Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 83 (1992)

Heft: 5

Artikel: Simulation de réseaux de neurones artificiels

Autor: Blayo, Francois / Dematrtines, Pierre

DOl: https://doi.org/10.5169/seals-902802

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-902802
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Simulation

Simulation de réseaux de neurones artificiels

Francois Blayo, Pierre Demartines

La pratique des réseaux neuro-
naux requiert une maitrise des
parameétres et des architectures
des modéles qui ne peut étre
acquise par une seule approche
théorique. Une simulation sur
ordinateur permet d’avoir facile-
ment cette connaissance in-
tuitive qui permet de décider de
I'applicabilité d’'un modéle. Une
méthode de conception de simu-
lateurs didactiques de réseaux
neuronaux est présentée dans
cet article ainsi que les éléments
de base nécessaires pour les
construire.

Die Arbeit mit neuronalen Netz-
werken verlangt eine Beherr-
schung der Parameter und Archi-
tekturen der Netzwerk-Modelle,
welche nicht durch einen theore-
tischen Ansatz allein zu erreichen
ist. Rechner-Simulationen erlau-
ben, auf einfache Weise jene in-
tuitiven Kenntnisse zu erlangen,
welche man fiir den Entscheid
liber die Anwendbarkeit eines
Modells benétigt. Der vor-
liegende Artikel beschreibt eine
Entwurfsmethode fiir didak-
tische Simulatoren von neuro-
nalen Netzwerken sowie die zu
deren Konstruktion nétigen
Basis-Elemente.

Adresse des auteurs

Dr. Frangois Blayo et Pierre Demartines, ing. dipl.
EPFL. Ecole Polytechnique Fédérale de Lausanne,
Laboratoire de Microinformatique, INF - Ecublens.
1015 Lausanne.

Dans le cadre de toute formation,
I'approche pratique de la matiere
passe par le développement d’outils
dédiés a l'expérimentation. Le do-
maine des réseaux de neurones, en-
core jeune, réclame d’autant plus ces
outils que les théories ne sont pas en-
core connues. On privilégie donc un
enseignement intuitif, basé sur des si-
mulateurs logiciels, qui peut servir a
toute personne désireuse de dévelop-
per des applications a base de réseaux
neuronaux. Cela n’exclut évidemment
pas une démarche plus théorique, qui
doit compléter cette premiere ap-
proche.

Dans cet article, on présente un jeu
de simulateurs de modeles connexion-
nistes considérés aujourd’hui comme
des modeles de base. Les deux volets,
enseignement et expérimentation,
sont décrits ainsi que les principes qui
ont guidé le développement logiciel.
On décrit enfin les problemes spécifi-
ques liés a la simulation numérique
des modeles connexionnistes.

Fonction des simulateurs

Les multiples raisons qui ont
conduit au développement de simula-
teurs de réseaux de neurones peuvent
étre classées en deux catégories: les
raisons li€es a ’enseignement et celles
liées a l'expérimentation. La dé-
marche générale de construction ré-
side en deux points: développement
d’un cceur algorithmique qui simule le
modele retenu et d’'un environnement
graphique qui permet la visualisation
de tous les constituants du modele.
Cet environnement graphique permet
également de gérer les interactions en-
tre I"utilisateur et le simulateur.

Enseignement

Les mécanismes fondamentaux des
réseaux de neurones [1] sont difficile-

ment accessibles sans un bagage théo-
rique important. La matiére n’est
d’ailleurs enseignée que dans les an-
nées terminales des écoles d’ingé-
nieurs et universités. Malgré le niveau
en général élevé des auditeurs de
cours, on a constaté que les démons-
trations formelles ne permettaient pas
de comprendre en profondeur les ap-
plications possibles des modeles pré-
sentés. Cela est di a plusieurs fac-
teurs, parmi lesquels on retiendra les
suivants:

— la structure massivement parallele
des réseaux ainsi que [’évolution
asynchrone des états des neurones
sont des mécanismes complexes dif-
ficilement accessibles théorique-
ment,

— la notion d’apprentissage et non de
programmation rompt avec les
concepts traditionnels de I'informa-
tique,

— la nouveauté des modeéles qui ne
sont pas encore consolidés par une
théorie unique, cela se traduit par
une multitude de parametres asso-
ciés a chaque modele, qui sont par-
fois dépendants du temps.

