
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 83 (1992)

Heft: 5

Artikel: Simulation de réseaux de neurones artificiels

Autor: Blayo, François / Demartines, Pierre

DOI: https://doi.org/10.5169/seals-902802

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-902802
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Simulation

Simulation de réseaux de neurones artificiels
François Blayo, Pierre Demartines

La pratique des réseaux neuro-
naux requiert une maîtrise des
paramètres et des architectures
des modèles qui ne peut être
acquise par une seule approche
théorique. Une simulation sur
ordinateur permet d'avoir facilement

cette connaissance
intuitive qui permet de décider de
l'applicabilité d'un modèle. Une
méthode de conception de
simulateurs didactiques de réseaux
neuronaux est présentée dans
cet article ainsi que les éléments
de base nécessaires pour les
construire.

Die Arbeit mit neuronalen
Netzwerken verlangt eine Beherrschung

der Parameter und
Architekturen der Netzwerk-Modelle,
welche nicht durch einen theoretischen

Ansatz allein zu erreichen
ist. Rechner-Simulationen erlauben,

auf einfache Weise jene
intuitiven Kenntnisse zu erlangen,
welche man für den Entscheid
über die Anwendbarkeit eines
Modells benötigt. Der
vorliegende Artikel beschreibt eine
Entwurfsmethode für didaktische

Simulatoren von neuronalen

Netzwerken sowie die zu
deren Konstruktion nötigen
Basis-Elemente.

Adresse des auteurs
Dr. François Blayo et Pierre Demartines, ing. dipl.
EPFL, Ecole Polytechnique Fédérale de Lausanne,
Laboratoire de Microinformatique, INF - Ecublens,
1015 Lausanne.

Dans le cadre de toute formation,
l'approche pratique de la matière
passe par le développement d'outils
dédiés à l'expérimentation. Le
domaine des réseaux de neurones,
encore jeune, réclame d'autant plus ces
outils que les théories ne sont pas
encore connues. On privilégie donc un
enseignement intuitif, basé sur des
simulateurs logiciels, qui peut servir à

toute personne désireuse de développer
des applications à base de réseaux

neuronaux. Cela n'exclut évidemment
pas une démarche plus théorique, qui
doit compléter cette première
approche.

Dans cet article, on présente un jeu
de simulateurs de modèles connexion-
nistes considérés aujourd'hui comme
des modèles de base. Les deux volets,
enseignement et expérimentation,
sont décrits ainsi que les principes qui
ont guidé le développement logiciel.
On décrit enfin les problèmes spécifiques

liés à la simulation numérique
des modèles connexionnistes.

Fonction des simulateurs
Les multiples raisons qui ont

conduit au développement de simulateurs

de réseaux de neurones peuvent
être classées en deux catégories: les
raisons liées à l'enseignement et celles
liées à l'expérimentation. La
démarche générale de construction
réside en deux points: développement
d'un cœur algorithmique qui simule le
modèle retenu et d'un environnement
graphique qui permet la visualisation
de tous les constituants du modèle.
Cet environnement graphique permet
également de gérer les interactions entre

l'utilisateur et le simulateur.

Enseignement
Les mécanismes fondamentaux des

réseaux de neurones [1] sont difficile¬

ment accessibles sans un bagage théorique

important. La matière n'est
d'ailleurs enseignée que dans les
années terminales des écoles d'ingénieurs

et universités. Malgré le niveau
en général élevé des auditeurs de

cours, on a constaté que les démonstrations

formelles ne permettaient pas
de comprendre en profondeur les
applications possibles des modèles
présentés. Cela est dû à plusieurs
facteurs, parmi lesquels on retiendra les
suivants:

- la structure massivement parallèle
des réseaux ainsi que l'évolution
asynchrone des états des neurones
sont des mécanismes complexes
difficilement accessibles théoriquement,

- la notion d'apprentissage et non de

programmation rompt avec les

concepts traditionnels de l'informatique,

- la nouveauté des modèles qui ne
sont pas encore consolidés par une
théorie unique, cela se traduit par
une multitude de paramètres associés

à chaque modèle, qui sont parfois

dépendants du temps.

Pour essayer de contourner ces
difficultés, on a choisi de construire les
simulateurs sur trois principes:
interactivité, spécialisation et souplesse.

