(1992)17, 28. August 29



Informatik

dann könnte eine indexierte Tupel-
menge Tupel deklariert werden als

SET Tupel(p,t) / PI T2, P2 T6,
P3 T7 /;

Diese Tupelliste definiert eine
Relation zwischen den Elementen p und
den Elementen f. Wichtig ist, dass
damit nicht die gesamte Tupelliste (das
Kartesische Produkt), sondern nur
eine kleine Untermenge, bestehend
aus nur drei Elementen, definiert
wird. Ein weiteres Beipiel definiert
zwei Untermengen der einfachen
Menge p als

SET Spl(p) / PI P45 P56 P67 P78
T122 /;
SET Sp2(p) / P2 P67 P123 P145
P12 P178/;

Statt eine explizite Liste anzugeben,
können die indexierten Mengen auch

aus mathematischen und logischen
Ausdrücken gebildet werden. Die
Vereinigungs- Schnitt- und Differenzmenge

von Spl und Sp2 werden fol-
gendermassen generiert:

SET Vereinigung(p) Spl or Sp2;
SET Schnitt(p) Spl and Sp2;
SET Differenz(p) Spl and not
Sp2;

Numerische Daten
Unter Koeffizienten werden numerische

Werte verstanden, die in das
Modell eingehen. Die einfachsten
Koeffizienten besitzen nur einen Wert.

COEF TMAX INTEGER [0,100]
50;

Koeffizienten können durch
Bedingungen eingeschränkt werden. So be¬

stimmt INTEGER [0,100], dass
TMAX nur einen ganzzahligen Wert
zwischen 0 und 100 annehmen darf.
Der LPL-Compiler wird einen Wert
ausserhalb dieses Bereichs als Fehler
erkennen. LPL besitzt auch die
CFIECK-Anweisung, mit welcher
komplexere Bedingungen getestet
und verschiedene Modellkomponenten

auf Konsistenz geprüft werden
können.

Koeffizienten können auch durch
Indexmengen in Tabellen zusammen-
gefasst werden. m(i) ist ein solcher
Koeffizient in unserem Beispiel. Er
deklariert für jeden Generatortyp den
minimalen Betriebsoutput in Giga-
watt. Die Daten können direkt in der
LPL-Formulierung eingegeben werden.

Gewöhnlich werden sie jedoch
von externen Dateien mit Hilfe
des Dateneingabe-Generators (der
READ-Anweisung) gelesen und müssen

nicht in LPL-Form vorliegen.
Tabellen sind auch nicht auf einen Index
beschränkt: zwei-, drei- oder
mehrdimensionale Tabellen sind möglich.
So deklariert n(i,t) eine zweidimensionale

Variablentabelle, welche die
Anzahl Generatoren vom Typ i angibt,
die zur Zeit t in Betrieb sind. Daten
können auch umdefiniert werden.
Folgende Anweisungsfolge illustriert
diesen Punkt:

COEF a 10; «der Koeffizient a

erhält den Wert 10»

COEF b a; «dieser Wert wird
nach b kopiert»

COEF a 20; «a erhält einen
neuen Wert, der alte geht verloren, b
behält aber den Wert 10».

Ferner ist auch möglich, dass
Daten-Tabellen durch arithmetische
Ausdrücke aus anderen Tabellen
gebildet werden können.

COEF a(i,j) b [j, i ] ;

COEF d(i,j) a[i,j] + b[i,j] ;

EQUATION e(i,k) SUM(j)
a[i,j]*c[j,k];
PRINT(i.j): SUM(k) c[j.k] + a[i,j];
COEF f(i,j | i, > j);
Der erste Ausdruck kopiert die

transponierte Tabelle b in die Tabelle
a. Der zweite Ausdruck weist die
Matrixaddition von a und b der Tabelle d
zu. Der dritte Ausdruck definiert eine
Matrixmultiplikation, führt diese aber
nicht unmittelbar aus. Erst wenn e

seinerseits in einem Ausdruck verwendet
wird, wird der Ausdruck auf der rechten

Seite evaluiert (Delayed Evaluation).

