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Réseaux de neurones artificiels

Implémentation VLSI analogique des réseaux
de Kohonen
Pascal Heim, Xavier Arreguit, Eric Vittoz

Cet article décrit les possibilités
d'implémentation du réseau de
Kohonen au moyen de techniques

VLSI analogiques. Il ressort
que l'implémentation des
fonctions collectives est particulièrement

bien adaptée à l'analogique
grâce à l'utilisation opportune
des caractéristiques non-
linéaires des transistors. L'emploi

des mémoires analogiques
existantes est actuellement le
problème le plus délicat, et un
effort est encore à faire avant de
pouvoir disposer de circuits
efficaces.

Der Artikel befasst sich mit den
Möglichkeiten der Implementierung

von Kohonen-Netzwerken
in VLSI-Technik. Es wird gezeigt,
dass sich die Analogtechnik für
die Realisierung von kollektiven
Funktionen speziell gut eignet,
vor allem wenn man die
nichtlinearen Eigenschaften der
Transistoren nutzt. Das grösste
Problem bei dieser Technik stellen

die heutigen Analogspeicher
dar. Es werden noch einige
Anstrengungen nötig sein, bevor
man über leistungsfähige Schaltkreise

verfügen wird.

Adresse des auteurs
Pascal Heim, ing. dipl. EPFL, Dr. Xavier Arreguit,
ing. dipl. EPFL. Prof. Dr. Eric Vittoz,
EPFL et CSEM, EPFL-LEG. ELB-Ecublens,
1015 Lausanne et CSEM S.A.. Maladière 71,
2007 Neuchâtel.

Le réseau de Kohonen [1] permet
de projeter un ensemble de vecteurs
appartenant à un espace de dimension
n sur son propre espace de dimension
m. Le réseau exécute un processus
non supervisé d'auto-organisation qui
a la propriété de conserver autant que
possible les relations topologiques des
vecteurs d'entrée. De plus cette
organisation attribue une surface plus
importante du réseau aux régions de
l'espace d'entrée qui sont présentées plus
fréquemment. Ces propriétés de
projection sont très similaires à celles que
l'on trouve dans certaines parties du
cerveau.

La simulation sur ordinateur permet

d'implémenter pratiquement
toute les variantes imaginables du
réseau de Kohonen: il n'existe pas de
limites dans le choix de l'algorithme
ou de la topologie du réseau. En
particulier, il est facile de simuler des
réseaux à structure évolutive, dans
lesquels des neurones sont ajoutés au
réseau pendant la phase d'apprentissage.

Dans un premier temps, les im-
plémentations en circuits analogiques
n'offriront pas une telle souplesse et
seront dédiées à des applications par¬

ticulières. Cependant, leur portabilité
et la vitesse inhérente à leur parallélisme

total apporteront des avantages
décisifs par rapport aux simulations.

En essayant d'exploiter le plus
possible les caractéristiques physiques des
transistors dans les circuits analogiques,

le nombre de composants par
fonctions peut être fortement réduit
par rapport à une implémentation
numérique, ce qui permet d'augmenter
le nombre de tâches effectuées sur la
même puce. L'approche analogique
n'est possible que si une grande précision

n'est pas nécessaire, comme par
exemple dans les tâches de reconnaissance,

pour autant que le réseau
travaille de manière collective et continue,

ce qui est faisable au moyen de

techniques analogiques.

Implementation analogique
La figure 1 montre le schéma-bloc

d'un réseau de Kohonen unidimen-
sionnel (m 1). Le vecteur d'entrée x
est distribué parallèlement à tous les

neurones. Une rangée de M neurones
fournit M signaux de sortie Yh fonc-

Figure 1

Schéma de principe
du réseau de Kohonen
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Implémentation en VLSI

tions du vecteur d'entrée .v, des poids
synaptiques m, associés à chaque
neurone et des contre-réactions internes
gouvernant le comportement collectif
du réseau. Tous les neurones sont
interconnectés entre eux de manière à

exciter leur voisinage proche et inhiber

le reste du réseau au travers d'une
fonction de pondération ayant la
forme caractéristique d'un chapeau
mexicain (fig. 1). Ces couplages
latéraux nécessitent M connexions synaptiques

fixes par neurone, c'est-à-dire
M: interconnexions pour le réseau
complet. Il est possible de réaliser
cette fonction collective avec beaucoup

moins de connexions à l'aide de
circuits analogiques simples. L'effet
collectif résultant va concentrer l'activité

du réseau en une «bulle» localisée
à l'endroit où les entrées ont le plus de
poids. Le processus d'apprentissage
nécessite la formation d'un voisinage
qui peut s'apparenter à cette bulle.
D'autre part, la plasticité des

synapses. c'est-à-dire la vitesse à

laquelle elles peuvent s'adapter en
réponse à un stimuli, doit être contrôlée
lors de l'apprentissage.

