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Kausales Schliessen

Wahrscheinlichkeit und kausales Schliessen

Darstellung und Verarbeitung von ungewisser Information

Jiirg Kohlas

Wéhrend im Beitrag Fuzzy Logic,
Bulletin 1/92, dargelegt wurde,
wie mit unscharfen Begriffen in
technischen Anwendungen um-
zugehen ist, zeigt der Autor in
diesem zweiten Artikel, wie mit
Hilfe der Wahrscheinlichkeits-
rechnung aus beobachteten Er-
eignissen (Evidenzen) Riick-
schliisse auf die Wahrscheinlich-
keit von maéglichen Ursachen ge-
zogen werden kénnen. In einem
dritten und letzten Beitrag (Bulle-
tin 13/92) wird eine dritte interes-
sante Theorie, die Zuverléssig-
keitstheorie des Schliessens mit
unsicheren Argumenten, be-
schrieben werden.

Alors que dans I'article Fuzzy Lo-
gic, Bulletin 1/92, on avait exposé
comment traiter les concepts
incertains dans les applications
techniques, I'auteur montre dans
ce deuxiéme article, comment il
est possible, a I’aide du calcul des
probabilités découlant d’événe-
ments observés (évidences) de
tirer des conclusions sur la pro-
babilité des causes possibles.
Dans un troisieme et dernier
article (Bulletin 13/92) on décrira
une troisiéme théorie intéres-
sante, la théorie de la fiabilité de
la conclusion s’appuyant sur des
arguments incertains.

Adresse des Autors
Prof. Dr. Jiirg Kohlas, Institut fiir Automation

und Operations Research, Universitiit Freiburg,
1700 Freiburg.

Kausale Modellierung und
Bayessche Formel

Die  Wahrscheinlichkeitsrechnung
ist die klassische Theorie der Unge-
wissheit. Sie wird heute allerdings —
mindestens was die tibliche Schulaus-
bildung anbetrifft — meist nur als
mathematische Theorie von Massen-
und Zufallsphidnomena dargestellt.
Das trifft jedoch nur einen Teil ihrer
wahren Bedeutung. Jakob Bernoulli
hat die Wahrscheinlichkeitsrechnung
in seiner Ars Conjectandi (Die Kunst
des Vermutens), wie fast alle seine
Zeitgenossen, durchaus als Theorie
der Argumentation unter teilweiser
Ungewissheit angesehen. als Verfah-
ren, die Glaubwiirdigkeit von Bewei-
sen, Schliissen und Folgerungen zu
beurteilen, Risiken abzuwigen und
rationale Entscheidungen zu treffen.
Auch moderne Autoren haben diese
Sicht der Wabhrscheinlichkeitsrech-
nung weiter gepflegt und entwickelt
(Beispiele sind Ramsey. Jeffrey. de
Finetti, Polya, Fishburn). Damit wird
diese Theorie auch zu einem Instru-
ment der Entscheidungsanalyse und
der kiinstlichen Intelligenz. Es gibt
sogar Dogmatiker, die die klassische
Wabhrscheinlichkeitsrechnung als ein-
zigen rationalen Ansatz des Schlies-
sens unter Ungewissheit ansehen und
dafiir auch mathematische «Beweise»
anfithren (z.B. der Englidnder Lind-
ley; die Beweise sind natiirlich ma-
thematisch korrekt, fragwiirdig sind
aber die Axiome als Modelle der
Wirklichkeit, die diesen Beweisen
unterlegt werden.

