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Réseaux de neurones artificiels

Implémentation VLSI analogique des réseaux

de Kohonen

Pascal Heim, Xavier Arreguit, Eric Vittoz

Cet article décrit les possibilités
d’implémentation du réseau de
Kohonen au moyen de techni-
ques VLSl analogiques. Il ressort
que l'implémentation des fonc-
tions collectives est particuliére-
ment bien adaptée a I'analogique
gréce a l'utilisation opportune
des caractéristiques non-
linéaires des transistors. L’'em-
ploi des mémoires analogiques
existantes est actuellement le
probléeme le plus délicat, et un
effort est encore a faire avant de
pouvoir disposer de circuits effi-
caces.

Der Artikel befasst sich mit den
Méglichkeiten der Implementie-
rung von Kohonen-Netzwerken
in VLSI-Technik. Es wird gezeigt,
dass sich die Analogtechnik fiir
die Realisierung von kollektiven
Funktionen speziell gut eignet,
vor allem wenn man die nicht-
linearen Eigenschaften der
Transistoren nutzt. Das grésste
Problem bei dieser Technik stel-
len die heutigen Analogspeicher
dar. Es werden noch einige An-
strengungen nétig sein, bevor
man dber leistungsfiahige Schalt-
kreise verfiigen wird.
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Le réseau de Kohonen [1] permet
de projeter un ensemble de vecteurs
appartenant a un espace de dimension
n sur son propre espace de dimension
m. Le réseau exécute un processus
non supervisé d’auto-organisation qui
a la propriété de conserver autant que
possible les relations topologiques des
vecteurs d’entrée. De plus cette orga-
nisation attribue une surface plus im-
portante du réseau aux régions de I'es-
pace d’entrée qui sont présentées plus
fréquemment. Ces propriétés de pro-
jection sont tres similaires a celles que
I'on trouve dans certaines parties du
cerveau.

La simulation sur ordinateur per-
met d’implémenter pratiquement
toute les variantes imaginables du ré-
seau de Kohonen: il n’existe pas de
limites dans le choix de l'algorithme
ou de la topologie du réseau. En parti-
culier, il est facile de simuler des ré-
seaux a structure évolutive, dans les-
quels des neurones sont ajoutés au ré-
seau pendant la phase d’apprentis-
sage. Dans un premier temps, les im-
plémentations en circuits analogiques
n’offriront pas une telle souplesse et
seront dédiées a des applications par-

ticulieres. Cependant, leur portabilité
et la vitesse inhérente a leur parallé-
lisme total apporteront des avantages
décisifs par rapport aux simulations.

En essayant d’exploiter le plus pos-
sible les caractéristiques physiques des
transistors dans les circuits analogi-
ques, le nombre de composants par
fonctions peut étre fortement réduit
par rapport a une implémentation nu-
mérique, ce qui permet d’augmenter
le nombre de taches effectuées sur la
méme puce. L’approche analogique
n’est possible que si une grande préci-
sion n’est pas nécessaire, comme par
exemple dans les taches de reconnais-
sance, pour autant que le réseau tra-
vaille de maniére collective et conti-
nue, ce qui est faisable au moyen de
techniques analogiques.

Implémentation analogique

La figure 1 montre le schéma-bloc
d’'un réseau de Kohonen unidimen-
sionnel (m = 1). Le vecteur d’entrée x
est distribué parallelement a tous les
neurones. Une rangée de M neurones
fournit M signaux de sortie Y;, fonc-
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Implémentation en VLSI

tions du vecteur d’entrée x, des poids
synaptiques m; associés a chaque neu-
rone et des contre-réactions internes
gouvernant le comportement collectif
du réseau. Tous les neurones sont in-
terconnectés entre eux de manicre a
exciter leur voisinage proche et inhi-
ber le reste du réseau au travers d’une
fonction de pondération ayant la
forme caractéristique d'un chapeau
mexicain (fig. 1). Ces couplages laté-
raux nécessitent M connexions synap-
tiques fixes par neurone, c’est-a-dire
M* interconnexions pour le réseau
complet. Il est possible de réaliser
cette fonction collective avec beau-
coup moins de connexions a I'aide de
circuits analogiques simples. L'effet
collectif résultant va concentrer I'acti-
vité du réseau en une «bulle» localisée
a I’endroit ou les entrées ont le plus de
poids. Le processus d’apprentissage
nécessite la formation d’un voisinage
qui peut s’apparenter a cette bulle.
D’autre part, la plasticit€ des sy-
napses, c’est-a-dire la vitesse a la-
quelle elles peuvent s’adapter en ré-
ponse a un stimuli, doit étre controlée
lors de I"apprentissage.