L'algorithme d'apprentissage
généralement utilisé pour la simulation du
réseau est le suivant: partant d'un
réseau totalement désordonné, on lui
présente successivement des vecteurs
d'entrée .r choisis au hasard dans une
base de données. A chaque itération
k, on détermine par une mesure
appropriée le neurone «gagnant» c dont
le vecteur poids synaptique mc est le

plus proche du vecteur d'entrée.
Ensuite, on définit un voisinage Ne
autour de ce neurone puis on adapte les

poids synaptiques des neurones
sélectionnés dans le sens d'un rapprochement

avec le vecteur présenté x, ce

qui. en terme de composantes (indice
/), s'exprime par:

mij(k+ 1) m;j(k) + a(xj(k) - mij(k))

si i s Nc(k)

mij(k + 1) mjj(k)

siieNc(k) (1)

Au début de l'organisation, le voisinage

d'apprentissage recouvre jusqu'à
la moitié de la surface du réseau et le

gain d'adaptation a est proche de
l'unité. A mesure que les vecteurs
d'entrée sont présentés, le voisinage
diminue progressivement jusqu'à
atteindre la taille d'une cellule avec ses

plus proches voisins. Simultanément,

le gain diminue jusqu'à une valeur de
l'ordre de 0,01: le processus entre
alors dans une phase de convergence
pendant laquelle la surface du réseau
tendra à reproduire au mieux la
distribution topologique et statistique de la
base de données.

La dimension du réseau de Koho-
nen peut être quelconque, cependant
les technologies VLSI actuelles limitent

pratiquement les implémenta-
tions aux dimensions 1 et 2. En ce qui
concerne les implémentations purement

analogiques, deux approches
différentes ont été étudiées: la
première est basée sur la fonction
d'excitation-inhibition en forme de chapeau
mexicain et la seconde est basée sur
un circuit de type Winner-Take-All
(WTA) [2] pour la sélection du
neurone gagnant et un réseau non-linéaire
pour la génération de la bulle.

Réalisation du réseau
avec poids fixes

Par définition, le réseau de Koho-
nen est adaptatif. Cependant, on peut
imaginer des applications pour
lesquelles on pourrait se contenter de
réseaux à poids fixes, préalablement
simulés sur ordinateur, tels des ROMs
analogiques remplaçant par exemple
les tables (look-up tables) utilisées
dans le contrôle de certains processus
non-linéaires. L'information mémorisée

est beaucoup plus riche du fait que
les relations topologiques entre les
éléments de l'espace d'entrée sont
conservés. De plus le centre de gravité
de la bulle peut se déplacer de
manière localement continue, l'interpolation

étant assurée par le réseau
d'excitation-inhibition collectif.

La figure 2 montre un circuit implé-
mentant un réseau de Kohonen à

poids fixes de 12 x 12 neurones [3],
basé sur la fonction d'excitation-inhibition

en forme de chapeau mexicain.
Afin de réduire le nombre des
interconnexions, nous avons utilisé un
réseau de résistances-conductances RG
[4]. Ce réseau consiste en un maillage
orthogonal de résistances R, complété
à chaque nœud d'une conductance G à

la terre. Chaque neurone est rattaché
à un nœud qui définit sa position dans
le réseau. Lorsqu'un neurone injecte
un courant en un nœud, il produit un
gradient de tension décroissant de la
forme exp(—r/L), où L (RG) — '/-

est la longueur caractéristique du
réseau et r la distance au point d'injection.

Si on soustrait à cette fonction

Figure 2 Circuit réalisant un réseau de
Kohonen à poids fixes de 12 x 12 neurones
Dimensions 3,2 v 2,4 mm2

une tension constante, on obtient une
fonction d'excitation-inhibition dont
les propriétés sont très voisines de
celles de la fonction chapeau mexicain.