Pour essayer de contourner ces dif-
ficultés, on a choisi de construire les
simulateurs sur trois principes: inter-
activité, spécialisation et souplesse.

Interactivité

Le principe d’interactivité repose
sur la possibilité d’agir a tout moment
sur I'environnement de simulation. Le
fonctionnement du modele simulé doit
se faire en temps réel, et toute modifi-
cation des parametres doit avoir une
répercussion visuelle immédiate. On a
donc éliminé tout langage de com-
mande pour dialoguer avec le simula-
teur [2; 3]. L’entrée des données est
assurée par l'action sur des poten-
tiometres (fig. 1) et sur des boutons

Bulletin SEV/VSE 83(1992)5. 13. Miirz

31

Réseaux de neurones artificiels

Figure 1
Exemples de
Network width [10] potentiomeétres
Network height [10]
Weights dimension : [2]
Weights precision : [13]

(fig. 2). Les valeurs associées sont affi-
chées instantanément en regard des
potentiometres. Pour les parametres
propres a l'adaptation on peut ainsi
connaitre, par simple déplacement
aux extrémes de la course possible des
potentiometres, les valeurs minimales
et maximales admissibles pour le para-
metre concerné. Cette fonction est es-
sentielle pour assurer un fonctionne-
ment toujours correct de la simula-
tion. Elle donne une information
quantitative qui guide I'utilisateur en
cours d’expérimentation. Elle permet
également de connaitre les ordres de
grandeur de tous les parametres, in-
formation souvent omise dans les pré-
sentations théoriques.

Les valeurs associées aux éléments
du modele (potentiel et valeur de sor-
tie du neurone, poids synaptique.
etc.) sont représentées par des cou-
leurs, permettant de mettre en évi-
dence leurs variations, méme rapides.
Ce mode de représentation renforce
une compréhension qualitative du
fonctionnement du modele simulé.
Les valeurs exactes peuvent étre
connues en cliquant sur la représenta-
tion des éléments. Elle est donc res-
sentie comme une donnée facultative.
accessible pour une analyse profonde
du mode¢le.

La grande liberté d’action laissée a
I'utilisateur dans I'exploration des si-
mulateurs engendre des contraintes de
cohérence pour la gestion du contexte
de simulation. Les parametres n’ont
pas tous la méme importance sur I'état
de la simulation. Par exemple, la mo-
dification manuelle du parametre
d’adaptation a n’a qu’une influence
numérique sur le déroulement de la
simulation. Par contre, la modification
du nombre de neurones doit entrainer
une réinitialisation du contexte de si-
mulation. Il y a donc une classification
systématique a faire afin d’évaluer les
liens entre le contexte de simulation et
les parametres du modele simulé.

Spécialisation

Contrairement aux produits com-
merciaux, d'usage général, ces simula-
teurs sont dédiés a une application

simple: quantification d’'un espace
d’entrée et voyageur de commerce
pour Kohonen, reconnaissance de
motifs pour Hopfield. approximation
de fonctions pour le Perceptron multi-
couches. coloriage d'une carte pour le
modele a coopération/compétition et
séparation de sources pour le modele
de Hérault-Jutten.

Ce choix est justifié par la difficulté
rencontrée par les utilisateurs a dis-
socier structure de réseau et regle
d’adaptation. En premier lieu. on dé-
finit la structure (réseau bouclé ou
non rebouclé, interactions locales. in-
teractions aléatoires. etc.) puis on
choisit parmi les regles d’adaptation
admissibles sur cette structure. celle
qui convient au probléme. Ainsi, en
liant I'application a la structure. sans
donner le choix a l'utilisateur, on sou-
ligne I'effet des regles d’adaptation sur
le comportement général du modele.
Pour chaque structure il y aura donc,
quand cela est possible. plusieurs re-
gles d’adaptation. Pour le réseau de
Hopfield (structure rebouclée) par
exemple, il y a trois regles d’adapta-
tion: Hebb, Projection et Delta pro-
jection et cela pour une seule applica-
tion.

