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Kausales Schllessen

Wahrscheinlichkeit und kausales Schliessen
Darstellung und Verarbeitung von ungewisser Information

Jürg Kohlas

Während im Beitrag Fuzzy Logic,
Bulletin 1/92, dargelegt wurde,
wie mit unscharfen Begriffen in
technischen Anwendungen
umzugehen ist, zeigt der Autor in
diesem zweiten Artikel, wie mit
Hilfe der Wahrscheinlichkeitsrechnung

aus beobachteten
Ereignissen (Evidenzen)
Rückschlüsse auf die Wahrscheinlichkeit

von möglichen Ursachen
gezogen werden können. In einem
dritten und letzten Beitrag (Bulletin

13/92) wird eine dritte interessante

Theorie, die Zuverlässigkeitstheorie

des Schliessens mit
unsicheren Argumenten,
beschrieben werden.

Alors que dans l'article Fuzzy
Logic, Bulletin 1/92, on avait exposé
comment traiter les concepts
incertains dans les applications
techniques, l'auteur montre dans
ce deuxième article, comment il
est possible, à l'aide du calcul des

probabilités découlant d'événements

observés (évidences) de
tirer des conclusions sur la
probabilité des causes possibles.
Dans un troisième et dernier
article (Bulletin 13/92) on décrira
une troisième théorie intéressante,

la théorie de la fiabilité de
la conclusion s'appuyant sur des

arguments incertains.

Adresse des Autors
Prof. Dr. Jiirg Kohlas, Institut für Automation
und Operations Research. Universität Freiburg.
1700 Freiburg.

Kausale Modellierung und
Bayessche Formel

Die Wahrscheinlichkeitsrechnung
ist die klassische Theorie der Unge-
wissheit. Sie wird heute allerdings —

mindestens was die übliche Schulausbildung

anbetrifft - meist nur als
mathematische Theorie von Massen-
und Zufallsphänomena dargestellt.
Das trifft jedoch nur einen Teil ihrer
wahren Bedeutung. Jakob Bernoulli
hat die Wahrscheinlichkeitsrechnung
in seiner Ars Conjectandi (Die Kunst
des Vermutens), wie fast alle seine
Zeitgenossen, durchaus als Theorie
der Argumentation unter teilweiser
Ungewissheit angesehen, als Verfahren,

die Glaubwürdigkeit von Beweisen,

Schlüssen und Folgerungen zu
beurteilen, Risiken abzuwägen und
rationale Entscheidungen zu treffen.
Auch moderne Autoren haben diese
Sicht der Wahrscheinlichkeitsrechnung

weiter gepflegt und entwickelt
(Beispiele sind Ramsey, Jeffrey, de
Finetti. Polya, Fishburn). Damit wird
diese Theorie auch zu einem Instrument

der Entscheidungsanalyse und
der künstlichen Intelligenz. Es gibt
sogar Dogmatiker, die die klassische
Wahrscheinlichkeitsrechnung als
einzigen rationalen Ansatz des Schliessens

unter Ungewissheit ansehen und
dafür auch mathematische «Beweise»
anführen (z.B. der Engländer Lind-
ley; die Beweise sind natürlich
mathematisch korrekt, fragwürdig sind
aber die Axiome als Modelle der
Wirklichkeit, die diesen Beweisen
unterlegt werden.

Trotz dieser langen Tradition der
Wahrscheinlichkeitstheorie entwik-
kelte sich in der künstlichen Intelligenz

eine beträchtliche Skepsis gegen
ihre Anwendung in Expertensystemen.

Das hatte viele durchaus ernst
zu nehmende Gründe. Manche da¬

von sind aber durch die neuesten
Forschungen und Entwicklungen auf
dem Gebiet des Schliessens unter
Ungewissheit aus der Welt geschafft
oder zum mindesten entschärft worden.