Le réseau RG étant linéaire, la
même fonction est accessible par tous
les neurones par le principe de
superposition. Afin de s'affranchir des
terminaisons, le réseau RG a été rebouclé

dans les deux directions, donnant
ainsi au réseau de Kohonen une topo-
logie torique. Cette topologie est
structurellement compatible avec des
vecteurs d'entrée de dimension
supérieure ou égale à 3. La figure 3 montre
le résultat pour un des vecteurs d'entrée

(n 4). Le réglage de la taille de
la bulle nécessite un choix judicieux
des différents paramètres (valeurs de
R et G, valeur de saturation de l'activité

des neurones et poids relatifs des

contre-réactions). Par conséquent,
cette méthode n'est pas assez souple
pour assurer la variation du voisinage

Figure 3 Bulle générée par le circuit de la
figure 2 pour un vecteur d'entrée donné

lors de l'apprentissage. En revanche,
la densité d'intégration satisfait les

exigences de la réalisation de ROMs
analogiques: la cellule complète ne
mesure que 200 x 180 gm en technologie

Sacmos 3 /xm et comprend un
vecteur synaptique de dimension 4.
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Réalisation du réseau
avec apprentissage sur puce

Si l'on veut ajouter l'apprentissage
sur le chip, il faut disposer de
mémoires analogiques et d'un moyen
simple d'implémenter la génération de
la bulle et l'adaptation des poids sy-
naptiques. La figure 4 montre le
schéma-bloc d'une implémentation possible.

La génération du voisinage
s'effectue à l'aide d'un circuit de type
Winner-Take-All pour la sélection du
neurone gagnant et d'un réseau non-
linéaire [5] dont la structure est la
même que celle du réseau RG
précédemment cité et ne nécessite que trois
transistors par cellule. Les avantages
de cette solution sont la très grande
souplesse de réglage de la taille de la
bulle (rapport de 1000 à 1 réalisable)
ainsi que sa forme conique (fig. 5) qui

NjÇwr.t .."Cflät
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Figure 5 Profil d'une bulle générée par le

réseau non-linéaire
5 coupes de la même bulle contenant environ
500 cellules

peut être exploitée pour rendre le gain
d'adaptation a fonction du rayon. Des
simulations ont montré en effet que si

a est maximum au centre de la bulle et
décroît avec le rayon, la phase
d'organisation est nettement plus courte. La
synapse est une mémoire modifiable.
Le corps du neurone se charge de
contrôler cette modification en tenant
compte des paramètres de commande
A et B, du profil de la bulle et des
grandeurs Xj et m,y. De plus, le corps
du neurone effectue la mesure de

proximité nécessaire au Winner-Take-
All pour sélectionner le gagnant.
Finalement, le signal de commande L
permet de cadencer l'apprentissage au
rythme où sont présentés les vecteurs.

La mémorisation des valeurs
analogiques est actuellement le problème le
plus difficile auquel nous devons faire
face pour implémenter les réseaux de

neurones analogiques avec apprentissage

sur la puce. Pour effectuer des

opérations mathématiques dans les

vecteur contrôle du gain apprentissage seuil

Figure 4 Schéma-bloc d'un neurone avec apprentissage et éléments des circuits collectifs
associés

circuits analogiques, on exploite la
relation non-linéaire entre la tension de
grille des transistors MOS et leur courant

de drain (exponentielle en faible
inversion, quadratique en forte inversion).

Dans la plupart des cas, le
transistor est utilisé comme une source de
courant commandée ou comme une
résistance dont les valeurs respectives
dépendent de la tension de grille. Or,
comme aucun courant n'est
consommé par la grille des transistors
MOS, le condensateur est l'élément le

plus naturel pour mémoriser une
tension dans les circuits et donc pour
coder la valeur du poids synaptique. Les
technologies CMOS actuelles ont un
diélectrique de très bonne qualité et
par conséquent le temps de rétention
des charges sur les électrodes des
condensateurs n'est limité que par les
courants de fuite des jonctions des
transistors d'accès et de la capacité
(typiquement de l'ordre de la ms à la
seconde).

De manière à augmenter le temps
de rétention, plusieurs implémenta-
tions ont été envisagées et testées:

- mémoires à rafraîchissement
périodique: la tension aux bornes du
condensateur est rafraîchie à l'aide
d'un circuit approprié [6; 7] par
comparaison périodique avec des niveaux
quantifiés prédéfinis. Pour un temps
de mémorisation donné, le nombre de
niveaux possibles dépend d'une part
de la valeur de courant de fuite à com¬

penser (le rafraîchissement doit se

produire avant que la tension ne soit
dégradée de plus d'un niveau), et
d'autre part du niveau de bruit
(probabilité non nulle que le bruit 1// soit
plus grand à un instant donné que le
pas de quantification) et de l'injection
de charges. On peut utiliser ces
mémoires pour des temps de rétention de
l'ordre de quelques minutes à quelques

heures.