L’algorithme d’apprentissage géné-
ralement utilisé pour la simulation du
réseau est le suivant: partant d'un ré-
seau totalement désordonné, on lui
présente successivement des vecteurs
d’entrée x choisis au hasard dans une
base de données. A chaque itération
k, on détermine par une mesure ap-
propriée le neurone «gagnant» ¢ dont
le vecteur poids synaptique m, est le
plus proche du vecteur d’entrée. En-
suite, on définit un voisinage Nc au-
tour de ce neurone puis on adapte les
poids synaptiques des neurones sélec-
tionnés dans le sens d'un rapproche-
ment avec le vecteur présenté x. ce
qui, en terme de composantes (indice
J). s’exprime par:

mjk+ 1) = m;(k) + a (Xj(k) - mij(k))
siie N.(k)

m;j(k + 1) = m;i(k)
siie Ne(k) (1)

Au début de I'organisation, le voisi-
nage d’apprentissage recouvre jusqu’a
la moitié de la surface du réseau et le
gain d’adaptation «a est proche de
I'unité. A mesure que les vecteurs
d’entrée sont présentés, le voisinage
diminue progressivement jusqu’a at-
teindre la taille d’'une cellule avec ses
plus proches voisins. Simultanément,

le gain diminue jusqu’a une valeur de
I'ordre de 0.01: le processus entre
alors dans une phase de convergence
pendant laquelle la surface du réseau
tendra a reproduire au mieux la distri-
bution topologique et statistique de la
base de données.

La dimension du réseau de Koho-
nen peut étre quelconque. cependant
les technologies VLSI actuelles limi-
tent pratiquement les implémenta-
tions aux dimensions 1 et 2. En ce qui
concerne les implémentations pure-
ment analogiques, deux approches
différentes ont été étudiées: la pre-
miere est basée sur la fonction d’exci-
tation-inhibition en forme de chapeau
mexicain et la seconde est basée sur
un circuit de type Winner-Take-All
(WTA) [2] pour la sélection du neu-
rone gagnant et un réseau non-linéaire
pour la génération de la bulle.

Réalisation du réseau
avec poids fixes

Par définition, le réseau de Koho-
nen est adaptatif. Cependant, on peut
imaginer des applications pour les-
quelles on pourrait se contenter de ré-
seaux a poids fixes, préalablement si-
mulés sur ordinateur. tels des ROMs
analogiques remplacant par exemple
les tables (look-up tables) utilisées
dans le contrdle de certains processus
non-linéaires. L'information mémori-
sée est beaucoup plus riche du fait que
les relations topologiques entre les
éléments de l'espace d’entrée sont
conservés. De plus le centre de gravité
de la bulle peut se déplacer de ma-
nicre localement continue, l'interpola-
tion étant assurée par le réseau d’exci-
tation-inhibition collectif.

La figure 2 montre un circuit implé-
mentant un réseau de Kohonen a
poids fixes de 12 X 12 neurones [3],
basé sur la fonction d’excitation-inhi-
bition en forme de chapeau mexicain.
Afin de réduire le nombre des inter-
connexions. nous avons utilisé un ré-
seau de résistances-conductances RG
[4]. Ce réseau consiste en un maillage
orthogonal de résistances R, complété
a chaque nceud d’une conductance G a
la terre. Chaque neurone est rattaché
a un neeud qui définit sa position dans
le réseau. Lorsqu’un neurone injecte
un courant en un neceud, il produit un
gradient de tension décroissant de la
forme exp(—#/L), ou L = (RG)—Y%
est la longueur caractéristique du ré-
seau et r la distance au point d’injec-
tion. Si on soustrait a cette fonction

e
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Figure 2 Circuit réalisant un réseau de
Kohonen a poids fixes de 12 X 12 neurones
Dimensions 3.2 % 2.4 mm?

une tension constante, on obtient une
fonction d’excitation-inhibition dont
les propriétés sont tres voisines de
celles de la fonction chapeau mexi-
cain. Le réseau RG €tant linéaire, la
méme fonction est accessible par tous
les neurones par le principe de super-
position. Afin de s’affranchir des ter-
minaisons, le réseau RG a €té rebou-
clé dans les deux directions, donnant
ainsi au réseau de Kohonen une topo-
logie torique. Cette topologie est
structurellement compatible avec des
vecteurs d’entrée de dimension supé-
rieure ou égale a 3. La figure 3 montre
le résultat pour un des vecteurs d’en-
trée (n =4). Le réglage de la taille de
la bulle nécessite un choix judicieux
des différents parametres (valeurs de
R et G, valeur de saturation de acti-
vité des neurones et poids relatifs des
contre-réactions). Par conséquent,
cette methode n’est pas assez souple
pour assurer la variation du voisinage