Der vierte Ausdruck gibt die
Berechnung als zweidimensionale Ta-

PROGRAM Stromproduktion;
SET

i; "Generatorentypen "

t; "Zeitzonen"

UNIT
SFr ; "Geldeinheit"
MW; "Megawatt"
G W=100CTMW; "Gigawatt"
hour; "Stunden"

COEF
m(i) UNIT GW; "minimaler Betriebsmenge pro Generatortyp i (in Gigawatt)"
M(i) UNIT GW; "maximale Kapazität des Generatortyps t (in Gigawatt)"
C(i) UNIT SFr; "minimale Betriebskosten pro Generatortyp i (in SFr)"
E(i) UNIT SFr/MW; "Extra Betriebskosten pro MW über dem Minimum je Typ i"

F(i) UNIT SFr; "Anschaltkosten pro Generatortyp i"

MO; "Anzahl von Generatoren des Typs i"

D(t) UNIT GW; "geschätzte Stromnachfrage zur Zeit t"

N(t) UNIT hour; "Länge der Zeitzone t (in Stunden)"

VAR
n(i,t); "Anzahl Generatoren vom Typ i in Betrieb zur Zeit t"
s(i.t); "Anzahl gestartete Generatoren vorh Typ i zur Zeit t"
x(i,t) UNIT GW; "Stromproduktion des Typs i zur Zeit t (in GW)"
n,s,x INTEGER; {Variablen sind ganzzahlig}

MODEL {Modellrestriktionen}
Nachfrage(t) UNITGW: SUM(i) x >= D;

Extrakapazitaet(t) UNITGW: M*n >= 1.15*D;
MinK.MaxK(t) UNITGW: m*n <= x <= M*n;
Gestartet(i,t): s[i,t] >= n[i,t] - n[i,(#t+t-2)%#t+1];
ObereSchranke(i.t): n[i,t] <= L[i];

COEF dummy; {Hilfskoeffizient, wird zum Lesen verwendet}
READ FROM 'STROM1 .DAT' : ROW(i) (i m M C E F D);
READ FROM 'STROM2.DAT1 : ROW(t) (t dummy N L);

MINIMIZE Kosten UNIT SFr: SUM(i.t) (N*E*(x-m*n) + N*C*n + F*s);
PRINT /VAR/; Kosten;
END

Bild 2 LPL-Programm

30 Bulletin ASE/UCS 83(1992)17, 28 août



Operations Research

Typ min.
Kapa.

max.
Kapa.

Kosten bei
min. Betrieb

extra Kosten pro
produzierte MW

Start -
kosten

Anzahl
Generatoren

G1 850 2000 1000 2 2000 12

G2 1250 1750 2600 1.3 1000 10

G3 1500 4000 3000 3 500 5

belle aus. Tabellen sind oft nur dünn
besetzt. Die letzte Deklaration der
zweidimensionalen Tabelle /, deklariert

eine trianguläre Matrix: Nur die
Elemente, welche die Bedingung i > j
erfüllen, sind definiert.

Unbekannte
Die Unbekannten werden gleich

definiert wie die Koeffizienten. Auch
sie besitzen einen numerischen Wert,
der allerdings von einem Lösungsalgorithmus

bestimmt werden soll. Eine
typische Deklaration einer
Unbekannten ist

VAR x(i,t); «Anzahl Generatoren
in Betrieb».

Nichts hindert den Modellierer daran,
den Unbekannten auch Werte
zuzuweisen, wie das für Koeffizienten
möglich ist. Dadurch hat die <Unbe-
kannte> einen bestimmten Wert, bis
der Lösungsalgorithmus diesen Wert
unter Umständen überschreibt. Auch
die Werte der Unbekannten können
durch Restriktionen eingeschränkt
werden. Geläufig sind für
Unbekannte eine obere oder untere
Schranke. Häufig findet man auch die
Beschränkung, dass eine Variable nur
ganzzahlige Werte annehmen darf.
Die Deklaration

VAR n.s,x INTEGER;

bestimmt, dass alle Variablen n, s und
x ganzzahlig sein müssen. Wird das
reservierte Wort INTEGER durch
BOOLEAN oder LOGICAL ersetzt,
so darf die Variable nur die beiden
Werte 0 oder 1 annehmen. Der LPL-
Compiler übergibt diese Informationen

dem LP/MIP-Lösungsalgorithmus
über die BOUND-Section und über
INT-MARKERS in der COLUMN-
Section im MPS-Kode (für eine
eingehendere Diskussion des MPS-Kodes
siehe [2]).