Souplesse

La compréhension intuitive qui dé-
coule en général des manipulations
avec ces simulateurs doit étre complé-
tée par une étude théorique qui per-
met d'intégrer le modele. A cet effet,
on a retenu la solution de la program-
mation du noyau des algorithmes.
Ainsi, tout utilisateur peut program-
mer par lui-méme le corps de I'algo-
rithme sans se préoccuper de la ges-
tion des événements, des fenétres, des

regions

[distribution]

period: 100

Figure 2 Exemples de boutons

entrées-sorties. Il suffit de remplir une
boite noire qui recoit et délivre des
valeurs a travers des variables décla-
rées a cet effet. Le simulateur permet
ensuite de substituer cette boite noire
au programme standard qui réalise la
simulation du modele. Il est donc pos-
sible de vérifier immédiatement
I'exactitude du programme écrit et, en
cas de mauvais fonctionnement. de
modifier sa propre compréhension du
modele.

Cette possibilité est due a la mé-
thode de développement des pro-
grammes. On a ainsi choisi de batir
trois bibliotheques (matricielle, gra-
phique et neuronale) qui sont appe-
lées par le programme qui gere les
interactions entre objets du simula-
teur. Le corps de simulation n’est
donc qu’un objet quelconque auquel
on délivre un contexte et qui renvoie
des valeurs. La description des biblio-
theques sera reprise dans le para-
graphe sur les outils de développe-
ment.

Expérimentation

L’analyse des modeles, par un utili-
sateur expert, est une fonction essen-
tielle pour la validation d’hypotheses
de recherche. L’environnement de si-
mulation présenté est enrichi de fonc-
tionnalités supplémentaires qui per-
mettent une €tude quantitative des
fonctions des modeles. Le logiciel Ma-
thematica [4] a été retenu comme ins-
trument d’analyse. A cet effet, une
interface logicielle appropriée est inté-
grée dans tous les simulateurs afin
d’exporter les résultats vers Mathema-
tica.

Pour simplifier la désignation des
objets ou groupes d’objets dont on
souhaite exporter les valeurs. il a été
décidé d’utiliser encore l'interface gra-
phique. sans langage de commande. Il
suffit de cliquer. avec le bouton de
droite de la souris, sur I'objet ou le
groupe d’objets concerné. Cela génere
automatiquement un fichier au format
de liste admissible par Mathematica, a
partir duquel on peut faire les traite-
ments numériques et les représenta-
tions graphiques nécessaires a une
analyse quantitative approfondie
(fig. 3).

Plus généralement, des mécanismes
d’entrées-sorties par fichiers sont mis
a disposition de [l'utilisateur expert,
pour aborder des traitements plus éla-
borés que ceux proposés sur les cas
d’école. Le simulateur de Kohonen,
par exemple, permet d’entrer des vec-

32

Bulletin ASE/UCS 83(1992)5. 13 mars

Simulation

network state

Figure 3 Exemple de sortie vers
Mathematica

teurs de données issus de mesures ou
de bases de données. Il a été utilisé
ainsi pour des applications en traite-
ment d’images. traitement du son et
analyses géopolitiques de données
économiques. Un tel environnement
autorise ainsi une expérimentation im-
médiate, a condition que les données
soient correctement conditionnées
(selon les modeles: centrage, normali-
sation, etc.).

Enfin, I'appel a des librairies matri-
cielles et graphiques permet une inter-
vention rapide sur l'algorithme lui-
méme pour en €tudier les variantes
possibles. La préoccupation de ['utili-
sateur se borne ainsi a une simple mo-
dification du code correspondant au
modele, sans avoir a intervenir dans
I'environnement de visualisation. A
terme, cette notion d’indépendance
entre le processus simulé et les outils
de visualisation sera étendue pour
mettre a disposition de ['utilisateur
une boite a outils qui lui permettra de
se construire un environnement de si-
mulation ad hoc.

b
gy
i
2
i
%
&8
o
i
&
&

HEEREEARRNEn

Figure 4
Sortie numérique

Outils de développement

Ces outils sont répartis en trois li-
brairies: neuronale, graphique et ma-
tricielle. Elles sont orientées objet,
afin d’augmenter la souplesse et la fa-
cilit¢é de développement. Elles sont
écrites en C [5] sur Sun Sparcstation
en utilisant le gestionnaire de fenétres
Sunview [6].

Librairie neuronale

D’apres notre expérience, le corps
des algorithmes permettant I'implan-
tation des modeles de base sur des
machines séquentielles est d’expres-
sion généralement assez simple
(méme si le calcul qui en résulte est
parfois couteux). En utilisant un for-
malisme matriciel, ces modéeles de
base sont exprimés par des algo-
rithmes de quelques lignes. En re-
vanche. la représentation des données

étre confiés a un réseau de Hopfield
ou de Kohonen.