Zwei der wichtigsten Einwände
betrafen einerseits die mangelnde
Modularität der Wissensrepräsentation

aufgrund wahrscheinlichkeitstheoretischer

Konzepte und andererseits

die mangelnde Effizienz der In-
ferenzverfahren, die auf
wahrscheinlichkeitstheoretischen Modellen
basieren. In der Tat waren noch vor
fünf Jahren die verfügbaren Ansätze
in keiner Weise an die Bedürfnisse
grosser, vernetzter Wissensbasen der
künstlichen Intelligenz angepasst.
Das hat sich in der Zwischenzeit
dank einigen grundlegenden Arbeiten

drastisch geändert.
Zur Illustration sei in diesem Teil

ein unterdessen bereits als klassisch
zu betrachtendes, einführendes
Beispiel von Judea Pearl [1] dargestellt.
Es wird ein Alarmsystem untersucht,
das gegen Einbrüche sichern soll.
Das Schrillen des Alarmsignals wird
dabei als wahrscheinliche Folge eines
Einbruchs angesehen. Das ist eine
einfache Ursache-Wirkungs-Kette.
Eine Ursache U (oft auch als Hypothese

H bezeichnet) wird mit Hilfe
einer bedingten Wahrscheinlichkeit
P(W| U) mit einer Wirkung W (auch
als Evidenz E bezeichnet) in Beziehung

gesetzt. P(W\U) ist die
Wahrscheinlichkeit, dass die Wirkung W
eintritt (das Alarmsignal schrillt),
wenn die Ursache U (ein Einbruch)
vorhanden ist.

In einem solchen Zusammenhang
interessiert dann meistens der Rück-
schluss auf die Ursache, wenn die
Wirkung beobachtet wird: Wie gross
ist die Wahrscheinlichkeit, dass
tatsächlich ein Einbruch stattfindet,
wenn das Alarmsignal schrillt? Die
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Antwort darauf gibt die berühmte
Formel von Bayes1:

P(U\W) P(W\U)P((J)/P(W) (1)

Man definiert hier nun O(U)
P(U)/P(~U), wobei ~U das Gegenteil

von U bedeutet (es findet kein
Einbruch statt). O(U) wird A-priori-
Chance (Odds auf englisch) genannt,
ein Begriff, der aus der Wettbranche
wohlbekannt ist und das Verhältnis
der Chancen beider möglicher Ereignisse

angibt (z.B. sei die A-priori-
Chance für einen Einbruch auf 1 zu
10000 geschätzt, d.h. O(U) 10~J).
Ferner führt man das sogenannte
Likelihood-Verhältnis L{W\ U)
P(W\ U)/P(W\~U) ein. Dieses gibt
das Chancenverhältnis eines Alarms
bei einem Einbruch zu jenem bei
keinem Einbruch an. Wenn eine Chance
von 95% besteht, dass ein Einbruch
einen Alarm auslöst, P(W\ U) 0.95,
und eine kleine Chance von 1%, dass
ein Alarm auch durch ein anderes
Ereignis ausgelöst werden kann,
P(W\~U) 0,01, dann wird L(W\ U)

0,95/0,01 95.
Dividiert man nun die Bayessche

Formel (1) mit der symmetrischen für
P(~U| W), so erhält man die A-poste-
riori-Chance für einen Einbruch.

0(U\W) L(W\ U)O(U)
95 10"-1 0,0095 (2)

Diese Formel besagt, dass der Grad
der Glaubwürdigkeit einer Ursache,
basierend auf einer A-priori-An-
nahme oder einem A-priori-Wissen
O(U) und dem Likelihood-Verhältnis
L(W| U) bei gegebener Wirkung
(Evidenz) W gleich dem Produkt dieser
beiden Grössen sein muss. Man
beachte, dass die Kenntnis der absoluten
Wahrscheinlichkeiten P(W\U) und
P(W\~U) gar nicht notwendig ist.
Schätzen muss man nur das Verhältnis
der beiden Werte: Um wieviel
wahrscheinlicher ist es, dass ein Alarm
durch einen Einbruch statt aus einem
anderen Grund ausgelöst wird?