Figure 3 Bulle générée par le circuit de la
figure 2 pour un vecteur d’entrée donné

lors de I'apprentissage. En revanche,
la densité d’intégration satisfait les
exigences de la réalisation de ROMs
analogiques: la cellule compléte ne
mesure que 200 X 180 um en techno-
logie Sacmos 3 um et comprend un
vecteur synaptique de dimension 4.
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Réseaux de neurones artificiels

Réalisation du réseau
avec apprentissage sur puce

Si 'on veut ajouter I’apprentissage
sur le chip, il faut disposer de mé-
moires analogiques et d’'un moyen
simple d’implémenter la génération de
la bulle et I’adaptation des poids sy-
naptiques. La figure 4 montre le sché-
ma-bloc d’une implémentation possi-
ble. La génération du voisinage s’ef-
fectue a l'aide d’un circuit de type
Winner-Take-All pour la sélection du
neurone gagnant et d’un réseau non-
linéaire [5] dont la structure est la
meéme que celle du réseau RG précé-
demment cité et ne nécessite que trois
transistors par cellule. Les avantages
de cette solution sont la trés grande
souplesse de réglage de la taille de la
bulle (rapport de 1000 a 1 réalisable)

ainsi que sa forme conique (fig. 5) qui

Figure 5 Profil d’une bulle générée par le
réseau non-linéaire

5 coupes de la méme bulle contenant environ
500 cellules

peut étre exploitée pour rendre le gain
d’adaptation « fonction du rayon. Des
simulations ont montré en effet que si
a est maximum au centre de la bulle et
décroit avec le rayon, la phase d’orga-
nisation est nettement plus courte. La
synapse est une mémoire modifiable.
Le corps du neurone se charge de
contrdler cette modification en tenant
compte des parametres de commande
A et B, du profil de la bulle et des
grandeurs x; et m;;. De plus, le corps
du neurone effectue la mesure de
proximité nécessaire au Winner-Take-
All pour sélectionner le gagnant. Fi-
nalement, le signal de commande L
permet de cadencer I'apprentissage au
rythme ot sont présentés les vecteurs.

La mémorisation des valeurs analo-
giques est actuellement le probleme le
plus difficile auquel nous devons faire
face pour implémenter les réseaux de
neurones analogiques avec apprentis-
sage sur la puce. Pour effectuer des
opérations mathématiques dans les

vecteur
d'entrée

contréle du gain
A

apprentissage seuil
L

L adaptation
des

synapse
X comps
I du
neu[one

b—— -

détection de la bulle

élément
Y, |élément de

de |—»{ réseau
WTA non-

linéaire [

circuits collectifs pour : 5 A
la génération de la bulle

I B
contréle
dela
bulle

Figure 4 Schéma-bloc d’un neurone avec apprentissage et éléments des circuits collectifs

associés

circuits analogiques. on exploite la re-
lation non-linéaire entre la tension de
grille des transistors MOS et leur cou-
rant de drain (exponentielle en faible
inversion, quadratique en forte inver-
sion). Dans la plupart des cas. le tran-
sistor est utilisé comme une source de
courant commandée ou comme une
résistance dont les valeurs respectives
dépendent de la tension de grille. Or,
comme aucun courant n’est con-
sommé par la grille des transistors
MOS. le condensateur est I'élément le
plus naturel pour mémoriser une ten-
sion dans les circuits et donc pour co-
der la valeur du poids synaptique. Les
technologies CMOS actuelles ont un
diélectrique de trés bonne qualité et
par conséquent le temps de rétention
des charges sur les électrodes des
condensateurs n’est limité que par les
courants de fuite des jonctions des
transistors d’acces et de la capacité
(typiquement de I'ordre de la ms a la
seconde).

De maniére a augmenter le temps
de rétention, plusieurs implémenta-
tions ont été envisagées et testées:

— mémoires a rafraichissement pério-
dique: la tension aux bornes du
condensateur est rafraichie a l'aide
d’un circuit approprié [6; 7] par com-
paraison périodique avec des niveaux
quantifiés prédéfinis. Pour un temps
de mémorisation donné, le nombre de
niveaux possibles dépend d'une part
de la valeur de courant de fuite a com-

penser (le rafraichissement doit se
produire avant que la tension ne soit
dégradée de plus d’un niveau), et
d’autre part du niveau de bruit (pro-
babilité non nulle que le bruit 1/f soit
plus grand a un instant donné que le
pas de quantification) et de I'injection
de charges. On peut utiliser ces mé-
moires pour des temps de rétention de
I'ordre de quelques minutes a quel-
ques heures.