Interactivité
Le principe d'interactivité repose

sur la possibilité d'agir à tout moment
sur l'environnement de simulation. Le
fonctionnement du modèle simulé doit
se faire en temps réel, et toute modification

des paramètres doit avoir une
répercussion visuelle immédiate. On a

donc éliminé tout langage de
commande pour dialoguer avec le simulateur

[2; 3]. L'entrée des données est
assurée par l'action sur des
potentiomètres (fig. 1) et sur des boutons

Bulletin SEV/VSE 83(1992)5. 13. März 31

Réseaux de neurones artificiels

Network width : [10] i mrnmt | 30

Network height : [10] i HHi 1 30

Weights dimension : [2] 2 1 | 200

Weights precision : [13] i Mmmmm | 29

(fig. 2). Les valeurs associées sont
affichées instantanément en regard des

potentiomètres. Pour les paramètres
propres à l'adaptation on peut ainsi
connaître, par simple déplacement
aux extrêmes de la course possible des

potentiomètres, les valeurs minimales
et maximales admissibles pour le
paramètre concerné. Cette fonction est
essentielle pour assurer un fonctionnement

toujours correct de la simulation.

Elle donne une information
quantitative qui guide l'utilisateur en
cours d'expérimentation. Elle permet
également de connaître les ordres de
grandeur de tous les paramètres,
information souvent omise dans les
présentations théoriques.

Les valeurs associées aux éléments
du modèle (potentiel et valeur de sortie

du neurone, poids synaptique,
etc.) sont représentées par des
couleurs, permettant de mettre en
évidence leurs variations, même rapides.
Ce mode de représentation renforce
une compréhension qualitative du
fonctionnement du modèle simulé.
Les valeurs exactes peuvent être
connues en cliquant sur la représentation

des éléments. Elle est donc
ressentie comme une donnée facultative,
accessible pour une analyse profonde
du modèle.

La grande liberté d'action laissée à

l'utilisateur dans l'exploration des
simulateurs engendre des contraintes de
cohérence pour la gestion du contexte
de simulation. Les paramètres n'ont
pas tous la même importance sur l'état
de la simulation. Par exemple, la
modification manuelle du paramètre
d'adaptation a n'a qu'une influence
numérique sur le déroulement de la
simulation. Par contre, la modification
du nombre de neurones doit entraîner
une réinitialisation du contexte de
simulation. Il y a donc une classification
systématique à faire afin d'évaluer les
liens entre le contexte de simulation et
les paramètres du modèle simulé.

Spécialisation
Contrairement aux produits

commerciaux, d'usage général, ces simulateurs

sont dédiés à une application

Figure 1

Exemples de
potentiomètres

simple: quantification d'un espace
d'entrée et voyageur de commerce
pour Kohonen, reconnaissance de
motifs pour Hopfield, approximation
de fonctions pour le Perceptron multi-
couches, coloriage d'une carte pour le
modèle à coopération/compétition et
séparation de sources pour le modèle
de Hérault-Jutten.

Ce choix est justifié par la difficulté
rencontrée par les utilisateurs à

dissocier structure de réseau et règle
d'adaptation. En premier lieu, on
définit la structure (réseau bouclé ou
non rebouclé, interactions locales,
interactions aléatoires, etc.) puis on
choisit parmi les règles d'adaptation
admissibles sur cette structure, celle
qui convient au problème. Ainsi, en
liant l'application à la structure, sans
donner le choix à l'utilisateur, on
souligne l'effet des règles d'adaptation sur
le comportement général du modèle.
Pour chaque structure il y aura donc,
quand cela est possible, plusieurs
règles d'adaptation. Pour le réseau de

Hopfield (structure rebouclée) par
exemple, il y a trois règles d'adaptation:

Hebb, Projection et Delta
projection et cela pour une seule application.