Das Modell
Das eigentliche Modell wird durch

die MODEL-Anweisung definiert.
Jede Restriktion beginnt mit einem
Namen, die Zielfunktion(en)
eingeschlossen. Gefolgt wird der Name von
einem Doppelpunkt und der linearen
Beziehung. Die Restriktionen können
gleich wie die Koeffizienten oder die
Unbekannten über mehrere Indexe
laufen. Dadurch wird nicht nur eine
einzige, sondern eine ganze Menge
von Restriktionen definiert. Die
Restriktion

Tabelle III

MODEL Nachfrage(t) UNIT gW:
SUM(i) x > D;

definiert für jedes Element der Menge
t eine Nachfragerestriktion. Wieviele
Restriktionen definiert werden, hängt
einmal mehr von den Datentabellen
ab. Beliebige algebraische Ausdrücke
sind erlaubt, solange diese Beziehungen

linear sind. Indexierte Summen
werden mit dem reservierten Wort
SUM eingeleitet. Der Ausdruck

SUM(i) x[i,t]...
summiert alle x der Zeitzone t auf und
ist direkt mit der algebraischen Notation

zu vergleichen. Die Indexe nach x
können bei Unzweideutigkeiten auch
weggelassen werden, was bei einfachen

Ausdrücken wie in diesem Falle
die Lesbarkeit erhöht:

SUM(i) x...

Die Zielfunktion beginnt mit dem
reservieren Wort MINIMIZE oder
MAXIMIZE, je nachdem ob die
Funktion maximiert oder minimiert
werden soll. Diese Anweisung ruft
den Lösungsalgorithmus als externes
Programm automatisch auf.

Der Lösungsalgorithmus
Der Lösungsalgorithmus gehört

nicht zur LPL-Sprache. LPL besitzt
aber eine offene und vom Modellierer
definierbare Schnittstelle zu den meisten

marktgängigen LP/MIP-Lösungs-
paketen. Die Anweisung MINIMIZE
oder MAXIMIZE produziert
zunächst aus den in MODEL deklarierten

Restriktionen eine MPS-Datei,
die Eingabedatei der meisten LP/
MIP-Paketen. Danach wird der
Lösungsalgorithmus mit den richtigen
Parametern aufgerufen. Wurde das
Modell erfolgreich gelöst, so werden
die Lösungsdaten von LPL übernommen

und den Unbekannten zugewiesen.

Diese Schnittstelle ist ausführlich
im Benützermanual [14] beschrieben.
Um korrekt zu funktionieren, muss
der Lösungsalgorithmus mindestens
eine MPS-Datei übernehmen können.
Die Schnittstelle zum Lösungspaket
XA [15] ist standardmässig im LPL-
Compiler eingebaut. Andere Lö¬

sungspakete wie CPLEX oder Hyper-
Lingo sind ebenfalls möglich.

Resultate
Mit LPL kann nicht nur ein Modell

formuliert, sondern es können auch
die entsprechenden Resultatetabellen
produziert werden. Das reservierte
Wort PRINT leitet die Tabellen-Ge-
nerierung ein. Die einfachsten Tabellen

liefert LPL, indem PRINT gefolgt
wird von den Namen der Tabellen, die
der Modellierer ausgeben möchte wie
im Modell:

PRINT n; s; x; Kosten;

Diese Instruktion produziert vier
Tabellen in einem vordefinierten
Format. Die Anweisung kann auch
komplexe Tabellen produzieren, bei
denen der Benützer das Format und eine
Ausgabemaske angeben kann.

Masseinheiten
Numerische Daten werden meistens

in einer Masseinheit (Meter,
Kilogramm usw.) angegeben. In LPL kann
die Deklaration jeder numerischen
Entität erweitert werden mit der
Angabe der Masseinheit. Die Masseinheiten

kann der Modellierer selber
definieren. Dies erhöht die Lesbarkeit
eines Modells. Ausserdem erlaubt
dies. Ausdrücke automatisch auf
Masseinheitsverträglichkeit zu prüfen.
Eine fehlerhafte Formel kann dadurch
vom Compiler eher entdeckt werden.