Trotz dieser langen Tradition der
Wahrscheinlichkeitstheorie  entwik-
kelte sich in der kiinstlichen Intelli-
genz eine betridchtliche Skepsis gegen
ihre Anwendung in Expertensyste-
men. Das hatte viele durchaus ernst
zu nehmende Griinde. Manche da-

von sind aber durch die neuesten
Forschungen und Entwicklungen auf
dem Gebiet des Schliessens unter
Ungewissheit aus der Welt geschafft
oder zum mindesten entschéirft wor-
den. Zwei der wichtigsten Einwédnde
betrafen einerseits die mangelnde
Modularitdt der Wissensrepridsenta-
tion aufgrund wahrscheinlichkeits-
theoretischer Konzepte und anderer-
seits die mangelnde Effizienz der In-
ferenzverfahren, die auf wahrschein-
lichkeitstheoretischen Modellen ba-
sieren. In der Tat waren noch vor
fiinf Jahren die verfiigbaren Ansitze
in keiner Weise an die Bediirfnisse
grosser, vernetzter Wissensbasen der
kiinstlichen Intelligenz angepasst.
Das hat sich in der Zwischenzeit
dank einigen grundlegenden Arbei-
ten drastisch gedndert.

Zur Illustration sei in diesem Teil
ein unterdessen bereits als klassisch
zu betrachtendes, einfithrendes Bei-
spiel von Judea Pearl [1] dargestellt.
Es wird ein Alarmsystem untersucht,
das gegen Einbriiche sichern soll.
Das Schrillen des Alarmsignals wird
dabei als wahrscheinliche Folge eines
Einbruchs angesehen. Das ist eine
einfache Ursache-Wirkungs-Kette.
Eine Ursache U (oft auch als Hypo-
these H bezeichnet) wird mit Hilfe
einer bedingten Wahrscheinlichkeit
P(W|U) mit einer Wirkung W (auch
als Evidenz E bezeichnet) in Bezie-
hung gesetzt. P(W|U) ist die Wahr-
scheinlichkeit, dass die Wirkung W
eintritt (das Alarmsignal schrillt),
wenn die Ursache U (ein Einbruch)
vorhanden ist.

In einem solchen Zusammenhang
interessiert dann meistens der Riick-
schluss auf die Ursache, wenn die
Wirkung beobachtet wird: Wie gross
ist die Wahrscheinlichkeit, dass tat-
sdchlich ein Einbruch stattfindet,
wenn das Alarmsignal schrillt? Die
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Antwort darauf gibt die berithmte
Formel von Bayes':

P(UIW) = P(W|U)P (U)P(W) (1)

Man definiert hier nun O(U) =
P(U)/P(~U), wobei ~U das Gegen-
teil von U bedeutet (es findet kein
Einbruch statt). O(U) wird A-priori-
Chance (Odds auf englisch) genannt,
ein Begriff, der aus der Wettbranche
wohlbekannt ist und das Verhiltnis
der Chancen beider moglicher Ereig-
nisse angibt (z.B. sei die A-priori-
Chance fiir einen Einbruch auf 1 zu
10000 geschitzt, d.h. O(U) = 107¥).
Ferner fithrt man das sogenannte
Likelihood-Verhiltnis L(W|U) =
P(W|U)/IP(W|~U) ein. Dieses gibt
das Chancenverhéltnis eines Alarms
bei einem Einbruch zu jenem bei kei-
nem Einbruch an. Wenn eine Chance
von 95% besteht, dass ein Einbruch
einen Alarm auslést, P(W|U) = 0,95,
und eine kleine Chance von 1%, dass
ein Alarm auch durch ein anderes
Ereignis ausgelost werden kann,
P(W|~U) = 0,01, dann wird L(W|U)
=0.95/0,01 = 95.

Dividiert man nun die Bayessche
Formel (1) mit der symmetrischen fiir
P(~U| W), so erhilt man die A-poste-
riori-Chance fiir einen Einbruch.

O(U|W) = L(W|U)O(U)
95-10~ = 0.0095  (2)

Diese Formel besagt, dass der Grad
der Glaubwiirdigkeit einer Ursache,
basierend auf einer A-priori-An-
nahme oder einem A-priori-Wissen
O(U) und dem Likelihood-Verhiltnis
L(W|U) bei gegebener Wirkung (Evi-
denz) W gleich dem Produkt dieser
beiden Grossen sein muss. Man be-
achte. dass die Kenntnis der absoluten
Wabhrscheinlichkeiten P(W|U) und
P(W|~U) gar nicht notwendig ist.
Schétzen muss man nur das Verhéltnis
der beiden Werte: Um wieviel wahr-
scheinlicher ist es. dass ein Alarm
durch einen Einbruch statt aus einem
anderen Grund ausgelost wird?