Des lors, il semble naturel, plutot
que de développer un simulateur uni-
versel de réseaux de neurones, de
s’orienter pour l’enseignement vers la
définition d’applications représenta-
tives des différentes classes de pro-
blemes traités par les réseaux de neu-
rones formels. Les différents modeles
sont donc vus au travers d’une appli-
cation spécifique. Il s’agit 1a d’une ap-
proche duale des techniques d’ensei-
gnement habituelles ou, générale-
ment, apres avoir présenté la théorie
mathématique justifiant un modele,
on présente succinctement quelques
applications de ce modele.

Le tableau I donne un apercu des
classes de problemes envisagées. de
I'application spécifique choisie pour
chaque classe et, dans la version ac-
tuelle. du modele utilisé. Ces diffé-
rents modeles sont rassemblés dans

classification

Réglage automatique
Optimisation

Problemes np complets

Analyse en composantes
indépendantes

Apprentissage superyisé

Classe Application spécifique Modéle
Mémoire associative Reconnaissance de motifs Hopfield
Discrétisation d’espaces, Quantification de Kohonen

distribution particulieres
Pendule inversé
Voyageur de commerce

Sépa.raﬁoh de sighaux
temporels mélangés
| Approximation de fonction

Perceptron multicouches |

Kohonen

fes en4

. HErault & Jutten v

| Perceptron multicouches

(entrées et résultats) qui sont traitées
par ces réseaux de neurones simulés
est souvent dé€licate. D’autre part,
plusieurs modeles permettent le trai-
tement d’'une méme application; par
exemple, les réseaux de Kohonen. de
Hopfield et Perceptrons multi-couches
peuvent tous remplir la fonction de
mémoire associative, alors que les
problemes d’optimisation peuvent

crdtocl - /bin/csh
i 0. 000000

& 0.010417
-0.010417

=]0.0C3000

une librairie neuronale. Bien que dans
la version actuelle des logiciels, cha-
que application soit dédiée a un mo-
dele de réseau, ce concept sera dans
I'avenir affiné en dissociant complete-
ment les applications des modéles. On
pourra alors utiliser aussi bien un ré-
seau de Kohonen qu’un réseau de
Hopfield pour effectuer de la recon-
naissance de caracteres, pour donner
un exemple concret. Il sera également
possible de mettre en série plusieurs
réseaux (pré-traitement) entre I’en-
trée et la sortie.

Librairie graphique

En poursuivant cette démarche
d’unification, on constate qu’il est
possible de dégager un nombre res-
treint de moyens de visualisation qui
rendront intelligibles des données a
priori abstraites. Il s’agit de:

Bulletin SEV/VSE 83(1992)5. 13. Mirz

33

Réseaux de neurones artificiels

Figure 5 Edition de motifs et sortie vers Mathematica

- Visualisation sous forme de ta-
bleaux colorés, utilisables pour la re-
présentation des matrices de poids
synaptiques, de l'activité ou de I'état
des neurones dans un réseau rectangu-
laire. Ces tableaux sont interactifs (ils
sont sensibles aux actions de la sou-
ris), ce qui permet par exemple de
connaitre la valeur numérique d’une
case (fig. 4), d’éditer des motifs (Hop-
field, fig. 5), de générer des fichiers
Mathematica, de désigner un neurone
(Kohonen, fig. 6), d’ouvrir des fené-
tres de visualisation de poids (Hé-
rault-Jutten, fig. 7) ou encore d’éditer
la palette des couleurs de I’écran du
Sun (fig. 8).

- Visualisation de signaux temporels
(semblables a des traces d’oscillos-
cope, fig. 9), utilisables en traitement
du signal (dans I'algorithme de Hé-
rault-Jutten), mais aussi pour la repré-
sentation de termes d’erreur, etc. Cet
objet est également interactif et per-
met par exemple (dans Hérault-Jut-
ten) de modifier des amplitudes ou de
mettre en phase des signaux.

— Visualisation de signaux en X et Y
(également comme avec un oscillos-
cope, fig. 10). pour la représentation
de I'évolution temporelle de couples

Ces outils et toute l'infrastructure
logicielle utilisée pour leur définition
sont rassemblés dans la librairie gra-
phique.