Masseinheiten werden deklariert in
der UNIT-Anweisung, welche durch
das reservierte Wort UNIT eingeleitet
wird. Basismasse (wie Meter) werden
durch den blossen Namen deklariert.
Bei abgeleiteten Masseinheiten muss
der entsprechende Ausdruck angegeben

werden.

UNIT
meter; «Basismass der Länge»
kilo 1000; «Mass in 1000
Einheiten»

km kilo x meter; «ein von Meter

abgeleitetes Mass»
cm m/100; «ein weiteres von
Meter abgeleitetes Mass»
speed meter/sec; «Mass der
Geschwindigkeit»

Bulletin SEV/VSE 83(1992)17, 28. August 31



Informatik

Zeitzonen geschätzte Nachfrage Anzahl
(in Megawatt) Stunden

t1 "Mitternacht bis 6 Uhr" 15000 6

t2 "6 - 9 Uhr" 30000 3

t3 "9 -15 Uhr" 25000 6

t4 "15 -18 Uhr" 40000 3

t5 "18 Uhr bis Mitternacht" 27000 6

Die Verwendung der Masseinheiten
in LPL ist einfach: die Deklaration
muss um die Masseinheitsangabe
erweitert werden. Eine Zahl innerhalb
eines Ausdrucks wird von der Angabe
[<Masseinheit>] gefolgt. Auch der
Tabellen-Generator akzeptiert
Masseinheiten. So möchte man beispielsweise

die Tabelle m in Megawatt statt
Gigawatt ausgeben. Folgende Anweisung

führt dies aus:

PRINT m UNIT mW;

Zu bemerken bleibt, dass die Angaben

der Masseinheiten in LPL nicht
obligatorisch sind.

Der Dateneingabe-Generator
Daten müssen nicht in LPL-Form

vorliegen. Sie können durch den
Dateneingabe-Generator, in LPL
repräsentiert durch die READ-Anweisung,
eingelesen werden. Dieser Generator
kann eine komplexe Struktur von Daten

einlesen. Ganze Tabellen können
mit einer einzigen Anweisung gelesen
werden. Die Anweisung

READ FROM <STROMl.DAT>:
ROW(i) (i, m, M, C, E, F, D);

liest von der Datei STROMl.DAT
sieben Daten pro Zeile ein. Die Daten
werden der Menge i und den numerischen

Tabellen m, M, C, E, F und D
in dieser Reihenfolge zugewiesen. Die
Angabe ROW(i) weist den Eingabe-
Generator an, das Einlesen zu wiederholen.

Aus einer Datei können auch
nur Teile eingelesen werden, oder
Zeilen können übersprungen werden.
Diese Anweisung ist sehr flexibel und
mächtig. Die Erfahrungen mit dem
Dateneingabe-Generator sind
vielversprechend: Für ein konkretes LP-Modell

von 1300 Restriktionen und 1500
Variablen musste ein Pascal-Programm

von 32 Seiten geschrieben werden,

welches die Modelldaten
manipulierte und in die richtige Form
brachte. Unter Benützung des
Dateneingabe-Generators konnte dieses
Programm durch einen LPL-Kode von
2 Seiten [16] ersetzt werden!

Tabelle IV

Zusammenfassung

Dieser Artikel ist eine notwendigerweise

unvollständige Zusammenfassung

der Modellierspache LPL. Das
Benützerhandbuch [14] gibt eine
detaillierte Beschreibung der Sprache.
Eine umfangreiche Modellbibliothek
in LPL aus verschiedenen
Anwendungsgebieten wurde erstellt, um die
Nützlichkeit der LPL-Sprache zu
testen.