Aus der A-priori-Chance eines
Einbruchs kann man leicht die entsprechende

Wahrscheinlichkeit rückrech-
nen, wenn man die Bedingung, dass

P(U\W) + P(~U| W) 1 sein muss,
berücksichtigt: P(U\W) 0{U\W)l
(1 + 0(U| W) 0,00941. Die Evidenz
eines Alarms W hat die Wahrscheinlichkeit

eines Einbruchs von 1 in
10000 um einen Faktor von rund 100
auf 94,1 in 10000 erhöht. Absolut ge-

1 Sie folgt aus
P(UnW) P(U) • P(W\U) P(W) P(V\W).

sehen ist diese Wahrscheinlichkeit
allerdings immer noch gering und
reflektiert kaum die Besorgnis, die ein
Alarm eigentlich auslösen sollte. Es
würde sich möglicherweise nicht
lohnen, wegen einer so kleinen
Wahrscheinlichkeit die Polizei ausrücken zu
lassen. Das hat seinen Grund in dem
nicht sehr grossen Likelihood-Verhältnis

der Alarmanlage oder in der
kleinen (zu kleinen?) A-priori-Wahr-
scheinlichkeit eines Einbruchs. Und
diese A-priori-Wahrscheinlichkeit ist
auch der schwache Punkt dieses
Modellansatzes: Sie ist oft sehr schwierig
zu bestimmen und andererseits
ausschlaggebend für das Rechenergebnis.
Es wird sich zeigen, dass die in Teil III
Bulletin SEV/VSE 13/92 beschriebene
Evidenztheorie diesen Nachteil
vermeidet (und dafür andere Schwächen
hat).

Andererseits zeigt es sich, dass man
aus einfachen kausalen Beziehungen
der beschriebenen Art komplexe
Beziehungsnetze aufbauen kann, die
realistische Wissensbasen darstellen.
Zudem liefert der auf der Bayesschen
Formel beruhende Inferenzmechanis-
mus in solchen Netzen zum mindesten
qualitativ überzeugende Ergebnisse
und Schlüsse. Eine geeignete
Kalibrierung kann die Ergebnisse auch
quantitativ den Erwartungen anpassen.

Daher ist dieser Ansatz sehr ernst
zu nehmen. Dies wird durch einen
Ausbau des Beispiels illustriert.

Kombinierte Evidenz
Angenommen, das Haus wird durch

zwei, unabhängig voneinander
funktionierende Alarmanlagen überwacht.
Dann können bei einem Einbruch unter

Umständen zwei Wirkungen (zwei
verschiedene Alarmglocken) W1 und
W2 gehört werden. Der kritische
Punkt liegt im Begriff «unabhängig».
Mathematisch ist damit gemeint, dass
die bedingte Wahrscheinlichkeit der
kombinierten Wirkung WlnW2 gegeben

(das Symbol n steht für die logische

«Und»-Verknüpfung), dass ein
Einbruch stattfindet, als Produkt wie
folgt geschrieben werden darf:

P(WlnW2\U) P(W11 U)P(W2 \ U).
(3)

Die heikle Frage ist, ob die physikalischen

und technischen Gegebenheiten
der Installationen, die Annahme dieser

sogenannten bedingten Unabhängigkeit

erlauben. Sie bringt mathematisch

aber eine beträchtliche Vereinfa¬

chung mit sich. Diese Art von Voraussetzung

ist ausschlaggebend für das
Aufstellen verzweigterer Beziehungsnetze

kausaler Beziehungen, wie sich

später zeigen wird. Es scheint
glücklicherweise so zu sein, dass in sehr
vielen Fällen die bedingte Unabhängigkeit

als Strukturierungsmittel
komplexer Zusammenhänge sehr wohl
gerechtfertigt werden kann, und in der
Tat entspricht sie weitgehend der Art
und Weise, wie Menschen sich gewisse
Zusammenhänge zurechtlegen. Es
handelt sich wiederum um ein weiteres

ökonomisches Prinzip der
Informationsverarbeitung, ohne dass
komplexe Verknüpfungen nicht zu
überblicken und zu verarbeiten wären.