Aus der A-priori-Chance eines Ein-
bruchs kann man leicht die entspre-
chende Wabhrscheinlichkeit riickrech-
nen, wenn man die Bedingung, dass
P(U|W) + P(~U|W) = 1 sein muss,
beriicksichtigt: P(U|W) = O(U|W)/
(1+O(U|W) = 0,00941. Die Evidenz
eines Alarms W hat die Wahrschein-
lichkeit eines Einbruchs von 1 in
10000 um einen Faktor von rund 100
auf 94.1 in 10000 erhoht. Absolut ge-

[

! Sie folgt aus
P(UnW) = P(U)- P(W|U) = P(W) - P(U|W).

sehen ist diese Wahrscheinlichkeit al-
lerdings immer noch gering und re-
flektiert kaum die Besorgnis, die ein
Alarm eigentlich auslésen sollte. Es
wirde sich moglicherweise nicht loh-
nen, wegen einer so kleinen Wahr-
scheinlichkeit die Polizei ausriicken zu
lassen. Das hat seinen Grund in dem
nicht sehr grossen Likelihood-Ver-
héltnis der Alarmanlage oder in der
kleinen (zu kleinen?) A-priori-Wahr-
scheinlichkeit eines Einbruchs. Und
diese A-priori-Wahrscheinlichkeit ist
auch der schwache Punkt dieses Mo-
dellansatzes: Sie ist oft sehr schwierig
zu bestimmen und andererseits aus-
schlaggebend fiir das Rechenergebnis.
Es wird sich zeigen, dass die in Teil 111
Bulletin SEV/VSE 13/92 beschriebene
Evidenztheorie diesen Nachteil ver-
meidet (und dafiir andere Schwichen
hat).

Andererseits zeigt es sich, dass man
aus einfachen kausalen Beziehungen
der beschriebenen Art komplexe Be-
ziehungsnetze aufbauen kann, die rea-
listische Wissensbasen darstellen. Zu-
dem liefert der auf der Bayesschen
Formel beruhende Inferenzmechanis-
mus in solchen Netzen zum mindesten
qualitativ liberzeugende Ergebnisse
und Schliisse. Eine geeignete Kali-
brierung kann die Ergebnisse auch
quantitativ den Erwartungen anpas-
sen. Daher ist dieser Ansatz sehr ernst
zu nehmen. Dies wird durch einen
Ausbau des Beispiels illustriert.

Kombinierte Evidenz

Angenommen, das Haus wird durch
zwei, unabhingig voneinander funk-
tionierende Alarmanlagen {iberwacht.
Dann konnen bei einem Einbruch un-
ter Umstdnden zwei Wirkungen (zwei
verschiedene Alarmglocken) W/ und
W2 gehort werden. Der Kkritische
Punkt liegt im Begriff «unabhingig».
Mathematisch ist damit gemeint, dass
die bedingte Wahrscheinlichkeit der
kombinierten Wirkung WInW2 gege-
ben (das Symbol N steht fiir die logi-
sche «Und»-Verkniipfung). dass ein
Einbruch stattfindet. als Produkt wie
folgt geschrieben werden darf:

P(WIAW2|U) = P(WI|U)P(W2| ).
(3)

Die heikle Frage ist., ob die physikali-
schen und technischen Gegebenheiten
der Installationen, die Annahme die-
ser sogenannten bedingten Unabhén-
gigkeit erlauben. Sie bringt mathema-
tisch aber eine betrichtliche Vereinfa-

chung mit sich. Diese Art von Voraus-
setzung ist ausschlaggebend fiir das
Aufstellen verzweigterer Beziehungs-
netze kausaler Beziehungen, wie sich
spdter zeigen wird. Es scheint gliick-
licherweise so zu sein, dass in sehr
vielen Fillen die bedingte Unabhén-
gigkeit als Strukturierungsmittel kom-
plexer Zusammenhinge sehr wohl ge-
rechtfertigt werden kann, und in der
Tat entspricht sie weitgehend der Art
und Weise, wie Menschen sich gewisse
Zusammenhidnge zurechtlegen. Es
handelt sich wiederum um ein weite-
res Okonomisches Prinzip der Infor-
mationsverarbeitung, ohne dass kom-
plexe Verkniipfungen nicht zu lber-
blicken und zu verarbeiten wiren.