Die Entwicklung von LPL war von
Anfang an motiviert durch den praktischen

Einsatz von grossen Modellen.
Verschiedene LP-Modelle mit
1500-2000 Restriktionen, 2000-3500
Unbekannten und einer Matrixbesetzung

von 7500-12000 Elementen werden

am Institut für Automation und
Operations Research an der Universität

Freiburg im Auftrage des Bundes
gewartet. Sie sind in LPL formuliert
worden [17]. Da diese Modelle noch
vor kurzem einem Grossrechner zur
Lösung übergeben werden mussten,
stand für die LPL-Sprache die
automatische Produktion des MPS-Kodes
im Vordergrund. Dank der raschen
Entwicklung der Personal Computer
und den darauf implementierten
Lösungsalgorithmen (XA, CPLEX, u.a.)
ist es heute möglich, alle diese
Modelle lokal auf dem PC zu lösen. Damit

rückt der Modellierungszyklus
(Modell ändern - Lösen - Resultate
generieren) immer mehr in den
Vordergrund. Die Produktion und Selektion

von Resultate-Tabellen wird
daher ebenso wichtig wie die Generierung

des Eingabekodes für den
Lösungsalgorithmus. LPL unterstützt
diesen Zyklus voll, indem es automatisch

einen externen Lösungsalgorithmus
aufrufen und die Lösung zur

weiteren Verarbeitung übernehmen
kann. Der eingebaute Tabellengenerator

produziert die gewünschten
Resultate-Tabellen. Der Modellierer
muss sich daher nicht mehr um die
vielen technischen Details kümmern,
sondern kann sich der eigentlichen
Modellierung widmen. Die praktische

Erfahrung mit den genannten Modellen

hat gezeigt, dass sich der
Modellierungszyklus einer Modelländerung
von einigen Stunden, ja sogar Tagen,
auf einige Minuten reduziert hat.

Der LPL Compiler wurde mit
Turbo Pascal 6.0 von Borland Inc.
entwickelt und läuft somit unter dem
Betriebssystem MS/DOS. Eine Version

in Ansi C wurde ebenfalls
implementiert. Die Pascal-Version des

LPL-Compilers ist erhältlich bei der
Adresse des Verfassers.

Literatur
[1] Control Data Corp.: APEX-II Reference Manual,

No. 59158100, Rev.C, Minneapolis,
Minn.. 1974.

[2] IBM World Trade Corporation: Matrix Generator

and Report Writer (MGRW) Program
Reference Manual, No. SH19-5014, New-York
and Paris, 1972.

[3] Ketron Inc.: MPS III Dataform: User Manual,
Arlington, Va.,1975.

[4] M.I.T. Center for Computational Research in
Economics and Management Science: Datamat
Reference Manual. 3rd ed.. No. D0078,
Cambridge, 1975.

[5] Brooke A.. Kendrick D. and Meeraus A.:
GAMS, A User's Guide. The Scientific Press,
1988.

[6] Fourer R., Gay D.M. and Kernighan B.W.: A
Modeling Language for Mathematical
Programming. Management Science 36:5 (May),
1990.

[7] Cunningham K. and Schräge L.: The Lingo
Modeling Language. University of Chicago,
Preliminary, Febr. 1989.

[8] Geoffrion A.M.: SML: A Model Definition
Language for Structured Modeling. Western
Management Science Institute, University of
California, Los Angeles, Working Paper No.
60, revised Nov. 1989.

[9] Blanning R.W.: A Rational Theory of Model
Management. In C.W. Holsapple and A.B.
Whinston (eds.). Decision Support Systems:
Theory and Application, Springer Verlag,
1987.

[10] Dolk D.R.: Model Management and Struc¬
tured Modeling: The Role of an Information
Resource Dictionary System. Communications
ACM, 31(1988)6, pp. 704-718.

[11] Greenberg H.J.: A Primer for Analyse: A
Computer-Assisted Analysis System for
Mathematical Programming Models and Solutions.
University of Colorado, Denver, Draft, June 28
1990.

[12] Gass S.I.: Documenting a Computer-Based
Model. Interfaces, 14(1984)3, May-June, pp.
84-93.

[13] Day R.E., Williams H.P.: Magic: The Design
and Use of an Interactive Modelling Language
for Mathematical Programming. IMA Journal
of Mathematics in Management 1(1986)1. p.
53-65.

[14] Hiirlimann T.: Reference Manual for the LPL
Modeling Language, Version 3.5. Institute for
Automation and Operations Research, Working

Paper No. 191, Fribourg, February 1992.
[15] Sunset Software: XA, A Professional Linear

and Mixed 0/1 Integer Programming System.
1613 Chelsea Road, Suite 153, San Marino, Ca
91108,1990.