Falls beide Alarrnsysteme ansprechen.

dann lässt sich die Glaubwürdigkeit
eines Einbruchs durch die

nachstehende, leicht herzuleitende Bayessche

Formel berechnen:

0(UI W1 n W2)
L(W11 U)L(W21 U)O(U)
95 -95 TO-1 0,9025. (4)

Dabei sind beide Alarmsysteme mit
der gleichen Charakteristik L(W1\U)

L(W2\(J) angenommen. Damit
wird P(U\WlnW2) 0,4744. Die
Wahrscheinlichkeit eines Einbruchs
hat sich durch diese doppelte Evidenz
wesentlich verstärkt. Auf eine analoge
Art und Weise lässt sich auch die
Glaubwürdigkeit eines Einbruchs
berechnen, wenn nur eines der beiden
Alarmsysteme anspricht, während das
andere schweigt.

Verkettung von kausalen
Beziehungen

Die Einbruchsgeschichte sei nun so
verändert, dass das Alarmsignal nicht
direkt bei der Polizei schrillt, sondern
im Hause selbst. Der Hauseigentümer,

Herr Huber, ist jedoch nicht zu
Hause. Hingegen telefoniert ihm
seine Nachbarin, Frau Meier, und
meldet ihm. sie glaube einen Alarm in
seinem Hause gehört zu haben. Hier
tritt nun eine weitere kausale Verkettung

auf: Ein Alarmsignal (als Ursache)

verursacht möglicherweise ein
Telefon von Frau Meier (als
Wirkung). Zur Unterscheidung der
verschiedenen Ereignisse seien die Symbole

E (für einen Einbruch), A (für
ein Alarmsignal) und M (für das Telefon

von Frau Meier) eingeführt. Nach
der Formel von Bayes gilt wie vorher

P(E\M) aP(M\E)P(E) (5a)
P(~E\M) aP(M\~E)P(~E) (5b)
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Bild 1 Graphische Darstellung von Grundstrukturen kausaler Verknüpfungen
a die einfache kausale Beziehung
b verschiedene Wirkungen einer Ursache
c Verkettung von kausalen Beziehungen

a ist hier einfach ein Normierungsfaktor,

der sich aus der Beziehung
P(E\M) + P(~E\M) - 1 bestimmen
lässt. Nun gilt ganz allgemein nach
den Regeln der Wahrscheinlichkeitsrechnung

P(M\E) P(M\AnE)P(A\E)
+ P(M\~AnE)P(~A |E) (6)

wobei P(M\AnE) die bedingte
Wahrscheinlichkeit für M ist, gegeben A
und E. Es ist hier jedoch gerechtfertigt,

anzunehmen, dass M tatsächlich
nur indirekt von E abhängt, nämlich
insofern, ob A stattfindet oder nicht,
d.h. dass P(M\AnE) P(M\A) und
P{M\~AnE) P(M\ ~A). Diese
Annahme ist eine weitere wichtige
Form der bedingten Unabhängigkeit,
die den Umgang mit kausalen Ketten
vereinfacht und in grösserem Stil erst
praktikabel macht.