Souplesse
La compréhension intuitive qui

découle en général des manipulations
avec ces simulateurs doit être complétée

par une étude théorique qui permet

d'intégrer le modèle. A cet effet,
on a retenu la solution de la programmation

du noyau des algorithmes.
Ainsi, tout utilisateur peut programmer

par lui-même le corps de
l'algorithme sans se préoccuper de la gestion

des événements, des fenêtres, des

[regions]
[distribution]
[refresh] period: 100

Figure 2 Exemples de boutons

entrées-sorties. Il suffit de remplir une
boîte noire qui reçoit et délivre des
valeurs à travers des variables déclarées

à cet effet. Le simulateur permet
ensuite de substituer cette boîte noire
au programme standard qui réalise la
simulation du modèle. Il est donc
possible de vérifier immédiatement
l'exactitude du programme écrit et, en
cas de mauvais fonctionnement, de
modifier sa propre compréhension du
modèle.

Cette possibilité est due à la
méthode de développement des

programmes. On a ainsi choisi de bâtir
trois bibliothèques (matricielle,
graphique et neuronale) qui sont appelées

par le programme qui gère les
interactions entre objets du simulateur.

Le corps de simulation n'est
donc qu'un objet quelconque auquel
on délivre un contexte et qui renvoie
des valeurs. La description des
bibliothèques sera reprise dans le
paragraphe sur les outils de développement.

Expérimentation
L'analyse des modèles, par un

utilisateur expert, est une fonction essentielle

pour la validation d'hypothèses
de recherche. L'environnement de
simulation présenté est enrichi de
fonctionnalités supplémentaires qui
permettent une étude quantitative des
fonctions des modèles. Le logiciel Ma-
thematica [4] a été retenu comme
instrument d'analyse. A cet effet, une
interface logicielle appropriée est intégrée

dans tous les simulateurs afin
d'exporter les résultats vers Mathema-
tica.

Pour simplifier la désignation des
objets ou groupes d'objets dont on
souhaite exporter les valeurs, il a été
décidé d'utiliser encore l'interface
graphique, sans langage de commande. Il
suffit de cliquer, avec le bouton de
droite de la souris, sur l'objet ou le

groupe d'objets concerné. Cela génère
automatiquement un fichier au format
de liste admissible par Mathematica, à

partir duquel on peut faire les traitements

numériques et les représentations

graphiques nécessaires à une
analyse quantitative approfondie
(fig. 3).

Plus généralement, des mécanismes
d'entrées-sorties par fichiers sont mis
à disposition de l'utilisateur expert,
pour aborder des traitements plus
élaborés que ceux proposés sur les cas
d'école. Le simulateur de Kohonen.
par exemple, permet d'entrer des vec-

32 Bulletin ASE/UCS 83(1992)5, 13 mars

Simulation

network state

Figure 3 Exemple de sortie vers
Mathematica

teurs de données issus de mesures ou
de bases de données. Il a été utilisé
ainsi pour des applications en traitement

d'images, traitement du son et
analyses géopolitiques de données
économiques. Un tel environnement
autorise ainsi une expérimentation
immédiate. à condition que les données
soient correctement conditionnées
(selon les modèles: centrage, normalisation,

etc.).
Enfin, l'appel à des librairies

matricielles et graphiques permet une
intervention rapide sur l'algorithme lui-
même pour en étudier les variantes
possibles. La préoccupation de
l'utilisateur se borne ainsi à une simple
modification du code correspondant au
modèle, sans avoir à intervenir dans
l'environnement de visualisation. A
terme, cette notion d'indépendance
entre le processus simulé et les outils
de visualisation sera étendue pour
mettre à disposition de l'utilisateur
une boîte à outils qui lui permettra de
se construire un environnement de
simulation ad hoc.

Figure 4

Sortie numérique

Outils de développement

Ces outils sont répartis en trois
librairies: neuronale, graphique et
matricielle. Elles sont orientées objet,
afin d'augmenter la souplesse et la
facilité de développement. Elles sont
écrites en C [5] sur Sun Sparestation
en utilisant le gestionnaire de fenêtres
Sunview [6],

Librairie neuronale
D'après notre expérience, le corps

des algorithmes permettant l'implantation

des modèles de base sur des
machines séquentielles est d'expression

généralement assez simple
(même si le calcul qui en résulte est
parfois coûteux). En utilisant un
formalisme matriciel, ces modèles de
base sont exprimés par des
algorithmes de quelques lignes. En
revanche. la représentation des données

(entrées et résultats) qui sont traitées
par ces réseaux de neurones simulés
est souvent délicate. D'autre part,
plusieurs modèles permettent le
traitement d'une même application; par
exemple, les réseaux de Kohonen, de

Hopfield et Perceptrons multi-couches
peuvent tous remplir la fonction de
mémoire associative, alors que les

problèmes d'optimisation peuvent

errd-ool - /bin/esh
0.000000
0.010417
-0.010417

être confiés à un réseau de Hopfield
ou de Kohonen.