[16] Hiirlimann T.: The Input Generator of the Mo¬
del RAP. Institute for Automation and Operations

Research, Working Paper No. 190,
November, Fribourg, 1991.

[17] Hättenschwiler P., Kohlas J.: Wissensbasierte
Systeme auf der Grundlage linearer Modelle -
Werkzeuge und Anwendungen. Output
18(1989)12, Goldach, Schweiz.

[18] Hiirlimann T., Kohlas J.: LPL: A Structured
Language for Linear Modeling. OR Spectrum
10(1988), pp. 55-63, Springer Verlag.

32 Bulletin ASE/UCS 83(1992)17. 28 août



LFP6 Tester für die umfassende
Netzstörsimulation
pprozessorgesteuerter Netzstörsimulator für verschiedene
Netze mit oder ohne harmonische Oberwellen,
Spannungsunterbrüchen, Spannungs- und Frequenzvariationen

Netzunabhängige Prüfspannung bis 280 V und Maximalstrom

von 6 A
Netzfrequenzen von 162/3 bis 400 Hz, Harmonische bis

zur 50. Ordnung
Schnellere Prüfung dank Speicherung und Programmierung
der Testsequenzen und -Parameter mit integriertem
pProzessor. Externe Ansteuerung über RS232 und IEEE488
Schnittstelle möglich
Externe Ansteuermöglichkeit für die Simulation von
Interharmonischen und Unsymmetrien
Prüfung der Störfestigkeit nach IEC 66E, IEC Draft 77/B-61
und EN 50082-1 und pr50082-2 etc.

HAEFELYEMIL HAEFELY & CIE AG
BETRIEß REINACH, POSTFACH
CH-4153 REINACH 1/BL HIGH VOLTAGE TECHNOLOGY

Inserieren Sie im

Bulletin SEV/VSE

86% der Leser sind
Elektroingenieure ETH/HTL

91% der Leser haben
Einkaufsentscheide zu treffen

Sie treffen ihr
Zielpublikum

Wir beraten Sie kompetent
Tel. 01/207 86 32

das geografische Landinformationssystem
für die rationelle Erfassung, Bearbeitung

und Auswertung von

Vermessungs-, Planungs-, Versorgungs-

Gemeinschaftsantennen
Luftschutz

Strassenunterhalt
Umweltschutz

Wasser
Zivilschutz

Verlangen Sie eine ausführliche Dokumentation,
oder eine

eindrückliche Vorführung in unserem Betrieb!

~"n

ada
sus

Adasys AG
Software-Entwicklung
und Beratung

Kronenstr. 38, 8006 Zürich
Telefon 017363 19 39

33



w

2
o
00

U

'

Für Unternehmer,

die mit Teamwork gross werden.

Ascoline.

or it
Halle 105, Stand B10

Das formschöne Brigit 100
mit Lautsprecher, Display und

Message-Anzeige für
wirtschaftlichen Telefonkomfort.

Ob Ihre Mitarbeiter gut zusammenspielen, ist oft eine Frage

der richtigen Einstellung. Deshalb fördert das Kommunikationssystem

Ascoline den Teamgeist mit flexiblen Team- und

Stellvertreterschaltungen, damit auch in hektischen Situationen

keine Anrufe verlorengehen. Und dank einer gehörigen

Portion High-Tech, bspw. die akustische Bedienerführung

mittels Sprechtexten, stehen Sie mit dem System jederzeit auf

du und du. Wie Sie also in Unternehmen mit 30 bis über 300

Mitarbeitern bedeutend mehr vom Telefon haben, erfahren

Sie von der Ascom Business Systems AG. Rufen Sie noch

heute eines unserer Regionalzentren in Ihrer Nähe an: Zürich:

01/8231414, Bern: 031/999 44 93, Lausanne: 021/641 4211.

Oder kontaktieren Sie Ihre zuständige

Fernmeldedirektion, Telefon 113. TELECOM V

Teilnehmervermittlungsanlagen: 3SCOH denkt weiter.


	Leichterer Zugang zu Operations Research : die Modelliersprache LPL