— mémoires non-volatiles (EEPROM)
[7]: une charge électrique est empri-
sonnée dans la grille flottante d’un
transistor MOS. Par effet Fowler-
Nordheim ou par effet d’avalanche,
on injecte des paquets de charges de
valeur controlée en utilisant des im-
pulsions de tension de durée et d’am-
plitude variables, et on peut ainsi in-
crémenter la valeur de la tension par
pas prédéfinis. Un mécanisme simi-
laire permet d’enlever des paquets de
charges de la grille flottante. Le temps
de rétention de la charge est de plu-
sieurs années. L’inconvénient de cette
méthode réside dans la précision avec
laquelle on peut fixer la tension mé-
morisée (relaxation de la valeur) et
dans l'utilisation de tensions €levées
pour les impulsions (risque de canaux
parasites, couplages capacitifs).

- mémoires programmées a la lu-
miere ultraviolette [7]: I'isolant de-
vient légérement conducteur sous I’ef-
fet de la lumiere UV. Sa résistance
diminue (R,, = 10%° Q) et un faible
courant a travers l'isolant permet de
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charger ou de décharger la capacité de
grille. Lorsque 1'on coupe la lumiére,
la charge reste emprisonnée et la va-
leur de tension correspondante mé-
morisée. Les inconvénients de cette
méthode sont de faire appel a une lu-
miere UV suffisamment puissante
pour des temps de programmation rai-
sonnables (quelques dizaines de se-
condes) et d’autre part de devoir ca-
cher a l'aide d’un écran (deuxieme
métal par exemple) les parties du cir-
cuit qui ne font pas partie du circuit de
mémorisation.

Bien que fonctionnelles, ces trois
méthodes de mémorisation posent
toutes des problemes auquels le
concepteur doit faire face par des
techniques de circuits appropriées. La
recherche dans ce domaine reste tres
active.

Effets des imperfections
dans les circuits analogiques

Le comportement collectif des ré-
seaux de neurones est sensé les proté-
ger contre certaines imperfections ou
méme la défaillance totale de cer-
taines de leurs cellules. Si la deuxieme
affirmation est vraie dans certains cas
pour le réseau de Kohonen. il n’en est
pas de méme pour la premiere. L’al-
gorithme décrit ci-dessus s’avere tres
sensible aux erreurs et c’est précisé-
ment son aspect collectif qui est pro-
blématique. Ces erreurs proviennent
surtout de I'implémentation des poids
synaptiques. Dans le cas des mémoires
a court terme utilisant des condensa-
teurs, les fuites sont inévitables et I'in-
jection de charges due au transistor
d’acces altere la valeur mémorisée
apres chaque modification. L’utilisa-
tion de mémoires a rafraichissement
permet de compenser les fuites mais
introduit une troncature de la valeur
mémorisée a chaque cycle de rafrai-
chissement (quantification). D’autres
imperfections sont par exemple un
mauvais choix du neurone gagnant ou
une différence du gain d’adaptation o
par rapport a x et m (mauvais apparie-
ment des éléments). Les conséquences
de ces imperfections sont difficiles a
analyser, d’autant plus qu’elles dépen-
dent de nombreux parametres tels que
la valeur du gain « lors de la phase de
convergence, la taille du réseau, la di-
mension du vecteur d’entrée et plus
problématique encore, la base de don-
née. On peut réécrire 'algorithme en
y incluant un certain nombre de ces
défauts de la maniere suivante:

m;j(k+ 1) = Trunc[m;j(k) + o (Xj(k)
- (1 + eg)myj(k)) + ef + € ]

dans la bulle

mj(k+ 1) = Trunc[my;(k) + & ]

hors de la bulle (2)

Dans cet algorithme altéré, e, re-
présente une différence de gain, & une
fuite supposée constante, ¢ I'injection
de charges supposée constante, et fi-
nalement la fonction de troncature si
des mémoires rafraichies sont utili-
sées. L’effet des défauts est en général
visible lorsque le gain n’est plus en
mesure de les compenser. Par exem-
ple I'erreur sur le gain ou I'injection de
charges peuvent amener le réseau a
diverger partiellement en dehors de
I'ensemble de définition de la base de
donnée. Ces défauts sont actuellement
simulés séparément afin d’en con-
naitre qualitativement et quantitative-
ment les effets et concevoir les circuits
en conséquence.