Dès lors, il semble naturel, plutôt
que de développer un simulateur
universel de réseaux de neurones, de
s'orienter pour l'enseignement vers la
définition d'applications représentatives

des différentes classes de
problèmes traités par les réseaux de
neurones formels. Les différents modèles
sont donc vus au travers d'une
application spécifique. Il s'agit là d'une
approche duale des techniques
d'enseignement habituelles où. généralement,

après avoir présenté la théorie
mathématique justifiant un modèle,
on présente succinctement quelques
applications de ce modèle.

Le tableau I donne un aperçu des
classes de problèmes envisagées, de

l'application spécifique choisie pour
chaque classe et, dans la version
actuelle, du modèle utilisé. Ces différents

modèles sont rassemblés dans

une librairie neuronale. Bien que dans
la version actuelle des logiciels, chaque

application soit dédiée à un
modèle de réseau, ce concept sera dans
l'avenir affiné en dissociant complètement

les applications des modèles. On
pourra alors utiliser aussi bien un
réseau de Kohonen qu'un réseau de
Hopfield pour effectuer de la
reconnaissance de caractères, pour donner
un exemple concret. Il sera également
possible de mettre en série plusieurs
réseaux (pré-traitement) entre l'entrée

et la sortie.

Librairie graphique
En poursuivant cette démarche

d'unification, on constate qu'il est
possible de dégager un nombre
restreint de moyens de visualisation qui
rendront intelligibles des données a

priori abstraites. Il s'agit de:

11

11

Li

::::::'HumrjMN
«üiliiiüEü;Mil'•-m

tllllsi ,;:;ïg
^ BH

| :

mm

Classe Application spécifique Modèle

Mémoire associative

Discrétisation d'espaces,
classification

Réglage automatique

Optimisation
Problèmes np complets

Analyse en composantes
indépendantes

Apprentissage supervisé

Reconnaissance de motifs

Quantification de
distribution particulières
Pendule inversé

Voyageur de commerce

Co loriage de cartes en 4
couleurs

Séparation de signaux
temporels mélangés

Approximation de fonction

Hopfietd
Kohonen

Perceptron multicouches :

Kohonen

Coopération-Compétition

Hérault & Jutten

Perceptron multicouches

Bulletin SEV/VSE 83(1992)5. 13. März 33

Réseaux de neurones artificiels

Ces outils et toute l'infrastructure
logicielle utilisée pour leur définition
sont rassemblés dans la librairie
graphique.

Figure 5 Edition de motifs et sortie vers Mathematica

V[2 1]

N

/
t

»Cl 2]

Figure 7

Visualisation des

poids

Librairie matricielle
Afin d'apporter un maximum de

souplesse à la mise en œuvre des
algorithmes, ainsi qu'à notre propre
expérimentation sur de nouveaux
algorithmes, une librairie matricielle
gérant tous les problèmes d'utilisation
de la mémoire (auto-allocation et
garbage collecting) a été développée. Les
objets matrice et vecteur sont à la base
de la définition de tout algorithme
neuronal. La librairie neuronale fait
donc un large usage de cette librairie
de calcul matriciel. Un avantage sensible

de cette démarche est de pouvoir,
sans autre effort particulier, tester
l'effet de la quantification (c'est-à-dire
un nombre de bits limité pour la
représentation des données) sur les
différents algorithmes. En effet, dans la
définition des matrices et vecteurs, on
pourra inclure le type et la taille du
stockage des composantes (par exem¬

ple, composantes en virgule fixe sur 5

bits), ainsi que le type et la taille des

opérateurs élémentaires.
Un exemple du codage en C à l'aide

de cette librairie d'une partie d'algorithme

est donné dans la figure 11

ci-après (il s'agit de l'algorithme de Ja-
cobi utilisé pour trouver les sorties y
en fonction des entrées e et de la
matrice des poids synaptiques W dans le
modèle de Hérault-Jutten). Remarquons

que sans la facilité apportée par
la prise en charge de la gestion de la
mémoire nécessaire pour les différents
objets, le codage d'un tel algorithme
serait beaucoup plus fastidieux (le
programmeur devrait passer par
plusieurs tableaux temporaires explicite-