Falls beide Alarmsysteme anspre-
chen, dann ldsst sich die Glaubwiirdig-
keit eines Einbruchs durch die nach-
stehende, leicht herzuleitende Bayes-
sche Formel berechnen:

O(U|WInW2)
= L(WI|U)L(W2|U)O(U)
=95-95-10"* = 0,9025. (4)

Dabei sind beide Alarmsysteme mit
der gleichen Charakteristik L(WI|U)
= L(W2|U) angenommen. Damit
wird P(U|WInW2) = 0.4744. Die
Wabhrscheinlichkeit eines Einbruchs
hat sich durch diese doppelte Evidenz
wesentlich verstarkt. Auf eine analoge
Art und Weise ldsst sich auch die
Glaubwiirdigkeit eines Einbruchs be-
rechnen, wenn nur eines der beiden
Alarmsysteme anspricht, wahrend das
andere schweigt.

Verkettung von kausalen
Beziehungen

Die Einbruchsgeschichte sei nun so
verdndert, dass das Alarmsignal nicht
direkt bei der Polizei schrillt, sondern
im Hause selbst. Der Hauseigentii-
mer, Herr Huber, ist jedoch nicht zu
Hause. Hingegen telefoniert ihm
seine Nachbarin, Frau Meier, und
meldet ihm, sie glaube einen Alarm in
seinem Hause gehort zu haben. Hier
tritt nun eine weitere kausale Verket-
tung auf: Ein Alarmsignal (als Ursa-
che) verursacht moglicherweise ein
Telefon von Frau Meier (als Wir-
kung). Zur Unterscheidung der ver-
schiedenen Ereignisse seien die Sym-
bole E (fiir einen Einbruch), A (fiir
ein Alarmsignal) und M (fiir das Tele-
fon von Frau Meier) eingefiihrt. Nach
der Formel von Bayes gilt wie vorher

P(E|M) = o P(M| E)P(E) (5a)
P(~E|M) = a P(M|~E)P(~E) (5b)
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a ist hier einfach ein Normierungs-
faktor, der sich aus der Beziehung
P(E|M) + P(~E|M) = 1 bestimmen
lasst. Nun gilt ganz allgemein nach
den Regeln der Wahrscheinlichkeits-
rechnung

P(M|E)=P(M|ANE)P(A|E)
+ P(M|~AnE)P(~A|E) (6)

wobei P(M|AnE) die bedingte Wahr-
scheinlichkeit fiir M ist, gegeben A
und E. Es ist hier jedoch gerechtfer-
tigt, anzunehmen, dass M tatsichlich
nur indirekt von E abhdngt, ndmlich
insofern. ob A stattfindet oder nicht,
d.h. dass P(M|AnE) = P(M|A) und
P(M|~AnE) = P(M|~A). Diese
Annahme ist eine weitere wichtige
Form der bedingten Unabhéingigkeit.
die den Umgang mit kausalen Ketten
vereinfacht und in grosserem Stil erst
praktikabel macht.
Mit dieser Annahme wird GI. 5 zu

P(E|M) = o(P(M|A)P(A|E)
+ P(M|~A)P(~A|E))P(E)
(7

Frau Meier sei eine etwas dngstliche
Person, die etwa auch Gerdusche
hort, wo keine sind. Deswegen wird
P(M|A) = 1 (wenn ein Alarm ertont,
hort ihn Frau Meier sicher) und
P(M|~A) = 0,05 (auch wenn kein
Alarm ertdnt, glaubt Frau Meier gele-
gentlich einen solchen zu horen) ange-
nommen. Im {ibrigen werden die glei-
chen Zahlen wie oben vorausgesetzt.
Dann konnen die folgenden Rechnun-
gen durchgefiihrt werden:

P(E|M)=a(1-0.95+0.05-0.05)- 10"
= 0,9525-10"a,
P(~E|M) = a(P(M|A)P(A|~E)

+ P(M|~A)P(~A|~E))P(~E)
= «(1-:0,014+0,05-0,99)- (1-107)
= 0,06 «.