Mit dieser Annahme wird Gl. 5 zu

P(E\M) a(P(M\A)P{A\E)
+ P(M| ~A)P(~A | E))P(E)

(7)

Frau Meier sei eine etwas ängstliche
Person, die etwa auch Geräusche
hört, wo keine sind. Deswegen wird
P(M\A) 1 (wenn ein Alarm ertönt,
hört ihn Frau Meier sicher) und
P(M\~A) 0,05 (auch wenn kein
Alarm ertönt, glaubt Frau Meier
gelegentlich einen solchen zu hören)
angenommen. Im übrigen werden die
gleichen Zahlen wie oben vorausgesetzt.
Dann können die folgenden Rechnungen

durchgeführt werden:

P(E | M) a(l • 0,95 + 0.05 • 0.05) 1(L4

0,9525-KL4«,
P(~E\M) a(P(M\A)P(A\~E)

+ P(M\~A)P{~A\~E))P(~E)
«(1-0,01 + 0,05-0,99)-(l-lO"4)
0,06 «.

Aus der Normalisierungsbedingung
«(0,9525 • 10~4 + 0,06) 1 folgt
schliesslich P(E\M) 0,0017, was
rund fünfmal kleiner ist, als der oben
erhaltene Wert von P(E\A). Das
Verlassen auf eine nicht ganz zuverlässige
Zeugin vermindert die Glaubwürdigkeit

eines Einbruches beträchtlich.
Der Grund liegt darin, dass der Anruf
von Frau Meier eher mit ihrer Unzu-
verlässigkeit erklärt wird, als mit der
Annahme eines Alarms. Auch hier
funkt die kleine A-priori-Einbruchs-
wahrscheinlichkeit wesentlich dazwischen.

Sie macht eben die Annahme
eines ungerechtfertigten Anrufs im
Verhältnis zur Existenz eines Alarms
relativ wahrscheinlich.

Bayessche Netzwerke
Die hier betrachteten einfachen

Fälle bilden die elementaren
Bausteine für den Aufbau von Netzwerken

kausaler Verkettungen. Diese
können auch tatsächlich graphisch
dargestellt werden. Dabei werden
Variablen eingeführt und als Knoten
eines Netzwerkes dargestellt. In den
obigen Beispielen wurden den Ereignissen

U, Wbzw. W1 und W2 oder E,
A und M Boolesche (zweiwertige)
Variablen zugeordnet, die das Eintreten
oder Ausbleiben des entsprechenden
Ereignisses anzeigen. Im allgemeinen
können diese Variablen jedoch
mehrwertig (nicht nur dual) sein. Eine
Variable wird nun mit einem Pfeil zu
einer anderen Variablen verbunden,
wenn sie Ursache oder Einflussgrösse
für eine andere Variable ist. Im Bild 1

sind auf diese Weise die obigen
Beispiele dargestellt.

Im Bild 2 ist ein etwas realistischeres

Beispiel aus einer fundamentalen
Veröffentlichung [2] dargestellt. Es ist
eine Darstellung der folgenden (stark
vereinfachten) medizinischen
Wissensbasis:

Luftknappheit (Dyspnoea) kann
durch Tuberkulose. Lungenkrebs
oder Bronchitis, oder keinem von
den dreien oder von mehr als einer
der Krankheiten verursacht sein.
Ein Besuch in Asien erhöht die
Chancen von Tuberkulose, und
Rauchen ist ein bekannter Risikofaktor

sowohl für Lungenkrebs und
Bronchitis. Die Ergebnisse einer
einzelnen Brust-Röntgenaufnahme
diskriminieren nicht zwischen
Lungenkrebs und Tuberkulose. Auch
die Existenz von Dyspnoea erlaubt
nicht zwischen Tuberkulose,
Lungenkrebs und Bronchitis zu
unterscheiden.

Die Knoten in Bild 2 repräsentieren
die Ereignisse (Besuch in Asien.
Tuberkulose, Rauchen usw). Die Pfeile
stellen die kausalen Verkettungen
dar. Neu an diesem Beispiel ist, dass
ein Ereignis wie Dyspnoea mehrere
Ursachen (eingehende Pfeile) haben
kann. In einem solchen Fall müssen
als Daten die bedingten Wahrscheinlichkeiten

aller möglichen Kombinationen

von Ursachen definiert werden.