- Visualisation sous forme de
tableaux colorés, utilisables pour la
représentation des matrices de poids
synaptiques, de l'activité ou de l'état
des neurones dans un réseau rectangulaire.

Ces tableaux sont interactifs (ils
sont sensibles aux actions de la souris),

ce qui permet par exemple de
connaître la valeur numérique d'une
case (fig. 4), d'éditer des motifs (Hop-
field, fig. 5), de générer des fichiers
Mathematica, de désigner un neurone
(Kohonen, fig. 6), d'ouvrir des fenêtres

de visualisation de poids
(Hérault-Jutten, fig. 7) ou encore d'éditer
la palette des couleurs de l'écran du
Sun (fig. 8).
- Visualisation de signaux temporels
(semblables à des traces d'oscilloscope,

fig. 9), utilisables en traitement
du signal (dans l'algorithme de Hé-
rault-Jutten), mais aussi pour la
représentation de termes d'erreur, etc. Cet
objet est également interactif et permet

par exemple (dans Hérault-Jutten)
de modifier des amplitudes ou de

mettre en phase des signaux.

- Visualisation de signaux en X et Y
(également comme avec un oscilloscope,

fig. 10), pour la représentation
de l'évolution temporelle de couples

Figure 6

Relations entre
fenêtres de
visualisation

de poids. Ce dernier mode de
représentation est lui aussi un objet interactif.

Il permet (dans Hérault-Jutten) de
fixer les points de mélange et les couples

de poids.

34 Bulletin ASE/UCS 83(1992)5. 13 mars

Simulation

color map edit

SPEED I
I S¥AP [SPREAD 1 [IHII 1 iKESIOKEl

[CYCLE] CAHCEL] [OK]

Figure 8 Exemples d'opérations
engendrées par l'action de l'utilisateur

ment déclarés et gérer lui-même les

allocations mémoire). Le code qui
gagne ainsi en lisibilité et en souplesse
est plus facilement modifiable.

Passage de paramètres
en nombre variable,
orientation objet

L'écriture de ces librairies s'inspire
en partie des règles de programmation
définies dans les langages-objets [7].
Lors de la création d'une instance d'un
objet, le programmeur indique les
routines que cet objet va utiliser par
la suite. Par exemple, lors de la création

d'un tableau coloré (pattern),
l'adresse d'une routine fournissant un
numéro de couleur pour une position
dans le tableau est transmise, et c'est

Figure 9 Exemples d'afficheurs de

signaux temporels

cette routine qui sera automatiquement

appelée par la suite chaque fois
qu'une portion du tableau doit être
redessinée (dans le jargon des

langages-objets, on dit que la couleur en
fonction de la position dans le tableau
est une méthode de l'objet «pattern»,
fournie lors de la création d'instances
de cet objet). Dans l'exemple donné
ci-dessous, cette routine s'appelle
my_color_proc, et la librairie graphique

l'utilise sous la forme color my
__color_proc (pattern, x, y), où <x, y>
indique la case dont on demande la
couleur.

En outre, certaines routines de ces
trois librairies tolèrent un nombre
variable de paramètres. Cette possibilité,

inspirée du format d'appel des
routines de création d'instances d'objets

graphiques dans Sunview, engendre

une grande souplesse dans
l'utilisation, mais également dans le
développement des librairies. Pour
l'utilisation, la souplesse vient du fait que,
d'une part, on n'est pas obligé de
spécifier la totalité des paramètres (ce qui
est fort fastidieux lorsque leur nombre
est grand), et que, d'autre part, l'ordre

dans lequel ces paramètres sont
fournis est sans importance (fig. 12).
Pour le développement, ce passage de

paramètres par couple <clé, valeur>
est également très intéressant, parce
qu'il permet l'extension des possibilités

d'un objet par l'adjonction de

nouveaux paramètres sans avoir
besoin de modifier tous les programmes
qui utilisent cet objet.

