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Réseaux de Kohorten

Implémentation d'unréseau de Kohonen avec
facultés d'apprentissage
Vincent Peiris, Bertrand Hochet, Tim Creasy, Michel Declercq

Cet article décrit l'implémenta-
tion VLSI d'un réseau de Kohonen

à comportement numérique.
Ce réseau est pourvu de facultés
d'apprentissage et utilise des
techniques mixtes analogiques
et numériques. Les poids synap-
tiques sont stockés sous forme
analogique, et les signaux d'entrée

sont numériques. Les
neurones calculent soit le produit
scalaire euclidien soit la distance
de Manhattan entre le vecteur
d'entrée et leur propre vecteur
synaptique. Le voisinage
d'apprentissage est généré par un
réseau résistifnon-linéaire.

Der Beitrag beschreibt die VLSI-

Implementation eines Kohonen-
Netzwerkes mit digitalem
Verhalten. Das mit Lerneigenschaften

versehene Netzwerk basiert
aufgemischt analog-digitaler
Technik. Die synaptischen
Gewichte werden analog gespeichert,

die Eingangssignale sind
digital. Die Neuronen berechnen
sowohl das euklidische Skalar-
produkt als auch die Manhattan-
Distanz zwischen dem Eingangsvektor

und ihrem synaptischen
Eigenvektor. Die Lern-Nachbar-
schaft wird durch ein
nichtlineares Widerstandsnetzwerk
erzeugt.
Adresse des auteurs
Vincent Peiris, ing. dipl. EPFL, Dr. Bertrand
Hochet, ing. dipl. EPFL, Tim Creasy, MSc, Prof.
Dr. Michel Declercq, Ecole Polytechnique Fédérale
de Lausanne, Laboratoire d'Electronique Générale,
EL-Ecublens, CH-1015 Lausanne.

Les réseaux de Kohonen ont montré

leur aptitude à résoudre des
problèmes complexes de classification
d'information [1; 2], Le problème de
leur réalisation est donc intéressant en
soi. Du point de vue de l'implémenta-
tion, un réseau de Kohonen peut être
divisé en deux couches (fig. 1). Dans la

première, les neurones ont un nombre
limité d'entrées, et calculent une
mesure de distance entre le vecteur d'entrée

X et le vecteur de leurs poids
synaptiques w,y. L'algorithme
d'apprentissage y est aussi implanté. Des
simulations fonctionnelles ont montré
que la mesure de distance peut être la
distance de Manhattan, explicitée ci-
après. j est l'indice du neurone, i est
l'indice des composantes des vecteurs.

Sj(t)=X |x,(t)-w„(t)| (1)
i 1

La seconde couche détecte le
neurone de la première couche qui
répond le mieux au vecteur d'entrée,
c'est-à-dire dont le vecteur synaptique
est le plus proche du vecteur d'entrée
au sens de la mesure considérée.
L'apprentissage est exécuté selon la relation

2 et seuls apprennent les
neurones j situés à l'intérieur d'un voisinage

Nsr(t) autour du neurone le plus
excité.

Wjj(t+1) wij(t) + ß(t)[xi(t)-wij(t)]Nsr(t) (2)

Généralement, le gain d'apprentissage

ß(t) est une fonction décroissante
du temps et est constant pour tous les
neurones situés dans le voisinage
d'apprentissage. Cependant, la convergence

de l'algorithme est très améliorée

si ß(t) dépend aussi de la distance
du neurone considéré au neurone le
plus excité, autour duquel le voisinage
d'apprentissage est centré.

Cet article décrit l'implémentation
de réseaux de Kohonen complets à

parallélisme total. Ceci est rendu
possible par un stockage dynamique dis-
crétisé des poids synaptiques permettant

de simplifier le calcul de distance
et les opérations d'apprentissage, ainsi
que par la génération analogique du
voisinage d'apprentissage. Le réseau
exhibe un comportement numérique,
et des simulations ont montré que
l'utilisation de variables discrètes
n'altère pas la fonctionalité ni la
convergence du réseau.

Implementation de la
première couche du réseau

L'élément central des neurones de
la première couche est la cellule
synaptique. Les poids synaptiques sont

Figure 1

Structure d'un réseau
de Kohonen de cinq
neurones
à trois entrées
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Réseaux de neurones artificiels

codés sous forme d'une tension aux
bornes d'une capacité. Un système de
rafraîchissement basé sur le principe
de conversion analogique-digital «simple

pente» est utilisé pour compenser
les courants de fuite des capacités de
stockage [3]. Deux signaux d'horloge
Hl et H2 sont employés, tels que la

période de H2 est un multiple de celle
de Hl. Un délai contrôlé en tension
génère un signal H2d dont le retard
par rapport à H2 est proportionnel à

la tension V à rafraîchir. Enfin, un
détecteur de phase verrouille le front
montant de H2d sur l'un des fronts
montant de Hl. Ainsi, une relation est
établie entre le poids synaptique et le
nombre d'impulsions de Hl entre les
fronts montant de H2 et H2d. Ce principe

a été présenté dans une version

Vr o

4 Te

Détecteur
de phase

^r
Pr

Figure 2 Rafraîchissement de la tension Vc
aux bornes d'une capacité
Dès que Vr dépasse Vc, l'amplificateur passe
du mode comparateur au mode suiveur,
jusqu'au prochain front montant de Hl

simple en [4], la figure 2 montre une
version améliorée où l'offset du
générateur de délai est compensé.