Librairie matricielle

Afin d’apporter un maximum de
souplesse a la mise en ceuvre des algo-
rithmes, ainsi qu’a notre propre expé-
rimentation sur de nouveaux algo-
rithmes, une librairie matricielle gé-
rant tous les problemes d’utilisation
de la mémoire (auto-allocation et gar-
bage collecting) a été développée. Les
objets matrice et vecteur sont a la base
de la définition de tout algorithme
neuronal. La librairie neuronale fait
donc un large usage de cette librairie
de calcul matriciel. Un avantage sensi-
ble de cette démarche est de pouvoir,
sans autre effort particulier, tester
I’effet de la quantification (c’est-a-dire
un nombre de bits limité pour la re-
présentation des données) sur les dif-
férents algorithmes. En effet, dans la
définition des matrices et vecteurs, on
pourra inclure le type et la taille du
stockage des composantes (par exem-

Figure 6
Relations entre
fenétres de
visualisation

veights proj. C 2 conponents|
1, ¥: 2

de poids. Ce dernier mode de repré-
sentation est lui aussi un objet interac-
tif. Il permet (dans Hérault-Jutten) de
fixer les points de mélange et les cou-
ples de poids.

g -

¥[2 1]

gf;gntgﬁ TR
4
Sisiimeaa
b
‘*Eg ‘i:*-o- H
F 3 V(1 2)

RRX] % X
S S
%11&' 1B e Figure 7

X XX Bt SR X f . . .
e e '; Visualisation des
poids

ple, composantes en virgule fixe sur 5
bits), ainsi que le type et la taille des
opérateurs élémentaires.

Un exemple du codage en C a 'aide
de cette librairie d’une partie d’algo-
rithme est donné dans la figure 11
ci-apres (il s’agit de I'algorithme de Ja-
cobi utilisé pour trouver les sorties y
en fonction des entrées e et de la ma-
trice des poids synaptiques W dans le
modele de Hérault-Jutten). Remar-
quons que sans la facilité apportée par
la prise en charge de la gestion de la
mémoire nécessaire pour les différents
objets, le codage d’un tel algorithme
serait beaucoup plus fastidieux (le
programmeur devrait passer par plu-
sieurs tableaux temporaires explicite-

34

Bulletin ASE/UCS 83(1992)5. 13 mars

Simulation

color map edit

R [255]
G [255]
B [255]
SPEED [
(swap) ((SpreAD) (INIT) (RESIORE)

(cucLe) (cancer) (Cox)

Figure 8 Exemples d’opérations
engendrées par I'action de I'utilisateur

ment déclarés et gérer lui-méme les
allocations mémoire). Le code qui
gagne ainsi en lisibilité et en souplesse
est plus facilement modifiable.

Passage de parametres
en nombre variable,
orientation objet

L’écriture de ces librairies s’inspire
en partie des regles de programmation
définies dans les langages-objets [7].
Lors de la création d’une instance d’un
objet, le programmeur indique les
routines que cet objet va utiliser par
la suite. Par exemple, lors de la créa-
tion d'un tableau coloré (pattern),
I'adresse d’une routine fournissant un
numéro de couleur pour une position
dans le tableau est transmise, et c’est

e

Figure 9 Exemples d’afficheurs de
signaux temporels

cette routine qui sera automatique-
ment appelée par la suite chaque fois
qu'une portion du tableau doit étre
redessinée (dans le jargon des lan-
gages-objets, on dit que la couleur en
fonction de la position dans le tableau
est une méthode de I'objet «pattern»,
fournie lors de la création d’instances
de cet objet). Dans I'’exemple donné
ci-dessous, cette routine s'appelle
my_color_proc. et la librairie graphi-
que ['utilise sous la forme color = my
_color_proc (pattern, x, y), ou <x, y>
indique la case dont on demande la
couleur.

En outre, certaines routines de ces
trois librairies tolerent un nombre va-
riable de parametres. Cette possibi-
lité. inspirée du format d’appel des
routines de création d’instances d’ob-
jets graphiques dans Sunview. engen-
dre une grande souplesse dans I'utili-
sation, mais également dans le déve-
loppement des librairies. Pour 1'utili-
sation, la souplesse vient du fait que.
d’une part, on n’est pas obligé de spé-
cifier la totalité des parametres (ce qui
est fort fastidieux lorsque leur nombre
est grand), et que, d’autre part, l'or-
dre dans lequel ces paramétres sont
fournis est sans importance (fig. 12).
Pour le développement, ce passage de
parameétres par couple <clé, valeur>
est également trés intéressant, parce
qu’il permet I’extension des possibi-
lités d’un objet par l'adjonction de
nouveaux parametres sans avoir be-
soin de modifier tous les programmes
qui utilisent cet objet.