- mémoires non-volatiles (EEPROM)
[7]: une charge électrique est
emprisonnée dans la grille flottante d'un
transistor MOS. Par effet Fowler-
Nordheim ou par effet d'avalanche,
on injecte des paquets de charges de
valeur contrôlée en utilisant des
impulsions de tension de durée et
d'amplitude variables, et on peut ainsi in-
crémenter la valeur de la tension par
pas prédéfinis. Un mécanisme similaire

permet d'enlever des paquets de
charges de la grille flottante. Le temps
de rétention de la charge est de
plusieurs années. L'inconvénient de cette
méthode réside dans la précision avec
laquelle on peut fixer la tension
mémorisée (relaxation de la valeur) et
dans l'utilisation de tensions élevées

pour les impulsions (risque de canaux
parasites, couplages capacitifs).
- mémoires programmées à la
lumière ultraviolette [7]: l'isolant
devient légèrement conducteur sous l'effet

de la lumière UV. Sa résistance
diminue (Req 1015 Q) et un faible
courant a travers l'isolant permet de

46 Bulletin ASE/UCS 83(1992)5,13 mars
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charger ou de décharger la capacité de

grille. Lorsque l'on coupe la lumière,
la charge reste emprisonnée et la
valeur de tension correspondante
mémorisée. Les inconvénients de cette
méthode sont de faire appel à une
lumière UV suffisamment puissante
pour des temps de programmation
raisonnables (quelques dizaines de

secondes) et d'autre part de devoir
cacher à l'aide d'un écran (deuxième
métal par exemple) les parties du
circuit qui ne font pas partie du circuit de

mémorisation.

Bien que fonctionnelles, ces trois
méthodes de mémorisation posent
toutes des problèmes auquels le

concepteur doit faire face par des

techniques de circuits appropriées. La
recherche dans ce domaine reste très
active.

Effets des imperfections
dans les circuits analogiques

Le comportement collectif des
réseaux de neurones est sensé les protéger

contre certaines imperfections ou
même la défaillance totale de
certaines de leurs cellules. Si la deuxième
affirmation est vraie dans certains cas

pour le réseau de Kohonen, il n'en est

pas de même pour la première.
L'algorithme décrit ci-dessus s'avère très
sensible aux erreurs et c'est précisément

son aspect collectif qui est
problématique. Ces erreurs proviennent
surtout de l'implémentation des poids
synaptiques. Dans le cas des mémoires
à court terme utilisant des condensateurs.

les fuites sont inévitables et
l'injection de charges due au transistor
d'accès altère la valeur mémorisée
après chaque modification. L'utilisation

de mémoires à rafraîchissement
permet de compenser les fuites mais
introduit une troncature de la valeur
mémorisée à chaque cycle de
rafraîchissement (quantification). D'autres
imperfections sont par exemple un
mauvais choix du neurone gagnant ou
une différence du gain d'adaptation a
par rapport kxetm (mauvais apparie-
ment des éléments). Les conséquences
de ces imperfections sont difficiles à

analyser, d'autant plus qu'elles dépendent

de nombreux paramètres tels que
la valeur du gain a lors de la phase de

convergence, la taille du réseau, la
dimension du vecteur d'entrée et plus
problématique encore, la base de donnée.

On peut réécrire l'algorithme en

y incluant un certain nombre de ces
défauts de la manière suivante:

mjj(k+ 1) Trunc[mjj(k) + a(xj(k)

-(1 + ea)mij(k)) + ef + e; ]

dans la bulle

m;j(k+ 1) Trunc[mjj(k) + £f ]

hors de la bulle (2)

Dans cet algorithme altéré, ea

représente une différence de gain, ryune
fuite supposée constante, e, l'injection
de charges supposée constante, et
finalement la fonction de troncature si

des mémoires rafraîchies sont
utilisées. L'effet des défauts est en général
visible lorsque le gain n'est plus en
mesure de les compenser. Par exemple

l'erreur sur le gain ou l'injection de
charges peuvent amener le réseau à

diverger partiellement en dehors de
l'ensemble de définition de la base de
donnée. Ces défauts sont actuellement
simulés séparément afin d'en
connaître qualitativement et quantitativement

les effets et concevoir les circuits
en conséquence.