L'entrée Xj est une impulsion codée
en largeur, synchrone avec H2. Grâce
au dispositif de stockage, le poids
synaptique est représenté (entre autre)
par le délai entre les fronts montant de
H2 et H2d. La distance de Manhattan
peut donc être calculée par le «Non-
OU exclusif» de Xj et H2d, dont la
sortie autorise le comptage des impul-

H I

H2 _T
H2d

X,(t)

|X|(t)-W(j(t)|-

1<- -Wjj(t)-

—wjj(t)-

Figure 4 Implantation de l'algorithme
d'apprentissage

sions de Hl par un compteur
asynchrone (fig.3). Il est à noter que le
calcul d'un produit scalaire est effectué

par une porte AND, à condition
cette fois que le signal d'entrée soit un
train d'impulsions équi-espacées.

Pendant la phase d'apprentissage,
un pointeur est généré par la seconde
couche du réseau, afin de sélectionner
les neurones compris dans le voisinage
d'apprentissage Nsr. Les neurones
sélectionnés réévaluent leurs poids sy-
naptiques de la façon suivante: Wjj(t)
autorise l'horloge Hl, dont les impulsions

décrémentent la valeur de Wlt(t)
en commutant une source de courant
vers la masse; puis Xj(t) autorise l'horloge

Hl, dont les impulsions incré-
mentent la valeur de Wr/(t) en commutant

une source de courant depuis Vdd
(fig-4).

Implementation de la seconde
couche du réseau

Un aspect important de la conception

d'un réseau de Kohonen est la
détection du neurone le plus excité,
ainsi que la génération du voisinage
d'apprentissage avec les différentes
valeurs de gain. Les sorties des
neurones sont des mots binaires de n bit.

où n dépend du nombre de synapses
par neurone et de la dynamique des
poids synaptiques. Dans notre solution.

la détection est réalisée en n pas,
par un détecteur de maximum travaillant

en mode numérique (fig.5). Au
pas k, les bit de poids k de toutes les
sorties des neurones sont comparés en
utilisant une porte OU distribuée sur
le réseau.

Une fois détecté le neurone le plus
excité, le voisinage d'apprentissage est
généré par un réseau résistif non-
linéaire [7]. Un nœud de ce réseau est
associé à chaque neurone de la
première couche. Les nœuds sont
connectés à la masse via une source de
courant, et reliés à leur quatre plus
proches voisins par un transistor
PMOS dont la grille est à la masse. Un

LSB MSB

Figure 5 Détecteur de maximum en mode
numérique

courant est injecté au nœud
correspondant au neurone le plus excité. Le
profil de tension aux nœuds voisins du
point d'injection est montré à la figure
6, il est donc bien adapté à la génération

du voisinage. Du fait de la variation

brutale de tension sur les bords,
le nombre de nœuds à l'intérieur du
voisinage est quasiment proportionnel
au courant injecté. Des mesures faites
sur un réseau orthogonal de 32 x 32
nœuds montrent que le voisinage a

une forme circulaire. De plus, en
seuillant les tensions aux nœuds du
réseau non-linéaire par une tension

3j Yj -Yth
Vth_

Yth

Figure 6

Génération du
voisinage
d'apprentissage
et du gain variable
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Figure 3 Calcul de la distance de Manhattan
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Réseaux de Kohonen

constante, il est possible de faire
varier le gain d'apprentissage.

Pendant la phase d'utilisation du
réseau, seul le détecteur de maximum
est opérant.

Simulations et résultats
préliminaires

Cette implémentation de réseaux de
Kohonen a été validée par des simulations

fonctionnelles. Des réseaux de
50 x 50 neurones à deux entrées ont
été simulés, où le gain d'apprentissage
b(t) dépend de la distance des
neurones au neurone le plus sensible au
vecteur d'entrée. Les variables
internes (poids synaptiques, entrées et
sorties) sont des mots binaires de 8

bit. Les réseaux simulés exhibent une
grande rapidité de convergence. La
figure 7 montre l'état d'un réseau de
Kohonen de 16 x 16 neurones à

l'initialisation et après la présentation de
10000 vecteurs d'entrée.

Plusieurs cellules de stockage sy-
naptique ont été réalisées dans une
technologie standard CMOS à deux
microns de grille et deux niveaux de
métal. Les mesures montrent que 200
niveaux de tension peuvent être
stockés sur la même capacité. La taille
d'une synapse complète incluant le
rafraîchissement du poids, le calcul de la
distance de Manhattan et l'apprentissage

local est de l'ordre de 200 par 300
/xm2. La figure 8 est la photographie

Figure 7 Etat d'un réseau de Kohonen de 16 x 16 neurones
a Initialisation
b Après 10000 pas d'apprentissage

Le carré englobant représente l'espace des vecteurs d'entrée de dimension 2. Le treillis
représente le réseau de neurones. Une intersection représente un neurone et son vecteur
synaptique dans l'espace des vecteurs d'entrée. Les segments représentent les relations de

voisinage entre les neurones

synaptiques peuvent être étendues à

d'autres réseaux.
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d'un neurone complet à trois
synapses, la dimension est de l'ordre de
300 par 800 /j,m:.

Conclusion
Grâce à l'utilisation de techniques

analogiques et digitales et à un codage
efficace des données, les fonctions
neuroniques usuelles sont réalisables à

un coût très faible en surface de
silicium. Ceci devrait permettre la
réalisation de réseaux modulaires de
grande dimension. De plus, les
applications du stockage discret des poids

Figure 8

Neurone à trois entrées
réalisé avec une
technologie CMOS 2/x
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