Aus der Normalisierungsbedingung
«(0,9525 - 10 + 0.06) = 1 folgt
schliesslich P(E|M) = 0.0017, was
rund finfmal kleiner ist, als der oben
erhaltene Wert von P(E|A). Das Ver-
lassen auf eine nicht ganz zuverlissige
Zeugin vermindert die Glaubwiirdig-
keit eines Einbruches betrachtlich.
Der Grund liegt darin, dass der Anruf
von Frau Meier eher mit ihrer Unzu-
verldssigkeit erklart wird, als mit der
Annahme eines Alarms. Auch hier
funkt die kleine A-priori-Einbruchs-
wahrscheinlichkeit wesentlich dazwi-
schen. Sie macht eben die Annahme
eines ungerechtfertigten Anrufs im
Verhiltnis zur Existenz eines Alarms
relativ wahrscheinlich.

Bild 1 Graphische Darstellung von Grundstrukturen kausaler Verkniipfungen

a die einfache kausale Beziehung
b verschiedene Wirkungen einer Ursache
¢ Verkettung von kausalen Beziehungen

Bayessche Netzwerke

Die hier betrachteten einfachen
Fille bilden die elementaren Bau-
steine fiir den Aufbau von Netzwer-
ken kausaler Verkettungen. Diese
konnen auch tatsdchlich graphisch
dargestellt werden. Dabei werden Va-
riablen eingefiihrt und als Knoten ei-
nes Netzwerkes dargestellt. In den
obigen Beispielen wurden den Ereig-
nissen U, W bzw. Wi und W2 oder E.
A und M Boolesche (zweiwertige) Va-
riablen zugeordnet, die das Eintreten
oder Ausbleiben des entsprechenden
Ereignisses anzeigen. Im allgemeinen
konnen diese Variablen jedoch mehr-
wertig (nicht nur dual) sein. Eine Va-
riable wird nun mit einem Pfeil zu ei-
ner anderen Variablen verbunden.
wenn sie Ursache oder Einflussgrosse
fiir eine andere Variable ist. Im Bild 1
sind auf diese Weise die obigen Bei-
spiele dargestellt.

Im Bild 2 ist ein etwas realistische-
res Beispiel aus einer fundamentalen
Veroffentlichung [2] dargestellt. Es ist
eine Darstellung der folgenden (stark
vereinfachten) medizinischen Wis-
sensbasis:

B Luftknappheit (Dyspnoea) kann
durch Tuberkulose, Lungenkrebs
oder Bronchitis, oder keinem von
den dreien oder von mehr als einer
der Krankheiten verursacht sein.
Ein Besuch in Asien erhoht die
Chancen von Tuberkulose, und
Rauchen ist ein bekannter Risiko-
faktor sowohl fiir Lungenkrebs und
Bronchitis. Die Ergebnisse einer
einzelnen Brust-Rontgenaufnahme
diskriminieren nicht zwischen Lun-
genkrebs und Tuberkulose. Auch
die Existenz von Dyspnoea erlaubt
nicht zwischen Tuberkulose., Lun-
genkrebs und Bronchitis zu unter-
scheiden.