Applications et choix du type
de vecteur d’entrée

Le réseau de Kohonen s’auto-orga-
nise de maniere a projeter les vecteurs
d’un espace donné sur un plan formé
d’un nombre limité de neurones tout
en conservant au mieux la topologie
de I'espace. Le nombre de classes que
I'on peut discriminer est étroitement
li€ au nombre de neurones implé-
mentés et a la mise en ceuvre de 1'ap-
prentissage. Une fois I'apprentissage
terminé, le réseau peut étre utilisé
pour associer des vecteurs d’entrée a
I'une des classes apprises (position du
vecteur gagnant dans le réseau) ou
pour caractériser I’espace observé (to-
pologie) en analysant les valeurs des
poids synaptiques dans le réseau. Il
faut toutefois rester prudent quant a
I'interprétation des résultats. En effet.
du fait de la projection, deux classes
adjacentes sur le réseau ne le sont pas
forcément dans I'espace d’origine. La
réciproque est aussi vraie.

Le choix du vecteur d’entrée (nom-
bre et type de composantes) est déter-
minant pour obtenir une bonne classi-
fication. Un bon prétraitement de I'in-
formation devrait extraire les caracté-
ristiques pertinentes des objets a clas-
sifier. Ces caractéristiques peuvent
alors étre utilisées comme compo-
santes du vecteur d’entrée au réseau

de Kohonen. On peut ainsi diminuer
la dimension du vecteur d’entrée tout
en améliorant les performances de
classification du réseau. A la limite, si
le nombre de caractéristiques corres-
pond a la dimension de l’espace et
qu’elles forment une base orthogo-
nale, le réseau de Kohonen peut étre
remplacé par un circuit du type Win-
ner-Take-All dans la phase de recon-
naissance des données.

Souvent, le probleme est de déter-
miner quelles sont les caractéristiques
pertinentes qu’il faut extraire. Par
exemple, lutilisation du réseau de
Kohonen a été proposé pour classifier
des données spectrales brutes [8] dans
un systeme de reconnaissance de pho-
nemes. Le vecteur d’entrée n’était
composé que de l'information fré-
quentielle obtenue a partir du résultat
d’une FFT sur le signal d’entrée et le
taux de reconnaissance obtenu est re-
lativement bas par rapport a celui d’'un
étre humain. De maniere générale, les
systemes artificiels de reconnaissance
de la parole souffrent d’'un manque de
ressources de calcul en comparaison
avec le systeme auditif biologique. On
peut donc s’inspirer du traitement du
signal effectué par la cochlée et par les
différentes couches du cerveau pour
extraire différentes caractéristiques du
son (modulations FM, nombre et type
de sources sonores, pitch, perception
binaurale [9]). Un gros effort est mis
en ce moment a la détermination et a
I'extraction de ces caractéristiques.

Un point important a considérer
pour I'utilisation du réseau de Koho-
nen est sa propriété d’auto-organisa-
tion non supervisée. La topologie du
réseau apres organisation (localisation
des classes dans le réseau) dépend de
I'ordre et de la fréquence avec les-
quels on présente les vecteurs d’entrée
pendant I’apprentissage. Lorsque 'on
veut associer une action a chacune des
classes, il est nécessaire d’étiqueter
chacune des régions correspondantes
du réseau. Ceci ne peut se faire qu’a
I'aide d’une deuxieme couche avec un
mécanisme de supervision. Par exem-
ple, dans l'application du robot mo-
bile [10]. le réseau de Kohonen per-
met d’obtenir une représentation in-
terne de l'environnement (couloir,
obstacles, etc.). Une deuxieme couche
de neurones est utilisée pour effectuer
des actions (tourner a droite ou a
gauche, avancer). L’association entre
le réseau de Kohonen et la deuxieme
couche est obtenue par un apprentis-
sage supervisé utilisant le principe de
récompense-punition.
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Conclusion

Actuellement, les efforts consentis
dans le domaine des réseaux de neu-
rones sont axés sur les simulations et
les circuits digitaux. Les réseaux ana-
logiques ont déja fait leurs preuves
dans des implémentations de prétrai-
tement bas-niveau d’images et de sons
(rétines et cochlées artificielles). Dans
ce contexte, I'implémentation analogi-
que se révele imbattable pour la réali-
sation des fonctions collectives dans
les réseaux. La plupart des blocs ana-
logiques nécessaires a I'implémenta-
tion VLSI analogique d’un réseau de
Kohonen avec apprentissage sur puce
ont été développés et intégrés. Néan-

moins. avant de pouvoir disposer d’un
systeme complet, les performances
des mémoires analogiques devront
étre améliorées. Les progres apportés
aux implémentations du réseau de Ko-
honen pourront certainement étre ap-
pliqués a d’autre types de réseaux.
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