Problèmes liés à la simulation
Cohérence de présentation

Il est souhaitable de présenter sur
l'écran un ensemble non-exhaustif des
différents paramètres, afin de ne pas

veiqhts
W[2 1]

L
j W[1 2]

1

j
i

Figure 10 Exemple d'afficheur

déconcerter un utilisateur peu familier
du modèle simulé. Les paramètres
sont donc regroupés en classes (par
exemple paramètres d'initialisation,
paramètres d'adaptation, etc.). Lorsque

le nombre total des paramètres
est trop important, chaque groupe est
accessible sur demande dans des fenêtres

séparées (ex.: simulateur de
réseau de Kohonen). Malgré ce découpage,

des actions sur certains
paramètres engendrent parfois un changement

d'autres paramètres (comme
dans Kohonen, où le changement de
dimension du réseau va engendrer une
réinitialisation des paramètres de
contrôle des fonctions alpha et
voisinage). De toute manière, qu'ils soient
affichés ou non, il est indispensable de
maintenir la cohérence la plus rigou-

0)IIo>-»

2) fn Jn-l-We
calculer yio est codé:

Vector e, y;
Ma t rix W ;

ASSIGN(y, e);
for (i 0; i < 10; i++)
ASSIGN (y, sub(y, mult(W, e)));

Figure 11 Exemple de codage

reuse entre l'état des différents
paramètres et l'état du simulateur (dans
certaines conditions, des boutons sont
inutilisables et sont donc soit cachés
soit en grisé). Cette cohérence doit
également être observée dans les
différents affichages, pour ne pas troubler

la compréhension de l'utilisateur,
ce qui implique souvent l'utilisation de
listes de dépendance (liste de tous les

objets sur lesquels une action doit se

répercuter).

Pseudo-parallélisme, vitesse de
simulation

Un des facteurs de confort dans
l'utilisation de ces simulateurs est de

pouvoir changer des paramètres
lorsqu'une action est en cours (par exemple

dans Kohonen, contrôle manuel
du paramètre alpha en cours d'adaptation).

Dans l'environnement retenu
(Sun Sparestation et Sunview), la
solution paraissant la plus satisfaisante a

été de confier la gestion du
pseudoparallélisme au système de fenêtrage
(Sunview), lequel dispose de fonctions
pour lancer des actions à intervalles
réguliers (polling). La philosophie

Bulletin SEV/VSE 83(1992)5. 13. März 35

Réseaux de neurones artificiels

a Pattern my pat;

my pat pattern create(parent frame,
PAT_COLUMNS, 10,
PAT_LINES, 15,
PAT COLOR PROC, my color proc,
0) ;

b Pattern my_pat;

my pat pattern create(parent frame,
PAT SELECT DOWN PROC,

my notification proc.
PAT_X, 500,
PAT_Y, 300,
PAT_COLOR_PROC, my color proc,
PAT_COLUMNS, 10,
PAT LINES, 15,
P AT B LOCK MIN_SIZE, 3,
PAT BLOCK SIZE, 10,
PAT CLIENT DATA, sanything,
0) ;

Figure 12 Exemple de codage
a Création d'un tableau coloré, appelé pattern
b Même exemple, avec plus de spécifications: position x, y, routine de notification en

cas de sélection par l'utilisateur, contraintes sur la taille des carrés colorés, etc.

d'emploi de cette fonctionnalité est la
même que pour les actions déclenchées

par l'utilisateur (boutons, etc.):
une procédure définie par l'utilisateur
est appelée chaque fois que c'est
nécessaire (en l'occurrence à intervalles
de temps définis dans le programme).
Comme il s'agit de pseudo-parallélisme,

le contrôle n'est rendu au
gestionnaire de fenêtre qu'après l'exécution

complète de la procédure. Pour
cette raison, il n'est pas acceptable
que ces procédures répétitives aient
un temps d'exécution trop long. En
effet, lorsque c'est le cas (rencontré
dans certaines versions en cours de

développement), le programme perd
son interactivité et toutes les actions
de l'utilisateur (emploi de boutons,
modifications de paramètres) sont
retardées d'une façon inadmissible
(plusieurs secondes). Il a donc fallu découper

toutes les actions trop longues en
plusieurs petites pouvant être effectuées

en plusieurs étapes. De même,
on a souvent choisi des algorithmes
simplifiés pour garantir une vitesse de
simulation acceptable.