Applications et choix du type
de vecteur d'entrée

Le réseau de Kohonen s'auto-orga-
nise de manière à projeter les vecteurs
d'un espace donné sur un plan formé
d'un nombre limité de neurones tout
en conservant au mieux la topologie
de l'espace. Le nombre de classes que
l'on peut discriminer est étroitement
lié au nombre de neurones implé-
mentés et à la mise en œuvre de
l'apprentissage. Une fois l'apprentissage
terminé, le réseau peut être utilisé
pour associer des vecteurs d'entrée à

l'une des classes apprises (position du
vecteur gagnant dans le réseau) ou
pour caractériser l'espace observé
(topologie) en analysant les valeurs des
poids synaptiques dans le réseau. Il
faut toutefois rester prudent quant à

l'interprétation des résultats. En effet,
du fait de la projection, deux classes
adjacentes sur le réseau ne le sont pas
forcément dans l'espace d'origine. La
réciproque est aussi vraie.

Le choix du vecteur d'entrée (nombre

et type de composantes) est
déterminant pour obtenir une bonne
classification. Un bon prétraitement de
l'information devrait extraire les
caractéristiques pertinentes des objets à

classifier. Ces caractéristiques peuvent
alors être utilisées comme composantes

du vecteur d'entrée au réseau

de Kohonen. On peut ainsi diminuer
la dimension du vecteur d'entrée tout
en améliorant les performances de
classification du réseau. A la limite, si
le nombre de caractéristiques correspond

à la dimension de l'espace et
qu'elles forment une base orthogonale,

le réseau de Kohonen peut être
remplacé par un circuit du type Win-
ner-Take-All dans la phase de
reconnaissance des données.

Souvent, le problème est de
déterminer quelles sont les caractéristiques
pertinentes qu'il faut extraire. Par
exemple, l'utilisation du réseau de
Kohonen a été proposé pour classifier
des données spectrales brutes [8] dans
un système de reconnaissance de
phonèmes. Le vecteur d'entrée n'était
composé que de l'information fré-
quentielle obtenue à partir du résultat
d'une FFT sur le signal d'entrée et le
taux de reconnaissance obtenu est
relativement bas par rapport à celui d'un
être humain. De manière générale, les
systèmes artificiels de reconnaissance
de la parole souffrent d'un manque de
ressources de calcul en comparaison
avec le système auditif biologique. On
peut donc s'inspirer du traitement du
signal effectué par la cochlée et par les
différentes couches du cerveau pour
extraire différentes caractéristiques du
son (modulations FM. nombre et type
de sources sonores, pitch, perception
binaurale [9]). Un gros effort est mis
en ce moment à la détermination et à
l'extraction de ces caractéristiques.

Un point important à considérer
pour l'utilisation du réseau de Kohonen

est sa propriété d'auto-organisation
non supervisée. La topologie du

réseau après organisation (localisation
des classes dans le réseau) dépend de
l'ordre et de la fréquence avec
lesquels on présente les vecteurs d'entrée
pendant l'apprentissage. Lorsque l'on
veut associer une action à chacune des
classes, il est nécessaire d'étiqueter
chacune des régions correspondantes
du réseau. Ceci ne peut se faire qu'à
l'aide d'une deuxième couche avec un
mécanisme de supervision. Par exemple,

dans l'application du robot mobile

[10], le réseau de Kohonen permet

d'obtenir une représentation
interne de l'environnement (couloir,
obstacles, etc.). Une deuxième couche
de neurones est utilisée pour effectuer
des actions (tourner à droite ou à

gauche, avancer). L'association entre
le réseau de Kohonen et la deuxième
couche est obtenue par un apprentissage

supervisé utilisant le principe de
récompense-punition.
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Conclusion

Actuellement, les efforts consentis
dans le domaine des réseaux de
neurones sont axés sur les simulations et
les circuits digitaux. Les réseaux
analogiques ont déjà fait leurs preuves
dans des implémentations de prétraitement

bas-niveau d'images et de sons
(rétines et cochlées artificielles). Dans
ce contexte, l'implémentation analogique

se révèle imbattable pour la
réalisation des fonctions collectives dans
les réseaux. La plupart des blocs
analogiques nécessaires à l'implémentation

VLSI analogique d'un réseau de
Kohonen avec apprentissage sur puce
ont été développés et intégrés. Néan¬

moins, avant de pouvoir disposer d'un
système complet, les performances
des mémoires analogiques devront
être améliorées. Les progrès apportés
aux implémentations du réseau de
Kohonen pourront certainement être
appliqués à d'autre types de réseaux.
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