Im Beispiel von Dyspnoea wären
das die vier bedingten Wahrscheinlichkeiten

P(D\EnB), P(D\~EnB),
P(D\En~B) und P(D\~En~B).
Das Modell setzt voraus, dass alle
bedingten Wahrscheinlichkeiten, die für

Bild 2 Das Bayessche Netzwerk für eine
(stark vereinfachte) medizinische
Wissenshasis
A Besuch in Asien
T Tuberkulose
L Lungenkrebs
D Dyspnoea
B Bronchitis
E Ereignis (Tuberkulose oder

Lungenkrebs)
X Röntgenaufnahme
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die Beschreibung der kausalen
Pfeilbezeichnungen notwendig sind, erfasst
und geschätzt werden.

Das Ereignis E ist eine logische
Oder-Verknüpfung der Ereignisse T
und L. Die Kausalität ist da rein
deterministisch, was sich dadurch
ausdrückt, dass die bedingten
Wahrscheinlichkeiten nur die Werte Null
und Eins annehmen: P(E\TnL)
P(E ~7nL) P(E\Trs~L) 1 und
P{E ~Tn~L) 0. Das illustriert,
dass in einem solchen kausalen Modell

ohne weiteres beliebige logische
Verknüpfungen zwischen Ereignissen,
wie auch jede andere rein deterministische,

funktionale Beziehung dargestellt

werden kann.
Eine solche Wissensbasis sollte

beispielsweise Auskunft zu folgenden
Fragen geben: Ein Patient, der sich
mit Dyspnoea zur Untersuchung
einstellt, hat vor kurzem Asien besucht.
Seine Rauchgewohnheiten sind noch
unbekannt und Röntgenaufnahmen
sind noch keine gemacht. Was sind
unter diesen Bedingungen die Chancen

für die drei möglichen Krankheiten
und wie würde sich die Chance für

Bronchitis ändern, wenn Tuberkulose
durch einen Test ausgeschlossen wird?
Würde die Erhebung der
Rauchgewohnheiten oder eine Röntgenaufnahme

mehr Information zum
Lungenkrebs ergeben? Welches ist die
wichtigste Information zur Bildung
des Gesamturteils? Alle diese und
ähnliche Fragen können tatsächlich
durch Auswertung eines Bayesschen
Netzwerkes wie dasjenige von Bild 2

effizient beantwortet werden.
Allerdingst stellt dies einige mathematische
Probleme, die über die elementaren
Sätze der Wahrscheinlichkeitsrechnung

hinausgehen. Ein Problem hat
seinen Grund darin, dass gewisse
Ursachen (wie das Rauchen im Beispiel)
über mehrere, verschiedene
Verkettungswege eine bestimmte Wirkung
(wie Dyspnoea) beeinflussen können.
Das führt wahrscheinlichkeitstheoretische

Abhängigkeiten ein, die eine
direkte Verallgemeinerung der oben
beschriebenen einfachen Anwendungen
der Bayesschen Formel verunmöglichen.

Falls jedoch — im Gegensatz
zum obigen Beispiel — im Bayesschen
Netzwerk jeder Knoten nur über

höchstens einen Verkettungsweg mit
einem anderen Knoten verbunden ist.
spricht man von einem Bayesschen
Baum. Dann besteht das angesprochene

Problem nicht. Man hat es in
diesem Fall im wesentlichen mit einer
Verallgemeinerung der aus der Automatik

bekannten Filterungs- oder
Glättungsproblematik zu tun, und es
können einfache Lösungen analog
etwa einem Kalmann-Filter gefunden
werden.

Der wesentliche Fortschritt besteht
aber gerade darin, dass nunmehr auch
allgemeine Methoden zur Behandlung
des allgemeinen Falls entwickelt worden

sind. Der Aufsatz [2] ist die
bahnbrechende Arbeit auf diesem Gebiet.
Es gibt bereits ein kommerzielles
Produkt namens Hugin, das diesen neuen
Ansatz verwertet.
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