Dans Hérault-Jutten, les signaux de
sorties sont calculés par itérations de
l'algorithme de Jacobi, au lieu de
calculer l'inverse de la matrice des poids

synaptiques qui permet d'obtenir la
solution analytique. Si l'on considère
d'ailleurs un réseau de Hérault-Jutten
physique (électronique ou biologique),

c'est en fait cet algorithme itératif
de Jacobi qui sera implicitement

employé (les opérateurs n'ayant pas
une bande passante infinie). Dans le
simulateur de Kohonen, c'est
l'algorithme du «winner take all» qui est
utilisé, au lieu de l'algorithme original
et fortement coûteux en temps de calcul

sur machine séquentielle (émergence

d'une bulle d'activité par
relaxation d'un réseau à connexions
latérales). La vraisemblance biologique
de l'algorithme simplifié de Kohonen
est, contrairement à l'algorithme
simplifié de Hérault-Jutten, relativement
faible.

Domaine de variation des paramètres
Le choix de ce domaine de variation

numérique des paramètres, ainsi que
leur valeur par défaut (valeur à

l'initialisation) est un point délicat. En
effet, ce sujet est relativement peu
abordé dans les présentations théoriques

des modèles de réseaux de
neurones, et de nombreux tâtonnements
ont été nécessaires pour fixer les va¬

leurs adéquates. Ces simulateurs
constituent un apport intéressant pour
les utilisateurs désirant exploiter
certains modèles, et qui pourront ainsi
appréhender les ordres de grandeur
des valeurs numériques utilisées.

Conclusion
Dans cet article, on a présenté une

méthodologie de développement de
simulateurs de réseaux de neurones.
L'approche retenue, qui privilégie
l'interactivité et la souplesse, présente
de nombreux avantages pour la
formation et l'expérimentation rapide
d'hypothèses algorithmiques
appliquées à des cas concrets.

Les simulateurs développés ont été
exploités pour l'enseignement destiné
aux années terminales des écoles
d'ingénieurs, ainsi que pour la formation
industrielle dans le cadre d'un projet
Comett. De futurs développements
sont à l'étude afin d'enrichir la famille
de modèles simulés (Algorithmes à

structure évolutive, Time-Delay Neural

Networks, etc.) et d'étendre la
notion d'outil de visualisation pour la
rendre, à terme, indépendante des
modules de simulation.

Remerciements
Les auteurs tiennent à remercier

L. Tettoni et G. Baratoff pour le
développement des librairies et des
simulateurs. Le développement des
librairies a été supporté par le Fonds
National Suisse de la Recherche
Scientifique, dans le cadre du projet
Esprit-BRA Nerves n'3049. Le
développement des simulateurs a été
partiellement supporté par le projet
Comett N eural n° 90/1/3116/Cb.

Bibliographie
[1] F. Blayo\ Cours de base en réseaux de neurones

artificiels, EPF-Lausanne, 1991.
[2] P. Demartines: Manuels d'utilisation du simula¬

teur de réseau de Kohonen, du simulateur de
réseau de Hopfield. du simulateur de réseau de
Hérault-Jutten, rapports internes, novembre
1990.

[3] L. Tettoni: Manuel d'utilisation du simulateur de
Perceptron avec rétro-propagation de gradient,
rapport interne, novembre 1990.

[4] S. Wolfram: Mathematica. A system for Doing
Mathematics by Computer. Addison-Wesley,
1988.

[5] B.W. Kernighan. D.M. Ritchie: The C Programming

Language, Prentice Hall, 1988.
[6] Sun microsystems: Sunview, Sun View 1 Pro¬

grammer's guide, 1988.
[7] B. Meyer. Object-oriented Software Construc¬

tion, Prentice Hall, C.A.R. Hoare ed., 1988.

36 Bulletin ASE/UCS 83(1992)5,13 mars

	Simulation de réseaux de neurones artificiels