Die Knoten in Bild 2 reprisentieren
die Ereignisse (Besuch in Asien, Tu-
berkulose, Rauchen usw). Die Pfeile
stellen die kausalen Verkettungen
dar. Neu an diesem Beispiel ist, dass
ein Ereignis wie Dyspnoea mehrere
Ursachen (eingehende Pfeile) haben
kann. In einem solchen Fall miissen
als Daten die bedingten Wahrschein-
lichkeiten aller moglichen Kombina-
tionen von Ursachen definiert wer-
den. Im Beispiel von Dyspnoea wiren
das die vier bedingten Wahrschein-
lichkeiten P(D|ENB), P(D|~ENB).
P(D|En~B) und P(D|~En~B).
Das Modell setzt voraus, dass alle be-
dingten Wahrscheinlichkeiten, die fiir

Bild2 Das Bayessche Netzwerk fiir eine
(stark vereinfachte) medizinische
Wissensbasis

A Besuchin Asien
Tuberkulose

Lungenkrebs

Dyspnoea

Bronchitis

Ereignis (Tuberkulose oder
Lungenkrebs)
Rontgenaufnahme

e MWy
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die Beschreibung der kausalen Pfeil-
bezeichnungen notwendig sind. erfasst
und geschitzt werden.

Das Ereignis E ist eine logische
Oder-Verkniipfung der Ereignisse T
und L. Die Kausalitit ist da rein de-
terministisch. was sich dadurch aus-
driickt, dass die bedingten Wahr-
scheinlichkeiten nur die Werte Null
und Eins annehmen: P(E|TnL) =
P(E|~TnL) = P(E|Tn~L) = 1 und
P(E|~Tn~L) = 0. Das illustriert,
dass in einem solchen kausalen Mo-
dell ohne weiteres beliebige logische
Verkniipfungen zwischen Ereignissen,
wie auch jede andere rein determini-
stische. funktionale Beziehung darge-
stellt werden kann.

Eine solche Wissensbasis sollte bei-
spielsweise Auskunft zu folgenden
Fragen geben: Ein Patient, der sich
mit Dyspnoea zur Untersuchung ein-
stellt, hat vor kurzem Asien besucht.
Seine Rauchgewohnheiten sind noch
unbekannt und Rontgenaufnahmen
sind noch keine gemacht. Was sind
unter diesen Bedingungen die Chan-
cen fiir die drei moglichen Krankhei-
ten und wie wiirde sich die Chance fiir

Bronchitis dndern, wenn Tuberkulose
durch einen Test ausgeschlossen wird?
Wiirde die Erhebung der Rauchge-
wohnheiten oder eine Rontgenauf-
nahme mehr Information zum Lun-
genkrebs ergeben? Welches ist die
wichtigste Information zur Bildung
des Gesamturteils? Alle diese und
dhnliche Fragen konnen tatsédchlich
durch Auswertung eines Bayesschen
Netzwerkes wie dasjenige von Bild 2
effizient beantwortet werden. Aller-
dingst stellt dies einige mathematische
Probleme, die liber die elementaren
Sitze der Wahrscheinlichkeitsrech-
nung hinausgehen. Ein Problem hat
seinen Grund darin. dass gewisse Ur-
sachen (wie das Rauchen im Beispiel)
liber mehrere. verschiedene Verket-
tungswege eine bestimmte Wirkung
(wie Dyspnoea) beeinflussen konnen.
Das fithrt wahrscheinlichkeitstheoreti-
sche Abhingigkeiten ein. die eine di-
rekte Verallgemeinerung der oben be-
schriebenen einfachen Anwendungen
der Bayesschen Formel verunmogli-
chen. Falls jedoch — im Gegensatz
zum obigen Beispiel — im Bayesschen
Netzwerk jeder Knoten nur uber

hochstens einen Verkettungsweg mit
einem anderen Knoten verbunden ist,
spricht man von einem Bayesschen
Baum. Dann besteht das angespro-
chene Problem nicht. Man hat es in
diesem Fall im wesentlichen mit einer
Verallgemeinerung der aus der Auto-
matik bekannten Filterungs- oder
Gléttungsproblematik zu tun, und es
konnen einfache Losungen analog
etwa einem Kalmann-Filter gefunden
werden.

Der wesentliche Fortschritt besteht
aber gerade darin, dass nunmehr auch
allgemeine Methoden zur Behandlung
des allgemeinen Falls entwickelt wor-
den sind. Der Aufsatz [2] ist die bahn-
brechende Arbeit auf diesem Gebiet.
Es gibt bereits ein kommerzielles Pro-
dukt namens Hugin, das diesen neuen
Ansatz verwertet.
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