Problemes liés a la simulation

Cohérence de présentation

Il est souhaitable de présenter sur
I’écran un ensemble non-exhaustif des
différents parametres, afin de ne pas

weights
w2 1]

V1 2]

Figure 10 Exemple d’afficheur

déconcerter un utilisateur peu familier
du modele simulé. Les parametres
sont donc regroupés en classes (par
exemple parametres d’initialisation,
parametres d’adaptation, etc.). Lors-
que le nombre total des parametres
est trop important, chaque groupe est
accessible sur demande dans des fené-
tres séparées (ex.: simulateur de ré-
seau de Kohonen). Malgré ce décou-
page, des actions sur certains para-
metres engendrent parfois un change-
ment d’autres parametres (comme
dans Kohonen, ou le changement de
dimension du réseau va engendrer une
réinitialisation des parametres de
contrdle des fonctions alpha et voisi-
nage). De toute maniere, qu’ils soient
affichés ou non, il est indispensable de
maintenir la cohérence la plus rigou-

1) yo=e
2) Yn=yn-1- We

calculer yq(est codé:

Vector e, y;
Matrix W;

ASSIGN (y, e);
for (i = 0; 1 < 10; i++)

ASSIGN (y, sub(y, mult (W, e)));

Figure 11 Exemple de codage

reuse entre I'état des différents para-
metres et I'état du simulateur (dans
certaines conditions, des boutons sont
inutilisables et sont donc soit cachés
soit en grisé). Cette cohérence doit
également étre observée dans les dif-
térents affichages, pour ne pas trou-
bler la compréhension de I'utilisateur,
ce qui implique souvent I'utilisation de
listes de dépendance (liste de tous les
objets sur lesquels une action doit se
répercuter).

Pseudo-parallélisme, vitesse de
simulation

Un des facteurs de confort dans
I'utilisation de ces simulateurs est de
pouvoir changer des parameétres lors-
qu’une action est en cours (par exem-
ple dans Kohonen, contréle manuel
du parametre alpha en cours d’adapta-
tion). Dans l'environnement retenu
(Sun Sparcstation et Sunview), la so-
lution paraissant la plus satisfaisante a
été de confier la gestion du pseudo-
parallélisme au systéme de fenétrage
(Sunview), lequel dispose de fonctions
pour lancer des actions a intervalles
réguliers (polling). La philosophie

Bulletin SEV/VSE 83(1992)5. 13. Mirz

35

Réseaux de neurones artificiels

a Pattern my_pat;

my_pat =

0);

pattern_ create (parent_frame,
PAT_COLUMNS, 10,
PAT_LINES,
PAT_COLOR_PROC,

15;
my color_proc,

b Pattern my pat;

my_ pat =

pattern create (parent_frame,
PAT_SELECT_DOWN_PROC,
my notification_proc,

PAT X, 500,
PAT_Y, 300,
PAT COLOR_PROC, my_ color_proc,
PAT COLUMNS, 10,
PAT_ LINES, Loy
PAT BLOCK MIN SIZE, 3,
PAT BLOCK SIZE, 10,
PAT CLIENT DATA, &anything,
0):
Figure 12 Exemple de codage
a Création d’un tableau coloré, appelé pattern
b Méme exemple, avec plus de spécifications: position X, y. routine de notification en

cas de sélection par l'utilisateur, contraintes sur la taille des carrés colorés, etc.

d’emploi de cette fonctionnalité est la
méme que pour les actions déclen-
chées par I'utilisateur (boutons, etc.):
une procédure définie par 'utilisateur
est appelée chaque fois que c’est né-
cessaire (en I'occurrence a intervalles
de temps définis dans le programme).
Comme il s’agit de pseudo-parallé-
lisme, le contrdle n’est rendu au ges-
tionnaire de fenétre qu’apres I'exécu-
tion complete de la procédure. Pour
cette raison, il n’est pas acceptable
que ces procédures répétitives aient
un temps d’exécution trop long. En
effet, lorsque c’est le cas (rencontré
dans certaines versions en cours de
développement), le programme perd
son interactivité et toutes les actions
de [l'utilisateur (emploi de boutons,
modifications de parameétres) sont re-
tardées d’une facon inadmissible (plu-
sieurs secondes). Il a donc fallu décou-
per toutes les actions trop longues en
plusieurs petites pouvant étre effec-
tuées en plusieurs étapes. De méme,
on a souvent choisi des algorithmes
simplifiés pour garantir une vitesse de
simulation acceptable.

Dans Hérault-Jutten, les signaux de
sorties sont calculés par itérations de
I'algorithme de Jacobi, au lieu de cal-
culer I'inverse de la matrice des poids

synaptiques qui permet d’obtenir la
solution analytique. Si I'on considere
d’ailleurs un réseau de Hérault-Jutten
physique (électronique ou biologi-
que), c’est en fait cet algorithme itéra-
tif de Jacobi qui sera implicitement
employé (les opérateurs n’ayant pas
une bande passante infinie). Dans le
simulateur de Kohonen, c’est I’algo-
rithme du «winner take all» qui est
utilisé, au lieu de I’algorithme original
et fortement coliteux en temps de cal-
cul sur machine séquentielle (émer-
gence d’une bulle d’activité par re-
laxation d’un réseau a connexions la-
térales). La vraisemblance biologique
de l'algorithme simplifié de Kohonen
est, contrairement a ’algorithme sim-
plifié de Hérault-Jutten, relativement
faible.

Domaine de variation des parameétres

Le choix de ce domaine de variation
numérique des parametres, ainsi que
leur valeur par défaut (valeur a I'ini-
tialisation) est un point délicat. En ef-
fet, ce sujet est relativement peu
abordé dans les présentations théori-
ques des modeles de réseaux de neu-
rones, et de nombreux tatonnements
ont été nécessaires pour fixer les va-

leurs adéquates. Ces simulateurs
constituent un apport intéressant pour
les utilisateurs désirant exploiter cer-
tains modeles, et qui pourront ainsi
appréhender les ordres de grandeur
des valeurs numériques utilisées.

Conclusion

Dans cet article, on a présenté une
méthodologie de développement de
simulateurs de réseaux de neurones.
L’approche retenue, qui privilégie
I'interactivité et la souplesse, présente
de nombreux avantages pour la for-
mation et l'expérimentation rapide
d’hypotheses algorithmiques appli-
quées a des cas concrets.

Les simulateurs développés ont été
exploités pour I’enseignement destiné
aux années terminales des écoles d’in-
génieurs, ainsi que pour la formation
industrielle dans le cadre d’un projet
Comett. De futurs développements
sont a I'étude afin d’enrichir la famille
de modeles simulés (Algorithmes a
structure évolutive, Time-Delay Neu-
ral Networks, etc.) et d’étendre la no-
tion d’outil de visualisation pour la
rendre, a terme, indépendante des
modules de simulation.

Remerciements

Les auteurs tiennent a remercier
L. Tettoni et G. Baratoff pour le dé-
veloppement des librairies et des si-
mulateurs. Le développement des li-
brairies a ét€ supporté par le Fonds
National Suisse de la Recherche
Scientifique, dans le cadre du projet
Esprit-BRA Nerves n°3049. Le déve-
loppement des simulateurs a été par-
tiellement supporté par le projet Co-
mett Neural n° 90/1/3116/Cb.

Bibliographie

[1] F. Blayo: Cours de base en réseaux de neurones
artificiels, EPF-Lausanne. 1991.

[2] P. Demartines: Manuels d'utilisation du simula-
teur de réseau de Kohonen. du simulateur de
réseau de Hopfield. du simulateur de réseau de
Hérault-Jutten. rapports internes. novembre
1990.

[3] L. Tertoni: Manuel d'utilisation du simulateur de
Perceptron avec rétro-propagation de gradient,
rapport interne, novembre 1990.

[4] S. Wolfram: Mathematica. A system for Doing
Mathematics by Computer. Addison-Wesley.
1988.

[5] B.W. Kernighan, D.M. Ritchie: The C Program-
ming Language. Prentice Hall, 1988.

[6] Sun microsystems: Sunview. Sun View- | Pro-
grammer’s guide., 1988.

[7] B. Meyer: Object-oriented Software Construc-
tion, Prentice Hall. C.A.R. Hoare ed.. 1988.

36

Bulletin ASE/UCS 83(1992)5. 13 mars

	Simulation de réseaux de neurones artificiels

